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Predicting the functional states of human iPSC-derived
neurons with single-cell RNA-seq and electrophysiology
C Bardy1,2, M van den Hurk1,3,7, B Kakaradov4,7, JA Erwin1, BN Jaeger1, RV Hernandez1, T Eames1, AA Paucar1, M Gorris1, C Marchand1,
R Jappelli1, J Barron1, AK Bryant1, M Kellogg1, RS Lasken5, BPF Rutten3, HWM Steinbusch3, GW Yeo4,6 and FH Gage1

Human neural progenitors derived from pluripotent stem cells develop into electrophysiologically active neurons at heterogeneous
rates, which can confound disease-relevant discoveries in neurology and psychiatry. By combining patch clamping, morphological
and transcriptome analysis on single-human neurons in vitro, we defined a continuum of poor to highly functional electrophysio-
logical states of differentiated neurons. The strong correlations between action potentials, synaptic activity, dendritic complexity
and gene expression highlight the importance of methods for isolating functionally comparable neurons for in vitro investigations
of brain disorders. Although whole-cell electrophysiology is the gold standard for functional evaluation, it often lacks the scalability
required for disease modeling studies. Here, we demonstrate a multimodal machine-learning strategy to identify new molecular
features that predict the physiological states of single neurons, independently of the time spent in vitro. As further proof of concept,
we selected one of the potential neurophysiological biomarkers identified in this study—GDAP1L1—to isolate highly functional live
human neurons in vitro.
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INTRODUCTION
The unprecedented access to live neurons from patients via
human-induced pluripotent stem cell (iPSC) models is revolutioniz-
ing medical research opportunities in neurology and psychiatry.
The translational success of these models depends on the ability to
recapitulate in vitro the complexity of functional human brain
circuits. Rapidly growing technological advances, which build on
decades of elegant investigations on neurodevelopmental pro-
cesses in animal models,1,2 offer a panoply of protocols to drive
cellular fates towards neurons of particular neurotransmitter
classes (for example, dopaminergic, serotonergic) and brain region
identities (for example, cortical neurons, midbrain neurons, motor
neurons).3–7 Many important studies have also shown that
electrophysiologically active neurons can be generated from iPSCs
or fibroblast-direct conversion.5,8–13 Despite the clear success of
generating highly functional neurons, it is also evident that such
human cultures often comprise neuronal populations of hetero-
geneous electrophysiological states.14 Indeed, patch-clamping
experiments have reported an important variability of functional
maturity among cell lines, cell batches and even within the same
culture dish.15–17 Co-culture with astrocytes or lengthy periods of
time spent in neuronal medium have been reported to increase
neuronal maturity on average but may also increase tissue culture
variability.18 In addition, the length of time required to reach
functional maturation significantly varies among numerous pub-
lished reports from 3 weeks to more than 5 months.18,19 Such wide
ranges may depend on many technical aspects such as loose
criteria defining maturity, discrepancies in tissue culture protocols,

or inherent differences among batches of cells.20 Patch clamping is
the current gold standard to demonstrate the functionality of a
neuronal culture. However, patch clamping is low throughput and
provides information for only a handful of neurons selected from
several hundreds of thousands of cells. This technical limitation
precludes a thorough characterization of the functional maturity of
the actual neurons used with a variety of read outs for identifying
the particular traits of patients’ cell lines (for example, biochem-
istry, morphology, cell survival). In this study, we demonstrate a
strategy to define functional states of human neurons in vitro,
independently of time spent in culture. We bridge the gap
between electrophysiology and molecular profile by successfully
combining patch clamping, morphology and RNA-seq on single
human neurons (PatchSeq). Using a machine-learning classifier
trained on our multimodal dataset, we reveal new biomarkers that
efficiently predict which neurons are highly functional. These
biomarkers allow for the functional classification of a large number
of neurons without patch clamping and can be used to stratify
functional heterogeneity.

MATERIAL AND METHODS
Human neuronal culture
Human dermal fibroblasts were reprogrammed into pluripotent cells with
the four Yamanaka factors (Oct3/4, Sox2, Klf4 and c-Myc), either in a
retroviral vector or a non-integrating Sendai viral vector. Human iPSCs and
embryonic stem cells (ESCs) were differentiated into neural progenitor cells
(NPCs) as previously described.6 NPCs were expanded for 3–5 passages
(split 1:2 or 1:3 per passage) and stored at − 80 °C. Then they were thawed
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and expanded for at least one more passage in neural progenitor medium
(DMEM/F12 supplemented with FGF8, SHH, B27 and N2, without retinoic
acid). Dissociated NPCs were directly plated on glass coverslips (Fisher
Scientific, Pittsburgh, PA, USA; Cat. No. 12-545-80) coated with poly-
ornithine (Sigma, St. Louis, MO, USA; Cat. No. P3655) and laminin
(Invitrogen/Thermo Fisher Scientific, Waltham, MA, USA; Cat. No. 23017-
015) in 24-well plates. Twenty-four hours later, the cells were switched
gradually (half medium change) to neuronal medium: BrainPhys basal13

supplemented with 1 × N2 (Gibco/Thermo Fisher Scientific, Waltham, MA,
USA; Cat. No. 17502-048), 1 × B27 (Gibco/Thermo Fisher Scientific, Cat No.
17504-044), brain-derived neurotrophic factor (BDNF, 20 ng ml− 1; Pepro-
Tech, Rocky Hill, NJ, USA; Cat. No. 450-02), glia-derived neurotrophic factor
(GDNF, 20 ng ml− 1; PeproTech, Cat No. 450-10), ascorbic acid (AA, 200 nM;
Sigma, Cat No. A0278), dibutyryl cyclic AMP (cAMP, 1 mM Sigma, Cat No.
D0627), and laminin (1 μg ml− 1; Invitrogen/Thermo Fisher Scientific, Cat
No. 23017-015). Half of the neuronal medium was gently replaced two to
three times a week. The plates were kept in a humidified incubator at 37 °C
with 5% CO2 and 21% O2. The pH (~7.3–7.4) and the osmolarity (~300–305
mOsmol l− 1) of medium were maintained constant over time.

Patch clamping
For whole-cell patch-clamp recordings, individual coverslips were trans-
ferred into a heated recording chamber and continuously perfused
(1 ml min− 1) with either BrainPhys basal medium or artificial cerebrospinal
fluid (ACSF) bubbled with a mixture of CO2 (5%) and O2 (95%) and
maintained at 25 °C. The composition of ACSF was adjusted to match the
inorganic salt concentration and osmolarity of BrainPhys basal. ACSF
contained (in mM) 121 NaCl, 4.2 KCl, 1.1 CaCl2, 1 MgSO4 (or 0.4 MgSO4 and
0.3 MgCl), 29 NaHCO3, 0.45 NaH2PO4-H2O, 0.5 Na2HPO4 and 20 glucose (all
chemicals from Sigma).
For single-cell patch-clamp electrophysiological recordings, we used a

digidata 1440 A/ Multiclamp 700B and Clampex 10.3 (Molecular Devices,
Sunnyvale, CA, USA). Patch electrodes were filled with internal solutions
containing 130 mM K-gluconate, 6 mM KCl, 4 mM NaCl, 10 mM Na-HEPES,
0.2 mM K-EGTA; 0.3 mM GTP, 2 mM Mg-ATP, 0.2 mM cAMP, 10 mM D-glucose,
0.15% biocytin and 0.06% rhodamine. The pH and osmolarity of the internal
solution were close to physiological conditions (pH 7.3, 290–300 mOsmol).
Data were all corrected for liquid junction potentials (10 mV). Electrode
capacitances were compensated on-line in cell-attached mode (~7 pF).
Recordings were low-pass filtered at 2 kHz, digitized, and sampled at
intervals of 50 ms (20 kHz). To control the quality and the stability of the
recordings throughout the experiments, access resistance, capacitance and
membrane resistance were continuously monitored on-line and recorded.
The resistance of the patch pipettes was between 3 and 5 MOhm. The
access resistance of the cells in our sample was ~ 40 MOhm on average.
Spontaneous synaptic AMPA events were recorded at the reversal potential
of Cl− and could be reversibly blocked by AMPA receptor antagonist
(10 μM NBQX, Sigma Ref#N183). Spontaneous synaptic GABA events were
recorded at the reversal potential of cations and could be reversibly
blocked with GABAa receptor antagonist (10 μM SR95531, Sigma Ref#S106).
Statistical analysis of electrophysiology data was assisted with Clampfit 10.3
(pCLAMP Software suite, Molecular Devices, Sunnyvale, CA, USA), MATLAB
2014b (MathWorks, Natick, MA, USA), Igor Pro 6 (WaveMetrics, Lake
Oswego, OR, USA), Prism 6 (GraphPad Software, La Jolla, CA, USA), Mini
Analysis (Synaptosoft, Decatur, GA, USA), Excel (Microsoft Corporation,
Redmond, WA, USA) and custom-made Python programs.

Electrophysiological recording protocol
The same electrophysiological protocol was applied to all neurons (n=290).
Whole-cell patch-clamp recordings were obtained in the absence of any
receptor antagonists in ACSF or BrainPhys basal. After breaking the
membrane seal, we first maintained the cell in voltage clamp (VC) at
− 70 mV by injecting small amounts of current when necessary (‘Baseline at
− 70 mV’). We applied a test pulse of − 5mV to measure passive cell
properties (membrane resistance, access resistance, capacitance). Voltage-
dependent sodium and potassium channels properties were examined with
an IV curve. Spontaneous synaptic events mediated by AMPA receptors
were recorded for at least 5 min at − 70 mV (close to Cl− reversal potential).
The nature of AMPA synaptic events was confirmed on a small subset of
cells (n=15, excluded from RNA-seq) by reversible blockade with AMPA
receptor antagonist (10 μM NBQX). The patch was then switched to current
clamp. Small currents were injected if necessary to maintain the cell resting
potential around − 70 mV. Current steps (increments 2 pA, n=15, 500 ms)

were applied to measure the properties of evoked action potentials (APs).
Next, spontaneous APs were recorded for 1–5 min at –70 mV and then at
resting potential without injecting any current (CC 0 pA). The patch was then
reversed to voltage clamp and slowly increased to the reversal potential of
cations (~0 mV). Once the baseline stabilized, we recorded spontaneous
gabaergic synaptic activity for 5–10 min. The nature of GABA synaptic events
was confirmed on a small subset of cells (n=5, excluded from RNA-seq) by
reversible blockade with GABAa receptor antagonist (10 μM Gabazine).

AP Type classification
‘Type 0 cells’ did not express voltage-dependent sodium currents and were
excluded from analysis. ‘Type 1 neurons’ expressed small Nav currents but
were not able to fire APs above − 10 mV. The arbitrary limit of − 10 mV was
chosen as it is close to the reversal potential of cations (0 mV). Healthy APs
usually reach or overshoot the reversal potential of cations. ‘Type 2 neurons’
fired one AP above − 10 mV, which was followed by a plateau. ‘Type 3
neurons’ also fired one AP above − 10 mV and one or a few aborted spikes
below − 10 mV. ‘Type 4 neurons’ fired more than one AP above − 10 mV but
at a frequency below 10 Hz. ‘Type 5 neurons’ fired APs above − 10 mV at
10 Hz or more. Our categorization of functional types of neurons followed a
continuum that relates to the stage of maturity of the neurons. Although
Type 1 neurons are considered immature, Type 5 neurons are considered
more mature and functionally active. Although after ~ 3–6 weeks of
maturation we found on average ~ 75% of Type 4–5 neurons, we found
every ePhys type of cell at most differentiation time points we looked at
(range of 2 weeks to 5 months after NPC maturation). This finding suggests
some degree of variability in the electrophysiological maturity of neurons
even within cultures of the same age. Remarkably, in our samples, the large
majority of cells receiving active excitatory synapses were Type 5 neurons
and we almost never found clear, spontaneously active AMPA and GABA
synaptic inputs in Type 1 neurons and rarely in Type 2.

Neuromorphometry
Images of the patch-clamped cells were taken with a 40× water-
immersion objective, differential interference contrast filters (all Olympus,
Tokyo, Japan), an infrared digital camera (Rolera XR; QImaging, Surrey, BC,
Canada), and an epifluorescence mercury lamp. Mosaics of the several
fields of views to cover the span of the neurites were taken and stitched
later on Neurolucida (MBF Bioscience, Williston, VT, USA). Before patch
clamping, the targeted cells were imaged with DIC and epiflucorescence
(most cells patched expressed synapsin-GFP). The entire cells were filled
with a red fluorescent dye (rhodamine) and another set of images was
taken rapidly after completion of the electrophysiological recordings. All
the images were stitched and analyzed on Neurolucida. The soma size and
shape were measured on the DIC images before patching to avoid
deformation by the patch pipette. The images from the intracellular
rhodamine dye, occasionally supplemented by GFP vectors, were used to
guide the neuromorphological reconstruction. For all cells, the morphology
was reconstructed within a radius of 150 μm. Many cell processes reached
beyond that distance but, for homogeneity of the sample, we restricted
the analysis to that arbitrary radius. Occasionally, patched cells with
pictures of insufficient quality were excluded from the analysis. When
necessary, some processes partially hidden by the patch electrode were
extrapolated.

Single-cell collection and cDNA preparation
Following electrophysiological recording, we applied slight additional
negative pressure to establish a stronger connection between cell and
patch electrode, but without completely aspirating the cell in the pipette.
The neuron, including its processes (axon and dendrites), was then
transferred in a volume of ~ 2 μl of internal patch solution into a PCR tube
containing 8 μl sample buffer by slowly retracting the patch pipette from
the chamber bath and breaking the tip of the electrode along the inside
wall of the tube. Sample buffer was made according to the protocol
supplied by Clontech with the SMARTer Ultra Low RNA Kit and included
both ERCC spike-ins (Ambion/Thermo Fisher Scientific) and ArrayControl
spikes 1, 4 and 7 (RNA standard for the Fluidigm C1) for the purpose of
quality control (QC). Successful removal of the cell from the coverslip was
always confirmed by DIC optics. Collected single cells were immediately
spun down and put on ice for SMARTer cDNA synthesis following
manufacturer’s instructions (Clontech, Mountain View, CA, USA). Briefly,
first-strand cDNA was synthesized from poly(A)+ RNA by incubation with
1 μl of 3′ SMART CDS Primer II A (24 μM) for 3 min at 72 °C, followed by
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reverse transcription in a 20-μl final reaction volume using 200 units of
SMARTScribe Reverse Transcriptase for 90 min at 42 °C and inactivation for
10 min at 70 °C. First-strand cDNA was then purified using Agencourt
AMPure XP SPRI Beads (Beckman Coulter Genomics, Danvers, MA, USA)
and amplified by long-distance PCR using the Advantage 2 PCR Kit
(Clontech) with the following PCR thermocycler program: 95 °C for 1 min,
18 cycles of 95 °C for 15 s, 65 °C for 30 s, 68 °C for 6 min, and 72 °C for
10 min. PCR-amplified double-stranded (ds) cDNA was immobilized onto
SPRI beads, purified by two washes in 80% ethanol, and eluted in 12 μl of
purification buffer (Clontech). The quality (Agilent 2100 Bioanalyzer High
Sensitivity DNA Kit; Agilent Technologies, Santa Clara, CA, USA) and quantity
(Qubit dsDNA High Sensitivity Assay Kit; Invitrogen/Thermo Fisher Scientific)
of each ds cDNA sample were assessed before library preparation.

qPCR assays
To select the single-cell cDNA samples suitable for mRNA-seq, we
determined the level of expression of GAPDH and beta-actin (ACTB) in
each sample by TaqMan real-time PCR. Samples with Ct values ⩽ 30 for
both housekeeping genes were typically considered positive for library
preparation. For each gene, duplicate 10-μl PCR reactions were performed
on an ABI Prism 7900 Sequence Detector (Applied Biosystems/Thermo
Fisher Scientific, Waltham, MA, USA) using 0.50 μl of 1:5-diluted ds cDNA
template in standard TaqMan Gene Expression Assay with FAM reporter.
Real-time PCR assays for detection of the ERCCs and ArrayControl RNA
spikes were performed using, respectively, standard TaqMan Gene
Expression Assays and SYBR Green PCR Master Mix (Thermo Fisher
Scientific) with custom primers (Fluidigm, South San Francisco, CA, USA).

Illumina transcriptome library preparation and sequencing
Construction of single-cell mRNA-seq libraries was typically performed with
0.25 ng of input cDNA using the Nextera XT DNA sample prep kit (Illumina,
San Diego, CA, USA) with modified protocol. Briefly, cDNA was tagmented
for 5 min at 55 °C in a 5-μl reaction containing 2.5 μl of Tagment DNA
Buffer and 1.25 μl of Amplicon Tagment Mix; tagmentation was neutralized
with 1.25 μl of Neutralize Tagment Buffer for 5 min. Tagmented DNA was
then subjected to 12-cycle PCR amplification using 3.75 μl of Nextera PCR
Master Mix and 1.25 μl each of index 1 (i7) and index 2 (i5) library-
identifying (barcoded) sequencing primers. The constructed libraries were
run on a 1.5% agarose gel in Tris-borate/EDTA buffer, stained with SYBR
Gold (Invitrogen), and size selected for ~ 300–400 or ~ 300–650 bp (insert
size of ~ 165–265 or ~ 165–515 bp, respectively). Gel-excised library
fragments were purified with the Wizard SV Gel and PCR Clean-Up System
(Promega, Madison, WI, USA), eluted in 40 μl of nuclease-free water, and
concentrated by speedvacuum centrifugation. Each library was then
quantified (Qubit dsDNA High Sensitivity Assay Kit; Invitrogen/Thermo Fisher
Scientific) and examined for correct size (Agilent 2200 TapeStation High
Sensitivity D1K ScreenTape Assay; Agilent Technologies), after which
equimolar amounts of uniquely barcoded libraries were pooled together
and used for cluster generation and 100-bp paired-end sequencing on a
HiSeq 2000 or 2500 sequencer (Illumina).

Bioinformatic analysis of single-cell transcriptomes
Single-cell mRNA sequencing data from n= 56 patched human neurons,
which passed a series of QC, allowed us to correlate electrophysiological
profiles with gene expression profiles. For each of n=56 neurons, raw
sequencing reads were mapped to the human reference transcriptome
(Gencode v19) using gapped-alignment strategies. Alignment was
performed by STAR (version 2.3.0) followed by gene-level quantification
with HTseq (version 0.6.1). Per-gene expression outputs were scaled to
transcripts per million (tpm) units.

Data transformation and dimensionality reduction for
transcriptome principal component analysis
Whole-gene expression tpm counts were log-transformed: log(tpm+1) to
normalize their distribution. Principal component analysis (PCA) was
performed on the log-transformed expression matrix E (cells = rows,
genes= columns). Before PCA dimensionality reduction, the expression of
each gene (column) was standardized by subtracting the mean expression
of that gene across all 56 cells and dividing by its s.d. All 56 cells were
scatter-plotted against the first two principal components of the
expression matrix E. Although the PCA of the transcriptomes was
unsupervised, each cell was later colored on the plot by its respective

AP Type, allowing us to visually assess any functionally significant
clustering. To formalize this, we also performed hierarchical agglomerative
clustering (Euclidean distance, average linkage) of the cell–cell covariance
matrix (E*E′).

Differential expression between intermediate and functional
neuron states
The five AP Types of differentiated neurons were stratified into immature
(Types 1–3), transitional (Type 4) and highly functional (Type 5) neurons. To
identify differentially expressed genes in these neuron groups, two non-
parametric statistical tests were used: Mann–Whitney U (MWU) and
Kolmogorov–Smirnoff 2-sided (KS2). The reported P-values are presented,
but the threshold for significance is Bonferroni-corrected from Po0.05 to
Po3.1e− 6.

Extremely randomized trees classifier
The algorithm learned to classify the functional states of neurons solely
based on their molecular phenotypes (gene expression). We stratified the
cells into two classes based on electrophysiological states. The classifier
randomly selected 90% of the cells in our sample for training. The testing
was performed on the remaining 10%. To obtain a predictive value for
each cell, we reiterated the learning phase 10 times. Using the extremely
randomized trees classifier21 with 10-fold cross-validation, we achieved
good validation performance with 485% generalization accuracy, as
shown by a high area under the receiver operating characteristic (ROC)
curve (area under the curve = 0.93). The maximum number of features was
200, and we used 900 estimators.

Construction of GDAP1L1-EGFP lentiviral reporter vector
A transcriptional reporter lentivector encoding EGFP was designed to track
human cells expressing gene GDAP1L1 (ganglioside-induced differentiation
associated protein 1-like 1). A 1350 bp 5′ gene region—chr20:44,245,985-
44,247,334—UCSC Human Genome Browser Dec. 2013 (GRCh38/hg38)
Assembly, located precisely upstream to the gene’s translation start codon
and including a 77 bp 5′UTR, was used as a promoter. The sequence was
amplified from male genomic DNA (Promega) with Phusion High-Fidelity
DNA Polymerase (NEB) using the forward primer G220 (5′-CGTTATCG
ATGTATGCTGAACCAGGGAGGCT), which adds a ClaI site, and the reverse
primer G221 (5′-attactcgaggacagcccggaatcagaggca), which adds a XhoI site.
The PCR product was introduced as a promoter into the lentiviral vector
(LV) pCSC-Syn-mcs-EGFP, a derivative of pCSC-SP-PW-EGFP.22 The construct
(pCSC-GDAP1L1-EGFP) was verified by DNA sequencing.

Immunohistochemistry
Immunohistochemistry experiments were performed on neurons plated on
glass coverslips. Standard immunohistochemistry protocols were used.
Coverslips were stained with DAPI and a combination of the following
antibodies: mouse-Map2(2a+2b) (1:500, Sigma), mouse-TUJ1 (1:1000;
Covance, Princeton, NJ, USA), Rabbit-GFAP (1:200; Dako, Carpinteria, CA,
USA) and GDAP1L1 (1:250; OriGene, Rockville, MD, USA).

Fluorescence-activated cell sorting analysis
Adherent neuronal cultures were thoroughly washed with DPBS without
Mg+ and Ca+ before dissociating with Accutase containing DNAse
(100 U ml− 1) for 5 min at room temperature. Cell suspensions were
collected with DPBS containing 1% knockout serum replacement (KOSR)
and spun down at 200 rfc for 5 min. The cell pellet was gently resuspended
in DPBS containing 1% KOSR, 2 mM EDTA, and DNase (100 U ml− 1). Cell
suspension was passed through a 70-μm nylon cell strainer and sorted
using a Becton-Dickinson Influx cytometer (BD Biosciences, Franklin Lakes,
NJ, USA). Gated samples were collected in 15-ml tubes containing
BrainPhys-based neuronal differentiation medium containing Rho kinase
(ROCK) inhibitor (STEMCELL Technologies, Vancouver, BC, Canada) and
penicillin-streptomycin (Thermo Fisher Scientific). After sorting, we re-
plated 50 000 neurons (GDAP1L1:eGFP-positive and GFAP:tdTomato
negative) per well (48-well plate) on to poly-ornithine/laminin-coated 8-
mm glass coverslips containing established human astrocytes-cerebellar
(ScienCell Research Laboratories, Carlsbad, CA, USA) at 70% confluence.
The medium was changed 24 h post-sort to BrainPhys differentiation
medium without ROCK inhibitor, and the re-plated cells were cultured as
previously described.13
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Statistics
Unless specified clearly otherwise, throughout the manuscript we present
the mean and standard error of the mean. Concerned to avoid the
assumption of Gaussian distribution in our samples, we consistently used
non-parametric statistics such as Spearman, Mann–Whitney and Wilcoxon.
Statistics were two-tailed and Bonferroni-corrected for multiple hypotheses
tests. In several plots, to estimate the goodness of fit of the linear
regression represented graphically, we reported the R2 and the

corresponding P-values, which estimates how significantly the slope
deviates from zero.

RESULTS
Human neuronal circuits were established in vitro from iPSCs and
ESCs (H9 line) (Figure 1a). IPSCs were reprogrammed from the
fibroblast cells of four healthy individuals. IPSCs and ESCs were
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differentiated towards midbrain NPCs using an established
protocol.6 NPCs were expanded for 5–11 passages and re-plated
in neuronal medium (BrainPhys basal+serum free supplements)
that enabled differentiation and maturation under conditions
supporting optimal electrophysiological activity.13 Following this
protocol, the human NPCs differentiated into cultures comprising
about 50% astrocytes (GFAP+) and 50% neurons (TUJ1+/MAP2+).
We did not use additional feeder layers of astrocytes for initial
neuronal maturation. On the basis of immunostainings, we
estimated that the neural circuits were formed with a majority of
glutamatergic neurons (~62%) and smaller percentages of GABAer-
gic neurons (~27%, GABA+) and dopaminergic neurons (~11%, TH
+).13 On the basis of patch-clamping data, we also found that
neurons in highly functional states received 2.3 times more
spontaneously active AMPA-mediated synaptic inputs than GABAer-
gic synaptic inputs. The neurons were analyzed after ~ 30 days on
average in neuronal medium (the full range tested throughout the
entire study was 0–30 weeks). Each cell was tested with a consistent
electrophysiological patch-clamping protocol measuring voltage-
gated Na+/K+ currents, evoked and spontaneous APs, membrane
resistance, resting potential, capacitance and synaptic activity
(AMPA/GABA) (Supplementary Figure S1) and was filled with a
dye (rhodamine) to allow morphological reconstruction. The same
live cells were also collected for RNA-seq analysis.

Electrophysiological traits of human neurons in vitro reveal a
continuum of functional states
We used unbiased statistical analyses to identify the broad range
of functional states of differentiated neurons in vitro. To define the
functional properties of each neuron, we performed a series of
patch-clamping tests (Supplementary Figure S1). Then, we applied
a PCA on 25 electrophysiological measurements mostly reflecting
the functional intrinsic properties of 246 patch-clamped neurons
(Figure 1b; ePhys PCA features and corresponding loadings listed

in Figure 1c). Such analysis aimed to describe objectively the
inherent variation in the basic electrophysiological profiles of
human iPSC-derived neurons that is routinely observed in vitro by
many independent laboratories. The first principal component,
ePhys PC1, explained 42% of the variation in the dataset
(Supplementary Figure S2A), and revealed a continuum of
functional neuronal states that we separated into three broad
groups: ‘immature states,’ ‘transition states’ and ‘highly functional
states.’ These neuronal states appeared to reflect increasing stages
of electrophysiological maturation. In support, we found signifi-
cant correlations with several properties that are associated with
neurophysiological development. The strongest correlation was
obtained with AP firing properties. Indeed, the amplitude (‘AP
peak’) and the firing rate (‘AP frequency above − 10 mV’) of
evoked APs stand out as two of the most influential loadings in
PC1 (Figure 1c). We combined these two AP metrics to further
categorize the neurons into five ‘AP Types’ (Figure 1d;
Supplementary Figure S2B), which significantly aligned with ePhys
PC1 (Figure 1e, Po0.01). Our analysis suggests that either metrics
—‘ePhys PC1’ or ‘AP Types’—can be used objectively to determine
the functional states of human neurons in vitro. Importantly, we
demonstrated that these metrics largely reflect stages of
neurophysiological maturation. For instance, we found significant
correlations of AP Type classification with several other electro-
physiological properties that typically associate with neuronal
maturation, such as the cell membrane resistance, which is
typically lower in more mature neurons (Figure 1f; Supplementary
Figure S2D). Naturally, neurodevelopment also correlates with
time spent in culture, and indeed we found a smaller fraction of
AP Type 4 or 5 neurons in the first 3 weeks in neuronal medium
than at later time points (Figure 1g). We also found a significant
correlation of the PC1 variance with the time the cells spent in
neuronal medium. However, the correlation between time in
culture and the functional state of the neurons was rather weak

Figure 1. Human neurons in culture can be categorised into different electrophysiological states. (a) Human embryonic stem cells (ESCs) (H9)
or human-induced pluripotent stem cells (iPSCs) from healthy subjects were converted to neuronal progenitor cells (NPCs). Neurons and
astrocytes derived from the same progenitors were then cultured in neuronal medium (BrainPhys basal medium with supplements). See
‘Materials and methods’ section for more details. (b) Principal component analysis (PCA) of 25 electrophysiological properties (listed in c)
measured with patch clamping of human neurons (n= 246). This PCA integrates basic cell-intrinsic electrophysiological properties such as
passive membrane properties, voltage-dependent sodium and potassium currents and action potentials (APs) firing. Each dot represents a
neuron. Astrocytes or any cells that did not express at least small voltage-dependent sodium currents were not included in the PCA. Cells that
did not have unambiguous analysis of all the chosen 25 properties were also excluded from this PCA. (c) The dot graph represents the relative
values of the loadings onto the first principal component (PC1) for each of the 25 properties used in the above PCA. The loadings highlighted
in red correspond to the two measures that were used subsequently to define a continuum of five functional states. (d) Representation of the
typical heterogeneous neuronal responses to optimal depolarizing current steps for 500 ms (Vm rest clamped around − 70 mV). We classified
those heterogeneous states of differentiated neurons into a continuum of five AP Types based on the combination of key electrophysiological
properties identified with unbiased PCA: (1) the maximal peak of AP (Vm measured at the top of the best evoked AP), and (2) the frequencies
of APs overshooting − 10 mV. The same neuronal color key throughout the figure corresponds to this AP Types classification (Supplementary
Figure S2B). (e) The graphs show the PC1 value for each neuron (n= 246) against the key AP properties and the corresponding AP Type
classification. EPhys PC1 values highly correlate with the maximum peak and frequencies of APs (evoked APs freq were counted only if
overshooting − 10 mV in response to a square pulse of current of 500 ms from resting − 70 mV). Linear regression fits ± 95% confidence
intervals are shown. (f) Most measurements listed on each row significantly correlate with the AP Types classification (columns 1–5 of heat
map). The values in the central heat map represent the median for the neurons in respective AP Type categories. To illustrate the direction of
the measurement variations between AP Types, we color coded the heat map (values normalized by row with mean= 0 and variance= 1) from
low to high values (blue, to white, to red). The last two columns show the Spearman’s correlation coefficient (R) and its significance (P-val)
between the measurements (row) vs the numerical class (1–5) of AP Types. The properties were sorted by decreasing correlation coefficient
obtained. The P-values were corrected for multiple hypothesis testing (Bonferroni correction: Po0.05 (2E-03), Po0.01 (3E− 04), Po0.001
(3E− 05)). (g) The differentiated neurons were patch clamped after different periods in neuronal medium. Days were counted from the switch
of neuronal progenitor medium to neuronal medium (BrainPhys basal+supplements from 0 to up to 7 months). The proportion of more
functional neurons (Type 4 and 5) significantly increased the first 3 weeks in neuronal medium, implying that an early maturation phase
corresponds with the development of electrophysiological types; however, the proportions of Type 4 and 5 appeared to plateau after that
period. The significance of this relationship in single neurons was measured with Spearman correlation between days in neuronal medium (x
axis) and the numerical class (1–5) of AP Types. (h) We found a significant but poor correlation of the time spent in neuronal medium and
functional states (measured by ePhys PC1 or AP Types). (i) After expansion (six passages) and storage at − 80 °C, NPCs derived from the same
cell line (H9) were thawed and cultured for another two to five passages before re-plating in neuronal medium. The neurons (n= 89) were
patch clamped after 4–6 weeks in neuronal medium and categorized into AP Types. The proportion of Type 5 neurons significantly decreased
with high NPC passage numbers. The significance of this relationship in single neurons was measured with the Spearman correlation between
passage numbers (x axis) and the numerical class (1–5) of AP Types.
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(Figure 1h), which may be a consequence of the fact that single
human neurons differentiate at variable rate in vitro. In addition,
different tissue culture practice may influence the efficiency and
speed of maturation. For example, we found that simply increasing
the passage number of NPCs before neuronal differentiation
significantly reduced the proportion of Type 5 neurons within
subsequent cultures (Figure 1i). Similarly, various cell lines may
generate variable proportions of AP Type 5 neurons. We propose
that, to identify accurate neuronal phenotypes between cell lines
(for example, patients vs healthy subjects), it is important to
compare neurons of equivalent functional states, rather than relying
exclusively on the time the cells have spent maturing in vitro.

Synaptic activity correlates with AP Types
Synaptic activity is the essence of neuronal communication and its
disruption is often the cause of behavioral defects in neurological
disorders. Therefore, many recent studies have focused on measur-
ing possible synaptic abnormalities in IPSC-derived neurons in the
modeling of neural diseases in vitro.23–26 As synaptic activity is

associated with the functional maturity of neuronal circuits,27 we
examined the relationship between spontaneous synaptic activity
and our AP-Type categories (Figure 2a). Our culture protocol
generated roughly two times more glutamatergic neurons than
GABAergic neurons. This bias was strongly reflected in a higher
likelihood to record spontaneous active excitatory inputs than
GABAergic synaptic inputs. Despite those differences, we found that
both AMPA and GABA activity significantly increased along the
continuum of AP Types (Figures 2b and c). In our conditions, 95% of
AP Type 5 neurons received active pre-synaptic inputs, whereas only
~10% of Type 2 neurons did. This result is particularly important to
consider in iPSC disease models, which compare synaptic functions
between patients. Overall, our analysis highlights the point that, if
neural cell lines do not have similar proportions of AP Types, such
variability will influence differences in the measured synaptic activity.

Neuromorphological features of AP Types
To further investigate how our classification of AP Types reflects
neurodevelopmental stages, we filled 256 patched neurons with

Figure 2. Synaptic input activity highly correlates with action potential (AP) states. (a) Frequency distribution of AP Types and differentiated
neurons with active synaptic inputs against the ePhys PC1 measure in Figure 1b. (b) The trace represents typical spontaneous (Spont) AMPA
events (NBQX-sensitive). Patched neurons were classified as synaptically active (active synaptic inputs) in the left histogram if more than three
clear glutamatergic spontaneous events were detected (with typical AMPA kinetics and amplitude above noise levels) within 5-min recordings
in voltage clamp close to the reversal potential of Cl− channels (−70 mV). (c) The trace represents typical spontaneous GABA events (Gabazine-
sensitive). Patched neurons were classified as pre-synaptically active in the left histogram if more than three clear GABAergic spontaneous
events were detected (with typical GABA kinetics and amplitude above noise levels) within 5-min recordings in voltage clamp close to the
reversal potential of Na+ channels (0 mV). (b,c). Mean± s.e.m. shown. For the spontaneous events amplitudes, the medians were 13% lower
than mean but strongly correlated (R2= 0.90, Po0.0001). For each graph a linear regression was fitted and the significant P-values were noted
in brackets with R2 and n. Non-significant regression fit P-values40.05 were noted as ‘(ns)’. Additional statistics between individual types were
performed with the Mann–Whitney two-tailed test, and only the significant P-values from these tests were noted in the graphs above each
compared group.
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an inert red dye (rhodamine) and reconstructed their morphology
(Figure 3a). We analyzed 20 morphological features (listed in
Figure 3b; Supplementary Figure S3C) and found that the size of
the soma and the complexity of neurite arborization increased in
higher AP Types (Figures 3c and d). The arborizations of Type 4
and 5 neurons were significantly more complex than those of

Types 1, 2 or 3. Furthermore, the increase in soma size and distant
arborization complexity were consistent with larger intracellular
volume, which was estimated with the cell capacitance. Despite
high cell-to-cell variabilities even within functional states, the most
highly functional neurons (i.e., AP Type 5) tended to have
overall significantly larger intracellular volume (Figure 3e). This

Figure 3. Morphological features that correlate with action potential (AP) states. (a) Stitched photos of a live patched neuron, which was filled
with rhodamine (left) and morphogically reconstructed with neurolucida (right). (b) Correlation of morphological measurements (rows) with
AP Types (columns 1–5). The values in the central heat map represent the median for the neurons in respective AP Type categories. To
illustrate the direction of the measurement variations between AP Types, we color coded the heat map (values normalized by row with
mean= 0 and variance= 1) from low to high values (blue, to white, to red). The last two columns show the Spearman correlation coefficient (R)
and significance (P-val) of the Spearman’s rank correlation between the electrophysiological measures (row) and the numerical class (1–5) of
ePhys Type. The properties were sorted by decreasing correlation coefficient. (c) Mean soma diameter significantly increased in more
functional AP Types. (d) Sholl analysis revealed that more functional AP Types had significantly more complex dendritic/axonal arborization.
Mann–Whitney U two-tailed tests were performed at 20, 50 and 100 µm between different types. The dendritic complexities of Type 4 and 5
neurons were not significantly different, and the complexity between Types 1, 2, 3 was not either. However, Types 4 and 5 were significantly
more complex than Types 1, 2, 3. Mean± s.e.m. shown. (e) The capacitance significantly increased in more functional AP Types of neurons.
Significance threshold was Po0.05. Mann–Whitney U two-tailed P-values are shown in d, e.
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Figure 4. Whole-single-cell RNA-seq of patch-clamped neurons (PatchSeq). (a) The photos show an example of neuronal culture stained with eGFP
before and after a single neuron was patched and collected for transcriptome analysis. For every cell included in the analysis, the entire neuron was
collected, including the soma/nucleus and neurites. The photos permitted us to confirm that only the patched neuron filled with rhodamine
was collected, leaving the surrounding tissue intact. (b) Following electrophysiological and morphological analyses of live neurons, the single cells
were collected and their transcriptome processed for deep sequencing, bioinformatics processing and statistical analysis. (c,d) Housekeeping genes
such as ACTB and GAPDH were detected in every cell. Their expression levels were not significantly different between types of neurons and
astrocytes. (e) Significantly more genes were expressed in astrocytes and Type 5 neurons compared with the other neuronal types. Asterisks
represent Mann–Whitney P-values o0.05. (f) The number of detected genes above 5 tpm did not significantly correlate with the size of the
neurons, estimated here by capacitance. The action potential (AP) Types are color coded in the graph (red T5, orange T4, green T3, blue T2, gray T1).

Figure 5. Single-cell transcriptomes segregate functional states of differentiated neurons. Unbiased and unsupervised analysis was performed
on the transcriptome (17 757 genes detected 45 tpm in at least one cell) on a sample of 56 whole single-cells (including nucleus, soma and
distant neurites), which passed all QC. This sample comprised 50 differentiated neurons displaying Nav currents and six astrocytes expressing
GFAP:eGFP. (a) Unsupervised clustered heat map of cell-to-cell transcriptome correlations (Euclidean distances). The linkage distances of the
hierarchical clustering represent an estimate of the quality of the unbiased/unsupervised clusters. (b) Unsupervised principal component
analysis on the entire single-cell transcriptomes. Cell transcriptome profiles (symbols) are represented in a two-dimensional principal
component space. These unsupervised analyses reveal molecular segregation between groups of neurons in highly functional states (almost
all action potential (AP) Type 5–85%), less functional neurons in ‘transition states’ (mix of different AP Types with significantly less Type 5–15%)
and astrocytes. Furthermore, the functional molecular clusters surpassed transcriptional differences between iPSC lines from different subjects
and even an embryonic stem cell line. (c) Monocle analysis illustrates the progress through functional states by pseudotemporal ordering of
single-cell mRNA expression profiles. Cell expression profiles (points) are represented in a two-dimensional independent component space.
Lines connecting points represent edges of the minimum spanning tree constructed by monocle. Solid black line indicates the main diameter
path of the minimum spanning tree and provides the backbone of monocle’s pseudotime ordering of the cells based on molecular profiles.
(d) The expression of five key neurotransmitter genes in 20 sequenced Type 5 neurons was normalized and compared to determine their
neurotransmitter identity. Most cells could be classified as either glutamatergic, GABAergic, dopaminergic, or serotonergic and a few cells
remained undefined. (e) Heat map of single-cell gene expression levels. The genes were selected and grouped based on known neuronal
functions. For comparison, AP Type 5 genes identified in the present study are in red/bold (Supplementary Figure S5B). (f) Genes significantly
correlating with numerical AP Types classification by the Spearman’s rank correlation coefficient (Po0.001).
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multimodal analysis demonstrates that the electrophysiological
states correlate with morphological neurodevelopmental
phenotypes.

Single-cell transcriptome analysis of patch-clamped neurons
To examine the relationship between gene expression and
electrophysiology, we generated single-cell transcriptome data
from the same neurons that were analyzed for electrophysiology
and morphology. At the end of the patch clamping and imaging
protocol, which lasted about 30 min, each cell was isolated with
negative pressure applied to the same pipette that was used for
the whole-cell recordings. Images acquired before and after single-
cell collection confirmed that only the targeted single cells were
taken out, leaving surrounding cells in place (Figure 4a). Impor-
tantly, we collected the entire neuron, including the soma, nucleus
and neurites (Figure 4a, right panel). Poly-A selected mRNA
molecules were reverse transcribed to cDNA and amplified
immediately after patching and isolation to avoid RNA degrada-
tion. Before RNA-seq library preparation, we subjected the cDNA
from each cell to a set of QC criteria to exclude potentially low-
quality captures and amplifications (Figure 4b). We then generated
RNA-seq libraries from amplified cDNA. Highly expressed house-
keeping genes such as ACTB and GAPDH were readily measured,
and quantitative real-time PCR measurements significantly corre-
lated with sequencing read counts (Figures 4c and d;
Supplementary Figures S4A and B). The transcript abundances of
artificial RNA spike-ins mixed in with the single-cell RNA (ERCCs
and ArrayControl spike-in RNA standards) were also highly
correlated with the normalized sequencing counts (FPKM)
(Supplementary Figure S4C). These observations support the
quality of our single-cell transcriptomics data. To minimize
erroneous conclusions that arise from lowly expressed, highly
varying genes, we excluded reads that were detected below 1 tpm.
In addition, a small number of cells (n= 3) with fewer than 2000
genes detected above 5 tpm were excluded. Without these
outliers, an average of ~ 3000 genes per cell was detected above
45 tpm (Figure 4e). Interestingly, the number of genes detected
was significantly higher in Type 5 neurons and astrocytes than in
less active AP Types (Figure 4e). However, we found no significant
correlation between the number of detected genes (45 tpm) and
the size of the cells (Figure 4f).

Molecular signatures distinguish neuronal functional states in vitro
To examine variation in the single-cell gene expression, we
excluded the outliers with trace of DNA contamination, abnormal
expression level of housekeeping genes, damaged axons and
dendrites from the collection, unstable physiological recordings
before collection, abnormal cDNA quantity, low number of
uniquely mapped reads and low number of detected genes. We
then performed a hierarchical clustering analysis and PCA with the
transcriptomes of 56 single cells (50 differentiated neurons, and 6
astrocytes) that passed all QC (Figures 5a and b). This
unsupervised and unbiased single-cell RNA-seq analysis revealed
a distinct transcriptome cluster of neurons corresponding to
highly functional states (83% AP Type 5 neurons—17% AP Type 4
neurons). This highly functional cluster separated from astrocytes
and a mixed group of neurons that represents ‘transitory’ neuronal
states (Figure 5b; Supplementary Figure S5A). Furthermore, the
molecular profiles of cells in distinct functional states grouped
together, independently of individual genetic background (cell
lines from different subjects) and the time spent in culture
(Figures 5a and b).
To better recapitulate the transcriptional dynamics of functional

states, we also demonstrated the molecular trajectory of the
electrophysiological maturation by applying monocle analysis.28

Interestingly, AP Types 1 and 2 clustered at the beginning of the
pseudotime and branched out towards astrocytes (GFAP+) or

towards AP Type 3 and 4 neurons, and highly functional AP Type 5
neurons clustered at the end of the pseudotime (Figure 5c).
Together, these results indicate that mRNA expression correlates
strongly with neurophysiological states.
To obtain physiologically relevant neuronal circuits, we

generated mixed cultures of neurotransmitter classes and astro-
cytes. The patch clamping was not targeting a specific subpopula-
tion of neurons, and most patched cells were tagged with
Synapsin:eGFP lentivector. Therefore, to better characterize our
sample, we isolated the AP Type 5 neurons that were sequenced
(n= 22) and determined the nature of their neurotransmitter
classes. On the basis of the normalized expression of five known
genes, most Type 5 neurons segregated into different neuro-
transmitter classes (36% glutamatergic VGLUT3, 27% GABAergic
GAD1, 14% dopaminergic VMAT2 or COMT, 9% serotonergic TPH2
and 14% undefined neurons) (Figure 5d). These results demon-
strate that our functional classification is sufficiently broad to
incorporate more detailed subcategories of various neurotrans-
mitter classes.
To further characterize the molecular profiles of differentiated

neurons in various functional states, we compared the single-cell
mRNA expression of 45 genes typically known for their
importance to neuronal functions (Figure 5e; Supplementary
Figure S5B). Not surprisingly, most well-known neuronal genes (for
example, pan neuronal, synaptic, APs, ion channels genes) were
expressed in all the differentiated neurons in our sample. Typical
astrocytic/glial genes (for example, AQP4, GFAP, S100B, GJA1,
SLC1A3, EFNB1) were expressed in astrocytes, which were
identified based on LV marker GFAP:tdTomato, distinctive
morphology and electrophysiology. Genes typical of early
neuronal development (for example, SOX2, NES) were expressed
mostly in immature AP Types and some astrocytes. A few neuronal
genes appeared expressed in all AP Types and even in astrocytes/
glia (for example, MAP2, TUBB3, TUBB). Interestingly though, many
neuronal genes that were exclusive to neurons expressed at
similar levels in all AP Types (for example, MAPT, NCAM1, ANK3,
SYN1, SYP). Therefore, we asked whether some genes may
specifically express in highly functional AP Types of neurons. We
first assessed the Spearman’s correlation between gene expres-
sion and AP Type classification, which revealed 45 genes that most
significantly correlated (Figure 5f). Some of these genes have
known neuronal functions such as synaptic plasticity (for example,
RAB3B,29,30 PCLO/Piccolo) or voltage-gated sodium channels (for
example, SCN9A/Nav1.7). However, interestingly, a majority of
these genes have not been investigated before for specific
neuronal functions and may be used as new potential biomarkers
to identify functional human neurons in vitro. This finding then led
us to propose that single-cell gene expression data has utility in
the prediction of the electrophysiology of human neurons.

Machine-learning classifiers integrate transcriptome features to
predict functional states
To identify the single-cell transcriptomics signature important to
predict functional states, we trained an Extremely Randomized
Trees classifier using 56 single cells (Figure 6a). We used a
randomized 10-fold cross-validation to evaluate the performance
of the algorithm in classifying cells in different functional state
categories (Figure 6). In Figure 6, we illustrated the results of three
classifiers: the first one isolates AP Types 4–5 neurons with 92%
accuracy in a mixed population including astrocytes (Figure 6b);
the second isolates AP Type 5 neurons with 83% accuracy in a
population of differentiated neurons only (Figure 6c); and the third
isolates highly functional neuronal states (based on transcriptome
PCA clustering in Figure 5b) with 86% accuracy in a population of
differentiated neurons only (Figure 6d; Supplementary
Figure S6A). For higher accuracy (more true positive), the
classifiers can be trained differently by adjusting the ‘classifier
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Figure 6. Machine-learning tree classifiers predict functional states of neurons based on single-cell transcriptome and reveal potential biomarkers.
(a) Extremely randomized trees (ERT) classifier built with the transcriptome of 56 single cells and trained with electrophysiological data. Actual classes
were attributed by electrophysiological measurements. Predicted classes were attributed by the machine-learning algorithm based on single-cell
transcriptomes. (b–d) Each ERT classifier was trained to categorize the cells in two functional classes. Classifier B was trained to predict AP Types 4–5
in a mixed group of cells including differentiated neurons and astrocytes. Classifier C was trained to predict Type 5 neurons from other differentiated
neurons. Classifier D was trained to predict highly functional (HF) neurons from other differentiated neurons in transitional states determined by the
principal component analysis (PCA) clusters. The lists show the top 45 genes selected by the ERT classifier with the highest Gini scores. The green
heat map columns represent the normalized importance of each gene attributed by the classifier (Gini score). The blue-red heat map matrices
represent the mean expression normalized (mean 0 and variance 1) of each gene from high (red) to low (blue) in actual cell types. The genes were
ordered by Euclidean clustering of the gene expression by actual functional states. Confusion matrices are displayed below the heatmaps. The
confusion matrices values represent the numbers of cells in each category. Predictions were annotated with a green checkmark if correct and a red
cross if false. The test-fold score for each cell was recorded and a score histogram was computed for each cell group (blue and red bars). Classes were
predicted with a determined classifier score split, indicated by a gray dashed line in the histograms. See also Supplementary Figure S6.
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score split,’ but the algorithm may also generate more false
negatives, resulting in lower sensitivity. The area under the curve
of the receiver-operating characteristic, which is a measure of the
trade-off between sensitivity and specificity, was 0.93, clearly
above random prediction (0.50) (Supplementary Figure S6B). The
unbiased training algorithms selected and weighted the optimal
genes to predict functional types (Figure 6).

Identification and isolation of functional neurons with a GDAP1L1
promoter-driven eGFP viral vector
In addition to the machine-learning classifier, we performed an in-
depth differential expression analysis to reveal a complementary
set of genes specifically expressed in Type 5 neurons (Figure 7a).
Altogether, we performed three independent unbiased analyses
to identify a total of 165 genes (Supplementary Table S1) related

to specific electrophysiological functional states (Spearman
correlation in Figure 5f; machine-learning in Figures 6b–d,
differential expression in Figure 7a). Among the most highly
ranked genes, 29 genes appeared in more than one analysis
(Supplementary Table S1). Only one gene appeared in all of those
independent analyses—GDAP1L1. GDAP1L1, which is the human
paralog of the ganglioside GDAP1, had been previously suspected
to have an important function in neuronal cells because of its high
abundance in brain tissues.31 Interestingly, GDAP1L1 mRNA is
expressed exclusively in brain tissues in human (Supplementary
Figure S7A). We confirmed with immunostaining that GDAP1L1
protein was present in human iPSC-derived neurons but not in
astrocytes (Figure 7b). Our immunohistochemistry staining also
suggested that GDAP1L1 was only present in a subset of TUJ1+
neurons (Figure 7c), presumably highly functional neurons
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(Type 5). To confirm this hypothesis, we constructed a LV
expressing GFP under the control of the GDAP1L1 promoter. We
infected three different cell lines of human neurons with the
vector (Figure 7d, see also Supplementary Figure S6 for additional
immuno-histochemistry of vector). Although GDAP1L1 mRNA and
protein were not found in astrocytes, the eGFP under the control
of GDAP1L1 gene promoter was occasionally found in astrocytes
(GFAP+). Nevertheless, we patched the neurons with the brightest
eGFP and clear neuronal morphology and found that all of them
were highly functional neurons (n= 10/12 were Type 5, n= 2/12
were Type 4, and n= 11/12 neurons had clear spontaneous AMPA
synaptic activity) (Figures 7e and f). Next, we asked whether this
strategy could be used to isolate mature functional human
neurons by a higher-throughput technique. With that aim, we
derived NPCs from three different cell lines and differentiated
them into neurons for ~ 4 weeks in neuronal maturation
medium. Then, we infected the neuronal cultures with two LV,
GDAP1L1-eGFP (to identify functional neurons) and GFAP-
tdTomato (to identify astrocytes). A few days later we processed
the cells with FACS. After exclusion of dead cells and GFAP+ cells,
we isolated a population of neurons with high GDAP1L1-eGFP
expression (Figure 7a). This subset of neurons with high
GADAP1L1-eGFP also showed particularly high abundance of
TRAPPC6B protein (measured with primary antibody) (Figure 7a).
TRAPPC6B is another top gene candidate that appeared from our
transcriptome analysis to be predictive of highly functional
neurons. This finding further supported our premise that this
subpopulation of high GDAP1L1-eGFP neurons represents the
electrophysiologically active states. Therefore, we repeated the
FACs experiment with live cells differentiated for ~ 4 weeks and
sorted out three subsets of live cells: (1) presumably highly
functional neurons (GDAP1L1:eGFP-highly positive and GFAP:
tdTomato-negative), (2) astrocytes (GFAP:tdTomato-positive and
GDAP1L1:eGFP-negative) and (3) the rest of the cells, including
less functional neurons (Supplementary Figure S8). We then re-
plated 50 000 neurons with high GDAP1L1-eGFP per well (48-well
plate) onto a glass coverslip coated with a layer of human
cerebellum astrocytes. Four days after re-plating, we patch-
clamped the GDAP1L1:eGFP-positive sorted cells and confirmed
that they were highly functional Type 5 neurons (Figure 7b,
n= 5/5). Altogether, we believe these findings demonstrate a first
proof of concept that the genes identified in our multimodal

analysis may be used as biomarkers to help identify, enrich or
isolate highly functional states of iPSC-derived human neurons
in vitro.

DISCUSSION
Studies of post-mortem human brain tissues have revealed some
molecular and anatomical features in neurodevelopment and in
the adult brain.32 However, studying the neurophysiological
properties of live single neurons in the human brain is technically
challenging and so far has been mostly restricted to animal
models, occasionally to brain slices of aborted human fetus,33,34

and more recently to human neuron cultures reprogrammed from
fibroblasts.13,16,25,26,35,36 In this study, we have bridged human
neurophysiology and gene expression by integrating single-cell
electrophysiology, morphology and transcriptomics analysis of live
human neural cells.

Single-cell PatchSeq: multimodal analysis of electrophysiology,
morphology and transcriptomics profiles
Recent breakthroughs in single-cell transcriptomics methods have
emphasized the importance of identifying different biological
types of cells.37–47 To resolve the diversity of cellular states, the
use of single-cell analysis yields important insights that are
masked or misrepresented in bulk RNA preparation from mixed
cell populations.39,48,49 For many years, only a few studies
succeeded in applying gene expression analysis to patch-clamped
neurons.50–56 Here, we demonstrate the possibility of performing
whole-transcriptome analysis on patch-clamped single human
neurons derived from iPSCs or ESCs. Interestingly, many neuronal
mRNAs are transported to the synapses and spines for rapid on-
demand local translation.57,58 Unlike most single-cell methods
relying on tissue dissociation and flow cytometry, the method
developed in this study processes the entire neuron and therefore
includes mRNA from the nucleus, the soma and distant axons/
dendrites, which may provide a more accurate representation of
the transcriptome.58 This approach may also be relevant for
specific neurological disorders that may affect mRNA dendritic/
axonal trafficking or the function of mRNA at synaptic sites.59,60

Most importantly, in addition to the transcriptome profile, our
method provides unique physiological and morphological infor-
mation about the cells. Our results reveal the strong correlation

Figure 7. Biomarkers to isolate highly functional Type 5 neurons. (a) The top 16 genes expressed mostly in Type 5 neurons. The genes were
selected based on the combination of several criteria: OFF (o10 tpm) in all astrocytes, OFF in 470% of Types 1-2-3 neurons, OFF in 450% of
Type 4 neurons, ON (410 tpm) in 450% Type 5 neurons and then by the genes significantly more expressed in Type 5 vs all other cell types
(P-values from a Mann–Whitney test). The selected genes were then ordered by P-values and the most significant 16 genes are shown
(Po0.001). Significance was tested with two-tailed Mann–Whitney U test between Type 5 neurons and all the other cells. The expression of
the top two genes was plotted. Each gray point represents a single neuron. The red curve is the mean± s.e.m. In the bottom charts black bars
represent the proportion of cells in each cell type group with ON expression (410 tpm). (b,c) Immunostainings of fixed human neuronal
cultures confirm the translation of GDAP1L1 at the protein level in some neurons (MAP2+, TUJ1+) but not in astrocytes (GFAP+). (d) Example
of a live human neuron expressing eGFP under GDAP1L1 promoter and filled with rhodamine with the patch-clamping pipette. (e) Whole-cell
patch-clamp recordings from GDAP1L1-eGFP neurons. The brightest GFP cells with neuronal morphology were selected for patch clamping
after ~ 4 weeks in BrainPhys neuronal medium. The neurons expressed strong Nav/Kv currents (top left). The evoked APs were measured by
slightly hyperpolarizing the cells to reduce spontaneous activity (top right). Spontaneous APs were recorded at resting membrane potential
with zero current injected (middle). Spontaneous AMPA-mediated excitatory synaptic activity was recorded in voltage clamp at − 70 mV
(bottom). (f) The electrophysiological properties of the patched GDAP1L1-eGFP neurons (n = 12) were mature and functional. Means± s.e.m.
shown. The properties of single neurons are represented by each dot in the graphs. APs were counted only if amplitude was above − 10 mV.
Spontaneous AP frequencies were measured at resting membrane potential. (g) Three human neuronal cell lines, which matured for 5 weeks
in BrainPhys basal+supplements, were infected with LV GDAP1L1:EGFP for 5 days before being dissociated, fixed and stained. Healthy cells not
expressing GFAP (GFAP-neg; top graphs) were analyzed for their expression of TRAPPC6B protein and LV GDAP1L1:GFP expression (bottom
graphs). The green rectangles highlight the cells expressing high levels of GFP under GDAP1L1 promoter and high levels of TRAPPC6B
protein. The proportion of presumably mature ePhys types of neurons varied highly between the three cell lines. (h) Using two lentiviral
vectors we sorted live astrocytes and live neurons from IPSC#1 after 5 weeks in BrainPhys and re-plated them on glass coverslips for 4 days
before electrophysiological evaluation. The population of neurons expressing high levels of GFP under GDAP1L1 promoter (and no GFAP:
tdTomato) were patched and all the cells were classified as highly functional neurons (n= 5) with on average high evoked firing frequencies
(16± 2 Hz), low-resting potentials (−58± 2 mV), and large AP amplitude (91± 4 mV).
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between functional and molecular profiles, validate the biological
relevance of our methods merging patch-clamping analysis and
single-cell RNA-seq, and demonstrate that transcriptome analysis
can be used to predict the physiology of a cell. This approach can
be applied to any kind of electrophysiological type of cell and may
help to better define the cellular diversity in the brain.61–64 Beyond
the usefulness of such multimodal analysis in cellular neu-
roscience, this framework may also branch out to other fields of
cell biology to correlate human cell physiology and molecular
signatures.

Functional neuronal states and neurodevelopmental timeline
in vitro
Typically, neurodevelopmental processes are described over a
specific timeline. For example, newly born mouse neurons mature
in pre-existing adult brain circuits by following a timed sequence
of physiological events.65,66 However, at the single-cell level,
intrinsic and extrinsic programs can dynamically influence the rate
and speed at which different human neurons reach functional
states in vitro. The prediction of this maturation process is
sometimes challenging as it may vary between cell types,
individuals and species.15–17 For example, the human brain
matures over a longer period of time than most other species
studied in laboratories. Similarly, human neurons in vitro usually
take a longer time than rodent neurons to reach the equivalent
maturity.35 In addition, the technical variability of tissue culture
protocols between independent labs makes ‘time in vitro’ an
unreliable metric to objectively assess the functional maturity of
neurons. As an alternative, we propose a method to efficiently
quantify and isolate defined neurophysiological profiles in vitro
based on data-driven features that do not require the measure of
time in vitro. In this classification, we define the AP Type 5 neurons
as a highly functional state of maturity; we define this stage as a
broad minimal requirement to study functional human neurons
in vitro. However, it is important to note that this stage is not
necessarily terminal. For example, we have recorded the electro-
physiological properties of neurons that were matured and kept in
BrainPhys with supplements for more than 20 weeks and, whereas
the broad properties used to define Type 5 neurons were
indistinguishable from those of neurons maturing in the same
medium for 6 weeks, we found that the membrane resistance
significantly decreased over the longer time periods (for example,
Type 5 neurons Rm was 1612+208 MOhm after 45 days in
BrainPhys (n= 17) and 224+26 MOhm after 150 days in BrainPhys
(n= 11), see also ref. 35). Furthermore, we based our functional
state classification on a PCA that only integrated cell-intrinsic
electrophysiological properties (25 features). Following this
reasoning, we excluded synaptic input properties from that PCA
because they most strongly depend on extrinsic neuronal network
properties. This approach also allows us to use our classification
model to compare synaptic function in cells of equivalent AP
Types with less bias. Nevertheless, adding healthy synaptic activity
to the PCA expands mostly PC2 and does not affect PC1 or our
functional state classification.

Neuronal diversity
In the present study, we present an unbiased profiling of the
electrophysiological states of human neurons in vitro. The
framework that we propose here is sufficiently broad to include
a wide heterogeneity of neuronal neurotransmitter classes (for
example, glutamatergic, gabaergic, dopaminergic, serotonergic,
motor neurons). Similarly, we found that each of our defined AP
Types could be obtained from neurons categorized in various
morphological classes (for example, bipolar, fusiform, pyramidal,
multipolar; see Supplementary Figures S3A and B). Finally, the
framework is also sufficiently broad to avoid masking relevant
differences in disease modeling studies. The present study points

out the importance of resolving broad neurophysiological states
in vitro. Several other important studies have also highlighted the
unique nature of cellular and brain region identities of neurons in
rodents55,56,62,63,67–70 and human brain.71,72 The complex, precise,
heterogeneous and dynamic assembly of 100 billion cells in the
human brain is the best living illustration of cellular diversity in
functional tissues. Interestingly, each neuron has the potential to
be unique even at the genomic level.73 The depth of the
classification one should reach remains arbitrary.62 Further work
will be needed to deepen our broad functional states classification
to more precise sub-classification. For example, it is possible that
within AP Type 5 neuron categories, different neurotransmitter
classes have subtle different physiological properties that they
may acquire over various period in vitro. Regardless, our results
point out the importance of stratifying neurons into equivalent
functional states before investigating the differences among
patients in disease models in vitro.

Models of neurological disorders in vitro will benefit from better
characterization and quantification of electrophysiologically active
human neurons
Advances in human cellular reprogramming have propelled a new
wave of in vitro experiments to identify differences between
healthy subjects and patients with neurological and psychiatric
diseases.24,74–77

Studies of iPSC models in vitro have found that neurons
obtained from patients affected by autism have significantly
smaller soma, reduced dendritic complexity and less synaptic
activity.78 We found the same set of phenotypes when comparing
less functional AP Types (Types 1-2-3) with more functional AP
Types (Types 4–5). Together, these findings support the hypoth-
esis that autistic neurons suffer from a general lack of functional
maturity, which may cause an indirect defect in synapses. Being
able to examine many cellular phenotypes simultaneously in the
same single neurons may help to discern the causes of a disease
from subsequent pathophysiological cascades and may be critical
to the discovery of effective treatments.
Despite the huge promises for translational research, the

inherent technical and biological variability of iPSC technologies
remain a significant hurdle.16,24 Disorders that reveal symptoms
relatively late in adulthood, such as Parkinson’s or Alzheimer’s, are
less likely to reveal early neurodevelopmental features. Therefore,
it is important, at least in these latter models, to compare neurons
of equivalent functional maturity, and efficient ways to identify
electrophysiologically active neurons are needed. By revealing the
molecular signature of highly functional states of differentiated
neurons (AP Type 5), we have shown the possibility to predict
functional profiles without the need of electrophysiological
measurements. The ability to efficiently identify neurons in a
specific functional state compensates for the heterogeneous
proportion of functional neurons among cell lines and will
strengthen comparative analysis in stem cell models of brain
disorders. Ultimately, strategies to provide electrophysiologically
homogeneous human neurons will assist large-scale drug screen-
ing, which can lead to the discovery of efficient treatments for
neurological and psychiatric disorders.
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