Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Additive effects of oxytocin receptor gene polymorphisms on reward circuitry in youth with autism

Abstract

Several common alleles in the oxytocin receptor gene (OXTR) are associated with altered brain function in reward circuitry in neurotypical adults and may increase risk for autism spectrum disorders (ASD). Yet, it is currently unknown how variation in the OXTR relates to brain functioning in individuals with ASD, and, critically, whether neural endophenotypes vary as a function of aggregate genetic risk. Here, for we believe the first time, we use a multi-locus approach to examine how genetic variation across several OXTR single-nucleotide polymorphisms (SNPs) affect functional connectivity of the brain’s reward network. Using data from 41 children with ASD and 41 neurotypical children, we examined functional connectivity of the nucleus accumbens (NAcc) – a hub of the reward network – focusing on how connectivity varies with OXTR risk-allele dosage. Youth with ASD showed reduced NAcc connectivity with other areas in the reward circuit as a function of increased OXTR risk-allele dosage, as well as a positive association between risk-allele dosage and symptom severity, whereas neurotypical youth showed increased NAcc connectivity with frontal brain regions involved in mentalizing. In addition, we found that increased NAcc-frontal cortex connectivity in typically developing youth was related to better scores on a standardized measure of social functioning. Our results indicate that cumulative genetic variation on the OXTR impacts reward system connectivity in both youth with ASD and neurotypical controls. By showing differential genetic effects on neuroendophenotypes, these pathways elucidate mechanisms of vulnerability versus resilience in carriers of disease-associated risk alleles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Klei L, Sanders SJ, Murtha MT, Hus V, Lowe JK, Willsey JA et al. Common genetic variants, acting additively, are a major source of risk for autism. Mol Autism 2012; 3: 9.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Gaugler T, Klei L, Sanders SJ, Bodea CA, Goldberg AP, Lee AB et al. Most genetic risk for autism resides with common variation. Nat Genet 2014; 46: 881–885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Huguet G, Ey E, Bourgeron T . The genetic landscapes of autism spectrum disorders. Annu Rev Genomics Hum Genet 2013; 14: 191–213.

    Article  CAS  PubMed  Google Scholar 

  4. LoParo D, Waldman ID . The oxytocin receptor gene (OXTR) is associated with autism spectrum disorder: a meta-analysis. Mol Psychiatry 2014; 20: 640–646.

    Article  PubMed  Google Scholar 

  5. Yrigollen CM, Han SS, Kochetkova A, Babitz T, Chang JT, Volkmar FR et al. Genes controlling affiliative behavior as candidate genes for autism. Biol Psychiatry 2008; 63: 911–916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wermter AK, Kamp-Becker I, Hesse P, Schulte-Körne G, Strauch K, Remschmidt H . Evidence for the involvement of genetic variation in the oxytocin receptor gene (OXTR) in the etiology of autistic disorders on high-functioning level. Am J Med Genet B Neuropsychiatr Genet 2010; 153B: 629–639.

    Article  CAS  PubMed  Google Scholar 

  7. Campbell DB, Datta D, Jones ST, Lee EB, Sutcliffe JS, Hammock EAD et al. Association of oxytocin receptor gene (OXTR) gene variants with multiple phenotype domains of autism spectrum disorder. J Neurodev Disord 2011; 3: 101–112.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Insel TR, Shapiro LE . Oxytocin receptor distribution reflects social organization in monogamous and polygamous voles. Proc Natl Acad Sci USA 1992; 89: 5981–5985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Barrett CE, Arambula SE, Young LJ . The oxytocin system promotes resilience to the effects of neonatal isolation on adult social attachment in female prairie voles. Transl Psychiatry 2015; 5: e606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. King LB, Walum H, Inoue K, Eyrich NW, Young LJ . Variation in the oxytocin receptor gene predicts brain region-specific expression and social attachment. Biol Psychiatry 2016; 80: 160–169.

    Article  CAS  PubMed  Google Scholar 

  11. Young LJ, Lim M, Gingrich B, Insel TR . Cellular mechanisms of social attachment. Horm Behav 2001; 40: 133–148.

    Article  CAS  PubMed  Google Scholar 

  12. Keebaugh AC, Barrett CE, Laprairie JL, Jenkins JJ, Young LJ . RNAi knockdown of oxytocin receptor in the nucleus accumbens inhibit social attachment and parental care in monogamous female prairie voles. Soc Neurosci 2015; 7: 1–10.

    Google Scholar 

  13. Dölen G, Darvishzadeh A, Huang KW, Malenka RC . Social reward requires coordinated activity of nucleus accumbens oxytocin and serotonin. Nature 2013; 501: 179–184.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Schmitz N, Rubia K, van Amelsvoort T, Daly E, Smith A, Murphy DG . Neural correlates of reward in autism. Br J Psychiatry 2008; 192: 19–24.

    Article  PubMed  Google Scholar 

  15. Scott-Van Zeeland AA, Dapretto M, Ghahremani DG, Poldrack RA, Bookheimer SY . Reward processing in autism. Autism Res 2010; 3: 53–67.

    PubMed  PubMed Central  Google Scholar 

  16. Dichter GS, Richey JA, Rittenberg AM, Sabatino A, Bodfish JW . Reward circuitry function in autism during face anticipation and outcomes. J Autism Dev Disord 2012; 42: 147–160.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kohls G, Schulte-Rüther M, Nehrkorn B, Müller K, Fink GR, Kamp-Becker I et al. Reward system dysfunction in autism spectrum disorders. Soc Cogn Affect Neurosci 2013; 8: 565–572.

    Article  PubMed  Google Scholar 

  18. Delmonte S, Balsters JH, McGrath J, Fitzgerald J, Brennan S, Fagan AJ et al. Social and monetary reward processing in autism spectrum disorders. Mol Autism 2012; 3: 7.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Dawson G, Toth K, Abbott R, Osterling J, Munson J, Estes A et al. Early social attention impairments in autism: social orienting, joint attention, and attention to distress. Dev Psychol 2004; 7: 340–359.

    Google Scholar 

  20. Chevallier C, Kohls G, Troiani V, Brodkin ES, Schultz RT . The social motivation theory of autism. Trends Cogn Sci 2012; 16: 231–239.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Tost H, Kolachana B, Hakimi S, Lemaitre H, Verchinski BA, Mattay VS et al. A common allele in the oxytocin receptor gene (OXTR) impacts prosocial temperament and human hypothalamic-limbic structure and function. Proc Natl Acad Sci USA 2010; 107: 13936–13941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Saito Y, Suga M, Tochigi M, Abe O, Yahata N, Kawakubo Y et al. Neural correlate of autistic-like traits and a common allele in the oxytocin receptor gene. Soc Cogn Affect Neurosci 2014; 9: 1443–1450.

    Article  PubMed  Google Scholar 

  23. Damiano CR, Aloi J, Dunlap K, Burrus CJ, Mosner MG, Kozink RV et al. Association between the oxytocin receptor (OXTR) gene and mesolimbic responses to rewards. Mol Autism 2014; 5: 7.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wu S, Jia M, Ruan Y, Liu J, Guo Y, Shuang M et al. Positive association of the oxytocin receptor gene (OXTR) with autism in the Chinese Han population. Biol Psychiatry 2005; 58: 74–77.

    Article  CAS  PubMed  Google Scholar 

  25. Lerer E, Levi S, Salomon S, Darvasi A, Yirmiya N, Ebstein RP . Association between the oxytocin receptor (OXTR) gene and autism: relationship to Vineland Adaptive Behavior Scales and cognition. Mol Psychiatry 2008; 10: 980–988.

    Article  Google Scholar 

  26. Di Napoli A, Warrier V, Baron-Cohen S, Chakrabarti B . Genetic variation in the oxytocin receptor (OXTR) gene is associated with Asperger Syndrome. Mol Autism 2014; 5: 48.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lord C, Rutter M, DiLavore P, Risi S, Gotham K, Bishop S . Autism Diagnostic Observation Schedule. 2nd edn. Western Psychological Services: Torrance, CA, USA, 2012.

    Google Scholar 

  28. Lord C, Rutter M, Le Couteur A . Autism diagnostic interview-revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J Autism Dev Disord 1994; 24: 659–685.

    Article  CAS  PubMed  Google Scholar 

  29. Wechsler D . The Wechsler Intelligence Scale For Children. The Psychological Corporation: San Antonio, TX, USA, 1991.

    Google Scholar 

  30. Wechsler D . Wechsler Abbreviated Scale of Intelligence. The Psychological Corporation, Harcourt Brace & Company: New York, NY, USA, 1999.

    Google Scholar 

  31. Constantino JN, Gruber CP . Social Responsiveness Scale (SRS) Manual. Western Psychological Services: Los Angeles, CA, USA, 2005.

    Google Scholar 

  32. Gotham K, Pickles A, Lord C . Standardizing ADOS scores for a measure of severity in autism spectrum disorders. J Autism Dev Disord 2009; 39: 693–705.

    Article  PubMed  Google Scholar 

  33. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D et al. PLINK: a toolset for whole-genome association and population-based linkage analysis. Am J Hum Genet 2007; 81: 559–575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. The International HapMap Consortium. The international HapMap project. Nature 2003; 426: 789–796.

    Article  Google Scholar 

  35. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TEJ, Johansen-Berg H et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 2004; 23: 208–219.

    Article  Google Scholar 

  36. Cox RW . AFNI software for analysis and visualization of functional magnetic resonance images. Comput Biomed Res 1996; 29: 162–173.

    Article  CAS  PubMed  Google Scholar 

  37. Jenkinson M, Bannister P, Brady M, Smith S . Improved optimization for the robust and accurate linear registration and motion correction of brains. Neuroimage 2002; 17: 825–841.

    Article  PubMed  Google Scholar 

  38. Burgund ED, Kang HC, Kelly JE, Buckner RL, Snyder AZ, Petersen SE et al. The feasibility of a common stereotactic space for children and adults in fMRI studies of development. Neuroimage 2002; 17: 184–200.

    Article  PubMed  Google Scholar 

  39. Kang HC, Burgund ED, Lugar HM, Petersen SE, Schlaggar BL . Comparison of functional activation foci in children and adults using a common stereotacticspace. Neuroimage 2003; 19: 16–28.

    Article  PubMed  Google Scholar 

  40. Power JD, Barnes KA, Snyder AZ, Schlaggar B, Petersen SE . Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 2012; 59: 2142–2154.

    Article  PubMed  Google Scholar 

  41. Faul F, Erdfelder E, Buchner A, Lang A-G . Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behav Res Methods 2009; 41: 1149–1160.

    Article  PubMed  Google Scholar 

  42. Barrett JC, Fry B, Maller J, Daly MJ . Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005; 21: 263–265.

    Article  CAS  PubMed  Google Scholar 

  43. Yarkoni T, Poldrack RA, Nichols TE, Van Essen DC, Wager TD . Large-scale automated synthesis of human functional neuroimaging data. Nat Methods 2011; 8: 665–670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gimpl G, Fahrenholz F . The oxytocin receptor system: structure, function, and regulation. Physiol Rev 2001; 82: 629–683.

    Article  Google Scholar 

  45. Dennis EL, Jahanshad N, Rudie JD, Brown JA, Johnson K, McMahon KL et al. Altered structural brain connectivity in healthy carriers of the autism risk gene, CNTNAP2. Brain Connect 2011; 1: 447–459.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Whalley HC, O'Connell G, Sussmann JE, Peel A, Stanfield AC, Hayiou-Thomas ME et al. Genetic variation in CNTNAP2 alters brain function during linguistic processing in healthy individuals. Am J Med Genet B Neuropsychiatr Genet 2011; 156B: 941–948.

    Article  PubMed  Google Scholar 

  47. Rudie JD, Hernandez LM, Brown JA, Beck-Pancer D, Colich NL, Gorrindo P et al. Autism-associated promoter variant in MET impacts functional and structural brain networks. Neuron 2012; 75: 904–915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Young LJ, Barrett C . Can oxytocin treat autism? Science 2015; 347: 825–826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zink C, Meyer-Lindenberg A . Human neuroimaging of oxytocin and vasopressin in social cognition. Horm Behav 2012; 61: 400–409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Domes G, Heinrichs M, Kumbier E, Grossmann A, Hauenstein K, Herpertz SC . Effects of intranasal oxytocin on the neural basis of face processing in autism spectrum disorder. Biol Psychiatry 2013; 74: 164–171.

    Article  CAS  PubMed  Google Scholar 

  51. Gordon I, Vander Wyk BC, Bennett RH, Cordeaux C, Lucas MV, Eilbott JA et al. Oxytocin enhances brain function in children with autism. Proc Natl Acad Sci USA 2013; 110: 20953–20958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Domes G, Kumbier E, Heinrichs M, Herpertz SC . Oxytocin promotes facial emotion recognition and amygdala reactivity in adults with Asperger syndrome. Neuropsychopharmacology 2014; 39: 698–706.

    Article  CAS  PubMed  Google Scholar 

  53. Watanabe T, Kuroda M, Kuwabara H, Aoki Y, Iwashiro N, Tatsunobu N et al. Clinical and neural effects of six-week administration of oxytocin on core symptoms of autism. Brain 2015; 138: 3400–3412.

    Article  PubMed  Google Scholar 

  54. Peñagarikano O, Lázaro MT, Lu XH, Gordon A, Dong H, Lam HA et al. Exogenous and evoked oxytocin restores social behavior in the Cntnap2 mouse model of autism. Sci Transl Med 2015; 7: 271ra8.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Chen FS, Kumsta R, Dvorak F, Domes G, Yim OS, Ebstein R et al. Genetic modulation of oxytocin sensitivity: a pharmacogenetic approach. Transl Psychiatry 2015; 5: e664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Feng C, Lori A, Waldman ID, Binder EB, Haroon E, Rilling JKP . A common oxytocin receptor gene (OXTR) polymorphism modulates intranasal oxytocin effects on the neural response to social cooperation in humans. Genes Brain Behav 2015; 14: 516–525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sauer C, Montag C, Wörner C, Kirsch P, Reuter M . Effects of a common variant in the CD38 gene on social processing in an oxytocin challenge study: possible links to autism. Neuropsychopharmacology 2012; 37: 1474–1482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institute of Child Health and Human Development grant P50 HD055784 (to SYB), National Institute of Mental Health grant RO1 MH100028 (to SYB), National Institute of Mental Health grant T32 MH073526-08 (to LMH), National Research Service Awards F32 MH105167-01 (to SAG) and F31 DA038578-01A1 (to LES). We are grateful for the generous support from the Brain Mapping Medical Research Organization, Brain Mapping Support Foundation, Pierson-Lovelace Foundation, The Ahmanson Foundation, Capital Group Companies Charitable Foundation, William M. and Linda R. Dietel Philanthropic Fund, and Northstar Fund. Research reported in this publication was also partially supported by the National Center for Research Resources and by the Office of the Director of the National Institutes of Health under award numbers C06RR012169, C06RR015431 and S10OD011939. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Dapretto.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website .

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernandez, L., Krasileva, K., Green, S. et al. Additive effects of oxytocin receptor gene polymorphisms on reward circuitry in youth with autism. Mol Psychiatry 22, 1134–1139 (2017). https://doi.org/10.1038/mp.2016.209

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2016.209

This article is cited by

Search

Quick links