Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Sphingomyelin-induced inhibition of the plasma membrane calcium ATPase causes neurodegeneration in type A Niemann–Pick disease

Subjects

Abstract

Niemann–Pick disease type A (NPA) is a rare lysosomal storage disorder characterized by severe neurological alterations that leads to death in childhood. Loss-of-function mutations in the acid sphingomyelinase (ASM) gene cause NPA, and result in the accumulation of sphingomyelin (SM) in lysosomes and plasma membrane of neurons. Using ASM knockout (ASMko) mice as a NPA disease model, we investigated how high SM levels contribute to neural pathology in NPA. We found high levels of oxidative stress both in neurons from these mice and a NPA patient. Impaired activity of the plasma membrane calcium ATPase (PMCA) increases intracellular calcium. SM induces PMCA decreased activity, which causes oxidative stress. Incubating ASMko-cultured neurons in the histone deacetylase inhibitor, SAHA, restores PMCA activity and calcium homeostasis and, consequently, reduces the increased levels of oxidative stress. No recovery occurs when PMCA activity is pharmacologically impaired or genetically inhibited in vitro. Oral administration of SAHA prevents oxidative stress and neurodegeneration, and improves behavioral performance in ASMko mice. These results demonstrate a critical role for plasma membrane SM in neuronal calcium regulation. Thus, we identify changes in PMCA-triggered calcium homeostasis as an upstream mediator for NPA pathology. These findings can stimulate new approaches for pharmacological remediation in a disease with no current clinical treatments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Vanier MT . Niemann–Pick diseases. Handb Clin Neurol 2013; 113: 1717–1721.

    Article  Google Scholar 

  2. Schuchman EH, Desnick RJ . Niemann–Pick disease types A and B: acid sphingomyelinase deficiencies. In: Scriver CR et al (eds). The Metabolic and Molecular Bases of Inherited Disease, vol. II. McGraw-Hill: New York, NY, USA, 2001, p. 3589.

    Google Scholar 

  3. Brady RO, Kanfer JN, Mock MB, Fredrickson DS . The metabolism of sphingomyelin. II. Evidence of an enzymatic deficiency in Niemann–Pick disease. Proc Natl Acad Sci USA 1996; 55: 366–369.

    Article  Google Scholar 

  4. Patterson MC, Vecchio D, Prady H, Abel L, Wraith JE . Miglustat for treatment of Niemann–Pick C disease: a randomised controlled study. Lancet Neurol 2007; 6: 765–772.

    Article  CAS  Google Scholar 

  5. Wasserstein MP, Jones SA, Soran H, Diaz GA, Lippa N, Thurberg BL et al. Successful within-patient dose escalation of olipudase alfa in acid sphingomyelinase deficiency. Mol Genet Metab 2015; 116: 88–97.

    Article  CAS  Google Scholar 

  6. Stoffel W . Functional analysis of acid and neutral sphingomyelinases in vitro and in vivo. Chem Phys Lipids 1999; 102: 107–121.

    Article  CAS  Google Scholar 

  7. Futerman AH, van Meer G . The cell biology of lysosomal storage disorders. Nat Rev Mol Cell Biol 2004; 5: 554–565.

    Article  CAS  Google Scholar 

  8. Gabandé-Rodríguez E, Boya P, Labrador V, Dotti CG, Ledesma MD . High sphingomyelin levels induce lysosomal damage and autophagy dysfunction in Niemann Pick disease type A. Cell Death Differ 2014; 21: 864–875.

    Article  Google Scholar 

  9. Tam C, Idone V, Devlin C, Fernandes MC, Flannery A, He X et al. Exocytosis of acid sphingomyelinase by wounded cells promotes endocytosis and plasma membrane repair. J Cell Biol 2010; 189: 1027–1038.

    Article  CAS  Google Scholar 

  10. Horinouchi K, Erlich S, Perl DP, Ferlinz K, Bisgaier CL, Sandhoff K et al. Acid sphingomyelinase deficient mice: a model of types A and B Niemann–Pick disease. Nat Genet 1995; 10: 288–293.

    Article  CAS  Google Scholar 

  11. Gulbins E, Palmada M, Reichel M, Lüth A, Böhmer C, Amato D et al. Acid-sphingomyelinase-ceramide system mediates effects of antidepressant drugs. Nat Med 2013; 19: 934–941.

    Article  CAS  Google Scholar 

  12. Arroyo AI, Camoletto PG, Morando L, Sassoe-Pognetto M, Giustetto M, Van Veldhoven PP et al. Pharmacological reversion of sphingomyelin-induced dendritic spine anomalies in a Niemann Pick disease type A mouse model. EMBO Mol Med 2014; 6: 398–413.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Trovò L, Stroobants S, D'Hooge R, Ledesma MD, Dotti CG . Improvement of biochemical and behavioral defects in the Niemann–Pick type A mouse by intraventricular infusion of MARCKS. Neurobiol Dis 2015; 73: 319–326.

    Article  Google Scholar 

  14. Galvan C, Camoletto PG, Cristofani F, Van Veldhoven PP, Ledesma MD . Anomalous surface distribution of glycosyl phosphatidyl inositol-anchored proteins in neurons lacking acid sphingomyelinase. Mol Biol Cell 2008; 19: 509–522.

    Article  CAS  Google Scholar 

  15. Camoletto PG, Vara H, Morando L, Connell E, Marletto FP et al. Synaptic vesicle docking: sphingosine regulates syntaxin1 interaction with Munc18. PLoS One 2009; 4: e5310.

    Article  Google Scholar 

  16. Vitner EB, Platt FM, Futerman AH . Common and uncommon pathogenic cascades in lysosomal storage diseases. J Biol Chem 2010; 285: 20423–20427.

    Article  CAS  Google Scholar 

  17. Wei H, Kim SJ, Zhang Z, Tsai PC, Wisniewski KE, Mukherjee AB . ER and oxidative stresses are common mediators of apoptosis in both neurodegenerative and non-neurodegenerative lysosomal storage disorders and are alleviated by chemical chaperones. Hum Mol Genet 2008; 17: 469–477.

    Article  CAS  Google Scholar 

  18. Grynkiewicz G, Poenie M, Tsien RY . A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 1985; 260: 3440–3450.

    CAS  Google Scholar 

  19. Sepúlveda MR, Hidalgo-Sánchez M, Mata AM . A developmental profile of the levels of calcium pumps in chick cerebellum. J Neurochem 2005; 95: 673–683.

    Article  Google Scholar 

  20. Chaudhary J, Walia M, Matharu J, Escher E, Grover AK . Caloxin: a novel plasma membrane Ca2+ pump inhibitor. Am J Physiol Cell Physiol 2001; 280: 1027–1030.

    Article  Google Scholar 

  21. de Juan-Sanz J, Núñez E, Zafra F, Berrocal M, Corbacho I, Ibáñez I et al. Presynaptic control of glycine transporter 2 (GlyT2) by physical and functional association with plasma membrane Ca2+-ATPase (PMCA) and Na+-Ca2+ exchanger (NCX). J Biol Chem 2014; 289: 34308–34324.

    Article  CAS  Google Scholar 

  22. Hockly E, Richon VM, Woodman B, Smith DL, Zhou X, Rosa E et al. Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington's disease. Proc Natl Acad Sci USA 2003; 100: 2041–2046.

    Article  CAS  Google Scholar 

  23. Cognato GP, Agostinho PM, Hockemeyer J, Müller CE, Souza DO, Cunha RA . Caffeine and an adenosine A(2 A) receptor antagonist prevent memory impairment and synaptotoxicity in adult rats triggered by a convulsive episode in early life. J Neurochem 2010; 112: 453–462.

    Article  CAS  Google Scholar 

  24. Sohal RS, Brunk UT . Lipofuscin as an indicator of oxidative stress and aging. Adv Exp Med Biol 1989; 266: 17–26.

    CAS  PubMed  Google Scholar 

  25. Cardozo-Pelaez F, Brooks PJ, Stedeford T, Song S, Sanchez-Ramos J . DNA damage, repair, and antioxidant systems in brain regions: a correlative study. Free Radic Biol Med 2000; 28: 779–785.

    Article  CAS  Google Scholar 

  26. Rodriguez-Lafrasse C, Vanier MT . Sphingosylphosphorylcholine in Niemann–Pick disease brain: accumulation in type A but not in type B. Neurochem Res 1999; 24: 199–205.

    Article  CAS  Google Scholar 

  27. Luberto C, Hassler DF, Signorelli P, Okamoto Y, Sawai H, Boros E et al. Inhibition of tumor necrosis factor-induced cell death in MCF7 by a novel inhibitor of neutral sphingomyelinase. J Biol Chem 2002; 277: 41128–41139.

    Article  CAS  Google Scholar 

  28. Petersen NH, Olsen OD, Groth-Pedersen L, Ellegaard AM, Bilgin M, Redmer S et al. Transformation-associated changes in sphingolipid metabolism sensitize cells to lysosomal cell death induced by inhibitors of acid sphingomyelinase. Cancer Cell 2013; 24: 379–393.

    Article  CAS  Google Scholar 

  29. Franco-Villanueva A, Fernández-López E, Gabandé-Rodríguez E, Bañón-Rodríguez I, Esteban JA, Antón IM et al. WIP modulates dendritic spine actin cytoskeleton by transcriptional control of lipid metabolic enzymes. Hum Mol Genet 2014; 23: 4383–4395.

    Article  CAS  Google Scholar 

  30. Wang X, Michaelis EK . Selective neuronal vulnerability to oxidative stress in the brain. Front Aging Neurosci 2010; 2: 12.

    PubMed  PubMed Central  Google Scholar 

  31. Gleichmann M, Mattson MP . Neuronal calcium homeostasis and dysregulation. Antioxid Redox Signal 2011; 14: 1261–1273.

    Article  CAS  Google Scholar 

  32. Tymianski M, Charlton MP, Carlen PL, Tator CH . Properties of neuroprotective cell-permeant Ca2+ chelators: effects on [Ca2+]i and glutamate neurotoxicity in vitro. J Neurophysiol 1994; 72: 1973–1992.

    Article  CAS  Google Scholar 

  33. Shen D, Wang X, Li X, Zhang X, Yao Z, Dibble S et al. Lipid storage disorders block lysosomal trafficking by inhibiting a TRP channel and lysosomal calcium release. Nat Commun 2012; 3: 731.

    Article  Google Scholar 

  34. Pozzan T, Rizzuto R, Volpe P, Meldolesi J . Molecular and cellular physiology of intracellular calcium stores. Physiol Rev 1994; 74: 595–636.

    Article  CAS  Google Scholar 

  35. Ginzburg L, Futerman AH . Defective calcium homeostasis in the cerebellum in a mouse model of Niemann–Pick A disease. J Neurochem 2005; 95: 1619–1628.

    Article  CAS  Google Scholar 

  36. Guerini D . The Ca2+ pumps and the Na+/Ca2+ exchangers. Biometals 1998; 11: 319–330.

    Article  CAS  Google Scholar 

  37. Strehler EE, Caride AJ, Filoteo AG, Xiong Y, Penniston JT, Enyedi A . Plasma membrane Ca2+-ATPases as dynamic regulators of cellular calcium handling. Ann N Y Acad Sci 2007; 1099: 226–236.

    Article  CAS  Google Scholar 

  38. Jiang L, Bechtel MD, Galeva NA, Williams TD, Michaelis EK, Michaelis ML . Decreases in plasma membrane Ca2+-ATPase in brain synaptic membrane rafts from aged rats. J Neurochem 2012; 123: 689–699.

    Article  CAS  Google Scholar 

  39. Pang Y, Zhu H, Wu P, Chen J . The characterization of plasma membrane Ca2+-ATPase in rich sphingomyelin-cholesterol domains. FEBS Lett 2005; 579: 2397–2403.

    Article  CAS  Google Scholar 

  40. Varga K, Pászty K, Padányi R, Hegedűs L, Brouland JP, Papp B et al. Histone deacetylase inhibitor- and PMA-induced upregulation of PMCA4b enhances Ca2+ clearance from MCF-7 breast cancer cells. Cell Calcium 2014; 55: 78–92.

    Article  CAS  Google Scholar 

  41. Bhatt S, Ashlock BM, Toomey NL, Diaz LA, Mesri EA, Lossos IS et al. Efficacious proteasome/HDAC inhibitor combination therapy for primary effusion lymphoma. J Clin Invest 2013; 123: 2616–2628.

    Article  CAS  Google Scholar 

  42. Sarna J, Miranda SR, Schuchman EH, Hawkes R . Patterned cerebellar Purkinje cell death in a transgenic mouse model of Niemann Pick type A/B disease. Eur J Neurosci 2001; 13: 1873–1880.

    Article  CAS  Google Scholar 

  43. Macauley SL, Sidman RL, Schuchman EH, Taksir T, Stewart GR . Neuropathology of the acid sphingomyelinase knockout mouse model of Niemann–Pick A disease including structure–function studies associated with cerebellar Purkinje cell degeneration. Exp Neurol 2008; 214: 181–192.

    Article  CAS  Google Scholar 

  44. Ledesma MD, Brügger B, Bünning C, Wieland FT, Dotti CG . Maturation of the axonal plasma membrane requires upregulation of sphingomyelin synthesis and formation of protein-lipid complexes. EMBO J 1999; 18: 1761–1771.

    Article  CAS  Google Scholar 

  45. Vanagas L, de La Fuente MC, Dalghi M, Ferreira-Gomes M, Rossi RC, Strehler EE et al. Differential effects of G- and F-actin on the plasma membrane calcium pump activity. Cell Biochem Biophys 2013; 66: 187–198.

    Article  CAS  Google Scholar 

  46. Zaidi A, Michaelis ML . Effects of reactive oxygen species on brain synaptic plasma membrane Ca2+-ATPase. Free Radic Biol Med 1999; 27: 810–821.

    Article  CAS  Google Scholar 

  47. Berridge MJ, Bootman MD, Roderick HL . Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 2003; 4: 517–529.

    Article  CAS  Google Scholar 

  48. Brini M . Plasma membrane Ca2+-ATPase: from a housekeeping function to a versatile signaling role. Pflugers Arch 2009; 457: 657–664.

    Article  CAS  Google Scholar 

  49. Corrotte M, Castro-Gomes T, Koushik AB, Andrews NW . Approaches for plasma membrane wounding and assessment of lysosome-mediated repair responses. Methods Cell Biol 2015; 126: 139–158.

    Article  CAS  Google Scholar 

  50. Idone V, Tam C, Goss JW, Toomre D, Pypaert M, Andrews NW . Repair of injured plasma membrane by rapid Ca2+-dependent endocytosis. J Cell Biol. 2008; 180: 905–914.

    Article  CAS  Google Scholar 

  51. McGovern MM, Aron A, Brodie SE, Desnick RJ, Wasserstein MP . Natural history of Type A Niemann–Pick disease: possible endpoints for therapeutic trials. Neurology 2006; 66: 228–232.

    Article  CAS  Google Scholar 

  52. Korkotian E, Schwarz A, Pelled D, Schwarzmann G, Segal M, Futerman AH . Elevation of intracellular glucosylceramide levels results in an increase in endoplasmic reticulum density and in functional calcium stores in cultured neurons. J Biol Chem 1999; 274: 21673–21678.

    Article  CAS  Google Scholar 

  53. Lloyd-Evans E, Pelled D, Riebeling C, Bodennec J, de-Morgan A, Waller H et al. Glucosylceramide and glucosylsphingosine modulate calcium mobilization from brain microsomes via different mechanisms. J Biol Chem 2003; 278: 23594–23599.

    Article  CAS  Google Scholar 

  54. Pelled D, Lloyd-Evans E, Riebeling C, Jeyakumar M, Platt FM, Futerman AH . Inhibition of calcium uptake via the sarco/endoplasmic reticulum Ca2+-ATPase in a mouse model of Sandhoff disease and prevention by treatment with N-butyldeoxynojirimycin. J Biol Chem 2003; 278: 29496–29501.

    Article  CAS  Google Scholar 

  55. Sano R, Annunziata I, Patterson A, Moshiach S, Gomero E, Opferman J et al. GM1-ganglioside accumulation at the mitochondria-associated ER membranes links ER stress to Ca2+-dependent mitochondrial apoptosis. Mol Cell 2009; 36: 500–511.

    Article  CAS  Google Scholar 

  56. Lloyd-Evans E, Morgan AJ, He X, Smith DA, Elliot-Smith E, Sillence DJ et al. Niemann–Pick disease type C1 is a sphingosine storage disease that causes deregulation of lysosomal calcium. Nat Med 2008; 14: 1247–1255.

    Article  CAS  Google Scholar 

  57. Pipalia NH, Cosner CC, Huang A, Chatterjee A, Bourbon P, Farley N et al. Histone deacetylase inhibitor treatment dramatically reduces cholesterol accumulation in Niemann–Pick type C1 mutant human fibroblasts. Proc Natl Acad Sci USA 2011; 108: 5620–5625.

    Article  CAS  Google Scholar 

  58. Munkacsi AB, Chen FW, Brinkman MA, Higaki K, Gutiérrez GD, Chaudhari J et al. An "exacerbate-reverse" strategy in yeast identifies histone deacetylase inhibition as a correction for cholesterol and sphingolipid transport defects in human Niemann–Pick type C disease. J Biol Chem 2011; 286: 23842–23851.

    Article  CAS  Google Scholar 

  59. Guan JS, Haggarty SJ, Giacometti E, Dannenberg JH, Joseph N, Gao J et al. HDAC2 negatively regulates memory formation and synaptic plasticity. Nature 2009; 459: 55–60.

    Article  CAS  Google Scholar 

  60. Hanson JE, La H, Plise E, Chen YH, Ding X, Hanania T et al. SAHA enhances synaptic function and plasticity in vitro but has limited brain availability in vivo and does not impact cognition. PLoS One 2013; 8: e69964.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Wylder Nation Foundation for kindly donating the NPA brain tissue, EH Schuchman (Mount Sinai School of Medicine, New York) for providing us with the ASMko mice, AM Mata (Universidad de Extremadura) and JJ Lucas (CBMSO) for technical advice, and C. Aragón, B. López-Corcuera and E. Núñez for providing the Caloxin 2a1 and for their advice on its use. This work was financed by grants from the Ministerio Español de Ciencia e Innovación (SAF2014-57539- R and CSD2010-00045) and the Fundación Niemann Pick España to MDL, and by an institutional grant to the CBMSO from the Fundación Ramón Areces. APC holds a predoctoral fellowship (FPU) funded by the Ministerio Español de Ciencia e Innovación. We thank Life Science Editors for editing services.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M D Ledesma.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-Cañamás, A., Benvegnù, S., Rueda, C. et al. Sphingomyelin-induced inhibition of the plasma membrane calcium ATPase causes neurodegeneration in type A Niemann–Pick disease. Mol Psychiatry 22, 711–723 (2017). https://doi.org/10.1038/mp.2016.148

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2016.148

This article is cited by

Search

Quick links