Original Article | Published:

Deficits in striatal dopamine release in cannabis dependence

Molecular Psychiatry volume 22, pages 6875 (2017) | Download Citation

Abstract

Most drugs of abuse lead to a general blunting of dopamine release in the chronic phase of dependence, which contributes to poor outcome. To test whether cannabis dependence is associated with a similar dopaminergic deficit, we examined striatal and extrastriatal dopamine release in severely cannabis-dependent participants (CD), free of any comorbid conditions, including nicotine use. Eleven CD and 12 healthy controls (HC) completed two positron emission tomography scans with [11C]-(+)-PHNO, before and after oral administration of d-amphetamine. CD stayed inpatient for 5–7 days prior to the scans to standardize abstinence. Magnetic resonance spectroscopy (MRS) measures of glutamate in the striatum and hippocampus were obtained in the same subjects. Percent change in [11C]-(+)-PHNO-binding potential (ΔBPND) was compared between groups and correlations with MRS glutamate, subclinical psychopathological and neurocognitive parameters were examined. CD had significantly lower ΔBPND in the striatum (P=0.002, effect size (ES)=1.48), including the associative striatum (P=0.003, ES=1.39), sensorimotor striatum (P=0.003, ES=1.41) and the pallidus (P=0.012, ES=1.16). Lower dopamine release in the associative striatum correlated with inattention and negative symptoms in CD, and with poorer working memory and probabilistic category learning performance in both CD and HC. No relationships to MRS glutamate and amphetamine-induced subclinical positive symptoms were detected. In conclusion, this study provides evidence that severe cannabis dependence—without the confounds of any comorbidity—is associated with a deficit in striatal dopamine release. This deficit extends to other extrastriatal areas and predicts subclinical psychopathology.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Association APDiagnostic and Statistical Manual of Mental Disorders: DSM-5, 5th ed. American Psychiatric Publishing: Arlington, VA, USA, pp 2013.

  2. 2.

    , , , , , . Prevalence and correlates of alcohol and cannabis use disorders in the United States: results from the national longitudinal study of adolescent health. Drug Alcohol Depend 2014; 136: 158–161.

  3. 3.

    , , , , , et al. Cannabis use and risk of psychotic or affective mental health outcomes: a systematic review. Lancet 2007; 370: 319–328.

  4. 4.

    , , , . Adverse health effects of marijuana use. N Engl J Med 2014; 370: 2219–2227.

  5. 5.

    , , . The brain effects of cannabis in healthy adolescents and in adolescents with schizophrenia: a systematic review. Psychiatry Res 2013; 214: 181–189.

  6. 6.

    , , , , , et al. Cannabinoid receptor localization in brain. Proc Natl Acad Sci USA 1990; 87: 1932–1936.

  7. 7.

    , , . Marijuana and cannabinoid regulation of brain reward circuits. Br J Pharmacol 2004; 143: 227–234.

  8. 8.

    , , , , , et al. Delta 9-tetrahydrocannabinol induces dopamine release in the human striatum. Neuropsychopharmacology 2009; 34: 759–766.

  9. 9.

    , , , , . Cannabis induced dopamine release: an in-vivo SPECT study. Psychiatry Res 2001; 107: 173–177.

  10. 10.

    , , , , , . Further human evidence for striatal dopamine release induced by administration of 9-tetrahydrocannabinol (THC): selectivity to limbic striatum. Psychopharmacology 2015; 232: 2723–2729.

  11. 11.

    , , , , . Can recreational doses of THC produce significant dopamine release in the human striatum? NeuroImage 2009; 48: 186–190.

  12. 12.

    , , , , , et al. Does intravenous Delta9-tetrahydrocannabinol increase dopamine release? A SPET study. J Psychopharmacol 2011; 25: 1462–1468.

  13. 13.

    , . Imaging addiction: D2 receptors and dopamine signaling in the striatum as biomarkers for impulsivity. Neuropharmacology 2014; 76 Pt B: 498–509.

  14. 14.

    , , , , . Imaging dopamine's role in drug abuse and addiction. Neuropharmacology 2009; 56(Suppl 1): 3–8.

  15. 15.

    , , , , , et al. Dopamine release in chronic cannabis users: a [11c]raclopride positron emission tomography study. Biol Psychiatry 2012; 71: 677–683.

  16. 16.

    , , , , , et al. Dopamine response to psychosocial stress in chronic cannabis users: a PET study with [11C]-+-PHNO. Neuropsychopharmacology 2013; 38: 673–682.

  17. 17.

    , , , , , et al. Decreased dopamine brain reactivity in marijuana abusers is associated with negative emotionality and addiction severity. Proc Natl Acad Sci USA 2014; 111: E3149–E3156.

  18. 18.

    , , , , , . Dopaminergic function in cannabis users and its relationship to cannabis-induced psychotic symptoms. Biol Psychiatry 2014; 75: 470–478.

  19. 19.

    , , , , , et al. Stress-induced dopamine response in subjects at clinical high risk for schizophrenia with and without concurrent cannabis use. Neuropsychopharmacology 2014; 39: 1479–1489.

  20. 20.

    , , , , , et al. Connectivity-based functional analysis of dopamine release in the striatum using diffusion-weighted MRI and positron emission tomography. Cereb Cortex 2014; 24: 1165–1177.

  21. 21.

    , , , , , et al. Binding characteristics and sensitivity to endogenous dopamine of [11C]-(+)-PHNO, a new agonist radiotracer for imaging the high-affinity state of D2 receptors in vivo using positron emission tomography. J Neurochem 2006; 97: 1089–1103.

  22. 22.

    , , , , , et al. Impulsivity, attention, memory, and decision-making among adolescent marijuana users. Psychopharmacology 2013; 226: 307–319.

  23. 23.

    , , , , . Striatal dopamine and working memory. Cereb Cortex 2009; 19: 445–454.

  24. 24.

    , , , , , et al. Probabilistic classification learning with corrective feedback is associated with in vivo striatal dopamine release in the ventral striatum, while learning without feedback is not. Hum Brain Mapp 2014; 35: 5106–5115.

  25. 25.

    , , , , , et al. Higher levels of glutamate in the associative-striatum of subjects with prodromal symptoms of schizophrenia and patients with first-episode psychosis. Neuropsychopharmacology 2011; 36: 1781–1791.

  26. 26.

    , , , . Increased hippocampal glutamate and volumetric deficits in unmedicated patients with schizophrenia. JAMA Psychiatry 2013; 70: 1294–1302.

  27. 27.

    , , . Cannabis as a risk factor for psychosis: systematic review. J Psychopharmacol 2005; 19: 187–194.

  28. 28.

    , . Local control of striatal dopamine release. Front Behav Neurosci 2014; 8: 188.

  29. 29.

    , . CB1 cannabinoid receptor inhibits synaptic release of glutamate in rat dorsolateral striatum. J Neurophysiol 2001; 85: 468–471.

  30. 30.

    , , . A review of magnetic resonance spectroscopy studies in marijuana using adolescents and adults. J Addict Res Ther 2013; (Suppl 4):pii: 010.

  31. 31.

    , , , , , et al. Diagnostic interview for genetic studies. Rationale, unique features, and training. NIMH Genetics Initiative. Arch Gen Psychiatry 1994; 51: 849–859, discussion 863-844.

  32. 32.

    , , , , , . Psychiatric Research Interview for Substance and Mental Disorders (PRISM): reliability for substance abusers. Am J Psychiatry 1996; 153: 1195–1201.

  33. 33.

    , . Timeline Followback: A Calendar Method for Assessing Alcohol and Drug Use. Addiction Research Foundation: Toronto, Ontario, Canada, 1996.

  34. 34.

    , . Assessment of cannabis craving using the Marijuana Craving Questionnaire. Methods Mol Med 2006; 123: 209–216.

  35. 35.

    , , . Factor structure of the Barratt impulsiveness scale. J Clin Psychol 1995; 51: 768–774.

  36. 36.

    , , . The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull 1987; 13: 261–276.

  37. 37.

    . Four factor index of social status. 1975Working paper available from Department of Sociology, Yale University: New Haven, CT, USA.

  38. 38.

    , , , , , . Activation of the prefrontal cortex in a nonspatial working memory task with functional MRI. Hum Brain Mapp 1994; 1: 293–304.

  39. 39.

    , , . Probabilistic classification learning in amnesia. Learning Memory 1994; 1: 106–120.

  40. 40.

    , , , , , et al. Imaging human mesolimbic dopamine transmission with positron emission tomography: I. Accuracy and precision of D(2) receptor parameter measurements in ventral striatum. J Cereb Blood Flow Metab 2001; 21: 1034–1057.

  41. 41.

    , . Simplified reference tissue model for PET receptor studies. NeuroImage 1996; 4(3 Pt 1): 153–158.

  42. 42.

    , , , , , et al. Striatal D(2)/D(3) receptor availability is inversely correlated with cannabis consumption in chronic marijuana users. Drug Alcohol Depend 2013; 128: 52–57.

  43. 43.

    , , , , , et al. Cerebral glucose metabolism and D2/D3 receptor availability in young adults with cannabis dependence measured with positron emission tomography. Psychopharmacology 2008; 197: 549–556.

  44. 44.

    , , , , , et al. Reversible and regionally selective downregulation of brain cannabinoid CB1 receptors in chronic daily cannabis smokers. Mol Psychiatry 2012; 17: 642–649.

  45. 45.

    , , , , , . Differences in regional blood volume during a 28- day period of abstinence in chronic cannabis smokers. Eur Neuropsychopharmacol 2008; 18: 612–619.

  46. 46.

    . Human cannabinoid pharmacokinetics. Chem Biodivers 2007; 4: 1770–1804.

  47. 47.

    , , , , , et al. Predictors of marijuana relapse in the human laboratory: robust impact of tobacco cigarette smoking status. Biol Psychiatry 2013; 73: 242–248.

  48. 48.

    , , , , , et al. Smoking-induced ventral striatum dopamine release. Am J Psychiatry 2004; 161: 1211–1218.

  49. 49.

    , , , , , et al. Increased ventral striatal CB1 receptor binding is related to negative symptoms in drug-free patients with schizophrenia. NeuroImage 2013; 79: 304–312.

  50. 50.

    , , , , , et al. Expression and function of CB1 receptor in the rat striatum: localization and effects on D1 and D2 dopamine receptor-mediated motor behaviors. Neuropsychopharmacology 2008; 33: 1667–1679.

  51. 51.

    , , , , . CB1 cannabinoid receptor expression in the striatum: association with corticostriatal circuits and developmental regulation. Front Pharmacol 2012; 3: 21.

  52. 52.

    , , , , , et al. Affinity and selectivity of [(1)(1)C]-(+)-PHNO for the D3 and D2 receptors in the rhesus monkey brain in vivo. Synapse 2012; 66: 489–500.

  53. 53.

    , , , , , et al. The dopamine D3 receptor: a therapeutic target for the treatment of neuropsychiatric disorders. CNS Neurol Disord Drug Targets 2006; 5: 25–43.

  54. 54.

    , , , , , et al. Imaging dopamine D-3 receptors in the human brain with positron emission tomography, [C-11]PHNO, and a selective D-3 receptor antagonist. Biol Psychiatry 2010; 68: 392–399.

  55. 55.

    , , , , , et al. Within-subject comparison of [(11)C]-(+)-PHNO and [(11)C]raclopride sensitivity to acute amphetamine challenge in healthy humans. J Cereb Blood Flow Metab 2012; 32: 127–136.

  56. 56.

    , . Imaging the D3 receptor in humans in vivo using [11C](+)-PHNO positron emission tomography (PET). Int J Neuropsychopharmacol 2010; 13: 289–290.

  57. 57.

    , , , , , et al. Mathematical modelling of [(1)(1)C]-(+)-PHNO human competition studies. NeuroImage 2013; 68: 119–132.

  58. 58.

    , , , , , et al. In vivo quantification of regional dopamine-D3 receptor binding potential of (+)PHNO: studies in non-hman primates and transgenic mice. Synapse 2009; 63: 782–793.

  59. 59.

    , , , , , et al. Parametric imaging and test-retest variability of (1)(1)C-(+)-PHNO binding to D(2)/D(3) dopamine receptors in humans on the high-resolution research tomograph PET scanner. J Nucl Med 2014; 55: 960–966.

  60. 60.

    , , , , . The link between dopamine function and apathy in cannabis users: an [18 F]-DOPA PET imaging study. Psychopharmacology 2014; 231: 2251–2259.

  61. 61.

    , , , , , et al. Depressed dopamine activity in caudate and preliminary evidence of limbic involvement in adults with attention-deficit/hyperactivity disorder. Arch Gen Psychiatry 2007; 64: 932–940.

  62. 62.

    SAMHSAResults from the 2013 National Survey on Drug Use and Health: Summary of National Findings. Center for Behavioral Health Statistics and Quality: Substance Abuse and Mental Health Services Administration: Rockville, MD, USA, 2014.

  63. 63.

    , , . Marijuana Craving Questionnaire: development and initial validation of a self-report instrument. Addiction 2001; 96: 1023–1034.

Download references

Acknowledgements

Funding for this study was provided by grant R01 DA022455-01A1 from the National Institute on Drug Abuse. Dr van de Giessen was supported by a Rubicon grant from the Netherlands Organisation for Scientific Research (825.12.009).

Author information

Author notes

    • E van de Giessen
    •  & J J Weinstein

    These authors contributed equally to this work.

Affiliations

  1. Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, USA

    • E van de Giessen
    • , J J Weinstein
    • , C M Cassidy
    • , M Haney
    • , Z Dong
    • , R Ghazzaoui
    • , N Ojeil
    • , L S Kegeles
    • , X Xu
    • , N P Vadhan
    • , M Slifstein
    •  & A Abi-Dargham
  2. New York State Psychiatric Institute, New York, NY, USA

    • E van de Giessen
    • , J J Weinstein
    • , C M Cassidy
    • , M Haney
    • , Z Dong
    • , R Ghazzaoui
    • , N Ojeil
    • , L S Kegeles
    • , X Xu
    • , N P Vadhan
    • , M Slifstein
    •  & A Abi-Dargham
  3. Department of Nuclear Medicine, Academic Medical Center, Amsterdam, The Netherlands

    • E van de Giessen
  4. Department of Psychiatry, Stony Brook University School of Medicine, New York, NY, USA

    • N P Vadhan
  5. National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA

    • N D Volkow

Authors

  1. Search for E van de Giessen in:

  2. Search for J J Weinstein in:

  3. Search for C M Cassidy in:

  4. Search for M Haney in:

  5. Search for Z Dong in:

  6. Search for R Ghazzaoui in:

  7. Search for N Ojeil in:

  8. Search for L S Kegeles in:

  9. Search for X Xu in:

  10. Search for N P Vadhan in:

  11. Search for N D Volkow in:

  12. Search for M Slifstein in:

  13. Search for A Abi-Dargham in:

Competing interests

Dr Haney has received partial salary support for investigator-initiated studies from Insys Therapeutics Inc and Lifeloc Technologies and has served as a consultant to Aelis Farma and Health Advances LLC. Dr Kegeles has received research support from Amgen. Dr Slifstein has received research support from Forest Laboratories, Pierre-Fabre, CHDI, and Otsuka and has provided consultation for Amgen. Dr Abi-Dargham has received research support from Takeda and Forest Pharmaceuticals and has served on advisory boards for Roche, Forum, and Otsuka. The remaining authors declare no conflict of interests.

Corresponding author

Correspondence to E van de Giessen.

Supplementary information

About this article

Publication history

Received

Revised

Accepted

Published

DOI

https://doi.org/10.1038/mp.2016.21

Supplementary Information accompanies the paper on the Molecular Psychiatry website (http://www.nature.com/mp)

Further reading