Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Novel roles of amyloid-beta precursor protein metabolites in fragile X syndrome and autism

Abstract

Fragile X syndrome (FXS) is the most common form of inherited intellectual disability and is associated with up to 5% of autism cases. Several promising drugs are in preclinical testing for FXS; however, bench-to-bedside plans for the clinic are severely limited due to lack of validated biomarkers and outcome measures. Published work from our laboratories has demonstrated altered levels of amyloid-beta (Aβ) precursor protein (APP) and its metabolites in FXS and idiopathic autism. Westmark and colleagues have focused on β-secretase (amyloidogenic) processing and the accumulation of Aβ peptides in adult FXS models, whereas Lahiri and Sokol have studied α-secretase (non-amyloidogenic or anabolic) processing and altered levels of sAPPα and Aβ in pediatric autism and FXS. Thus, our groups have hypothesized a pivotal role for these Alzheimer’s disease (AD)-related proteins in the neurodevelopmental disorders of FXS and autism. In this review, we discuss the contribution of APP metabolites to FXS and autism pathogenesis as well as the potential use of these metabolites as blood-based biomarkers and therapeutic targets. Our future focus is to identify key underlying mechanisms through which APP metabolites contribute to FXS and autism condition-to-disease pathology. Positive outcomes will support utilizing APP metabolites as blood-based biomarkers in clinical trials as well as testing drugs that modulate APP processing as potential disease therapeutics. Our studies to understand the role of APP metabolites in developmental conditions such as FXS and autism are a quantum leap for the neuroscience field, which has traditionally restricted any role of APP to AD and aging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Darnell JC, Van Driesche SJ, Zhang C, Hung KY, Mele A, Fraser CE et al. FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell 2011; 146: 247–261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Iossifov I, Ronemus M, Levy D, Wang Z, Hakker I, Rosenbaum J et al. De novo gene disruptions in children on the autistic spectrum. Neuron 2012; 74: 285–299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gupta S, Ellis SE, Ashar FN, Moes A, Bader JS, Zhan J et al. Transcriptome analysis reveals dysregulation of innate immune response genes and neuronal activity-dependent genes in autism. Nat Commun 2014; 5: 5748.

    Article  CAS  PubMed  Google Scholar 

  4. Pasciuto E, Ahmed T, Wahle T, Gardoni F, D'Andrea L, Pacini L et al. Dysregulated ADAM10-mediated processing of APP during a critical time window leads to synaptic deficits in fragile X syndrome. Neuron 2015; 87: 382–398.

    Article  CAS  PubMed  Google Scholar 

  5. Wegiel J, Frackowiak J, Mazur-Kolecka B, Schanen NC, Cook EH Jr, Sigman M et al. Abnormal intracellular accumulation and extracellular Abeta deposition in idiopathic and Dup15q11.2-q13 autism spectrum disorders. PLoS One 2012; 7: e35414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Erickson CA, Ray B, Maloney B, Wink LK, Bowers K, Schaefer TL et al. Impact of acamprosate on plasma amyloid-beta precursor protein in youth: a pilot analysis in fragile X syndrome-associated and idiopathic autism spectrum disorder suggests a pharmacodynamic protein marker. J Psychiatr Res 2014; 59: 220–228.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hagerman PJ . The fragile X prevalence paradox. J Med Genet 2008; 45: 498–499.

    Article  PubMed  Google Scholar 

  8. McLennan Y, Polussa J, Tassone F, Hagerman R . Fragile x syndrome. Curr Genomics 2011; 12: 216–224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Budimirovic DB, Kaufmann WE . What can we learn about autism from studying fragile X syndrome? Dev Neurosci 2011; 33: 379–394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hagerman RJ, Hagerman PJ . Physical and Behavioral Phenotype. John Hopkins University Press: Baltimore, 2002.

    Google Scholar 

  11. Khandjian EW, Fortin A, Thibodeau A, Tremblay S, Cote F, Devys D et al. A heterogeneous set of FMR1 proteins is widely distributed in mouse tissues and is modulated in cell culture. Hum Mol Genet 1995; 4: 783–789.

    Article  CAS  PubMed  Google Scholar 

  12. Brown V, Jin P, Ceman S, Darnell JC, O'Donnell WT, Tenenbaum SA et al. Microarray identification of FMRP-associated brain mRNAs and altered mRNA translational profiles in fragile X syndrome. Cell 2001; 107: 477–487.

    Article  CAS  PubMed  Google Scholar 

  13. Darnell JC, Jensen KB, Jin P, Brown V, Warren ST, Darnell RB . Fragile X mental retardation protein targets G quartet mRNAs important for neuronal function. Cell 2001; 107: 489–499.

    Article  CAS  PubMed  Google Scholar 

  14. Ramon Y, Cajal S . Recollections of My Life. The MIT Press: Cambridge, 1989.

    Book  Google Scholar 

  15. Bear MF, Huber KM, Warren ST . The mGluR theory of fragile X mental retardation. Trends Neurosci 2004; 27: 370–377.

    Article  CAS  PubMed  Google Scholar 

  16. Westmark CJ, Malter JS . FMRP mediates mGluR5-dependent translation of amyloid precursor protein. PLoS Biol 2007; 5: e52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lee EK, Kim HH, Kuwano Y, Abdelmohsen K, Srikantan S, Subaran SS et al. hnRNP C promotes APP translation by competing with FMRP for APP mRNA recruitment to P bodies. Nat Struct Mol Biol 2010; 17: 732–739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen L, Toth M . Fragile X mice develop sensory hyperreactivity to auditory stimuli. Neuroscience 2001; 103: 1043–1050.

    Article  CAS  PubMed  Google Scholar 

  19. Yan QJ, Asafo-Adjei PK, Arnold HM, Brown RE, Bauchwitz RP . A phenotypic and molecular characterization of the fmr1-tm1Cgr fragile X mouse. Genes Brain Behav 2004; 3: 337–359.

    Article  CAS  PubMed  Google Scholar 

  20. Yan QJ, Rammal M, Tranfaglia M, Bauchwitz RP . Suppression of two major fragile X syndrome mouse model phenotypes by the mGluR5 antagonist MPEP. Neuropharmacology 2005; 49: 1053–1066.

    Article  CAS  PubMed  Google Scholar 

  21. Qin M, Kang J, Smith CB . A null mutation for Fmr1 in female mice: effects on regional cerebral metabolic rate for glucose and relationship to behavior. Neuroscience 2005; 135: 999–1009.

    Article  CAS  PubMed  Google Scholar 

  22. Bilousova TV, Dansie L, Ngo M, Aye J, Charles JR, Ethell DW et al. Minocycline promotes dendritic spine maturation and improves behavioural performance in the fragile X mouse model. J Med Genet 2009; 46: 94–102.

    Article  CAS  PubMed  Google Scholar 

  23. Antar LN, Li C, Zhang H, Carroll RC, Bassell GJ . Local functions for FMRP in axon growth cone motility and activity-dependent regulation of filopodia and spine synapses. Mol Cell Neurosci 2006; 32: 37–48.

    Article  CAS  PubMed  Google Scholar 

  24. de Vrij FM, Levenga J, van der Linde HC, Koekkoek SK, De Zeeuw CI, Nelson DL et al. Rescue of behavioral phenotype and neuronal protrusion morphology in Fmr1 KO mice. Neurobiol Dis 2008; 31: 127–132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Berry-Kravis E . Epilepsy in fragile X syndrome. Dev Med Child Neurol 2002; 44: 724–728.

    Article  PubMed  Google Scholar 

  26. Musumeci SA, Hagerman RJ, Ferri R, Bosco P, Dalla Bernardina B, Tassinari CA et al. Epilepsy and EEG findings in males with fragile X syndrome. Epilepsia 1999; 40: 1092–1099.

    Article  CAS  PubMed  Google Scholar 

  27. Westmark CJ, Westmark PR, O'Riordan KJ, Ray BC, Hervey CM, Salamat MS et al. Reversal of fragile X phenotypes by manipulation of AbetaPP/Abeta levels in Fmr1 mice. PLoS One 2011; 6: e26549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Marcinkiewicz M, Seidah NG . Coordinated expression of beta-amyloid precursor protein and the putative beta-secretase BACE and alpha-secretase ADAM10 in mouse and human brain. J Neurochem 2000; 75: 2133–2143.

    Article  CAS  PubMed  Google Scholar 

  29. Hick M, Herrmann U, Weyer SW, Mallm JP, Tschape JA, Borgers M et al. Acute function of secreted amyloid precursor protein fragment APPsalpha in synaptic plasticity. Acta Neuropathol 2015; 129: 21–37.

    Article  CAS  PubMed  Google Scholar 

  30. Tyan SH, Shih AY, Walsh JJ, Maruyama H, Sarsoza F, Ku L et al. Amyloid precursor protein (APP) regulates synaptic structure and function. Mol Cell Neurosci 2012; 51: 43–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schupf N, Tang MX, Fukuyama H, Manly J, Andrews H, Mehta P et al. Peripheral Abeta subspecies as risk biomarkers of Alzheimer's disease. Proc Natl Acad Sci USA 2008; 105: 14052–14057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Al-Ayadhi LY, Ben Bacha AG, Kotb M, El-Ansary AK . A novel study on amyloid beta peptide 40, 42 and 40/42 ratio in Saudi autistics. Behav Brain Funct 2012; 8: 4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mehta PD, Capone G, Jewell A, Freedland RL . Increased amyloid beta protein levels in children and adolescents with Down syndrome. J Neurol Sci 2007; 254: 22–27.

    Article  CAS  PubMed  Google Scholar 

  34. Ray B, Sokol DK, Maloney B, Lahiri DK . Finding novel distinctions between the sAPPα-mediated anabolic pathways in fragile X syndrome and idiopathic Autism plasma and brain tissue. Sci Rep 2016; 6: 26052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Baio J . Prevalence of autism spectrum disorder among children aged 8 years — autism and developmental disabilities monitoring network, 11 sites, United States, 2010. MMWR Surveill Summ 2014; 63: 1–21.

    Google Scholar 

  36. Kim YS, Leventhal BL, Koh YJ, Fombonne E, Laska E, Lim EC et al. Prevalence of autism spectrum disorders in a total population sample. Am J Psychiatry 2011; 168: 904–912.

    Article  PubMed  Google Scholar 

  37. Newschaffer CJ, Croen LA, Daniels J, Giarelli E, Grether JK, Levy SE et al. The epidemiology of autism spectrum disorders. Annu Rev Public Health 2007; 28: 235–258.

    Article  PubMed  Google Scholar 

  38. Hessl D, Dyer-Friedman J, Glaser B, Wisbeck J, Barajas RG, Taylor A et al. The influence of environmental and genetic factors on behavior problems and autistic symptoms in boys and girls with fragile X syndrome. Pediatrics 2001; 108: E88.

    Article  CAS  PubMed  Google Scholar 

  39. Lahiri DK, Maloney B, Zawia NH . The LEARn model: an epigenetic explanation for idiopathic neurobiological diseases. Mol Psychiatry 2009; 14: 992–1003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Clifford S, Dissanayake C, Bui QM, Huggins R, Taylor AK, Loesch DZ . Autism spectrum phenotype in males and females with fragile X full mutation and premutation. J Autism Dev Disord 2007; 37: 738–747.

    Article  PubMed  Google Scholar 

  41. Moss J, Howlin P . Autism spectrum disorders in genetic syndromes: Implications for diagnosis, intervention and understanding the wider autism spectrum disorder population. J Intellect Disabil Res 2009; 53: 852–873.

    Article  CAS  PubMed  Google Scholar 

  42. Langen M, Durston S, Staal WG, Palmen SJ, Engeland H . Caudate nucleus is enlarged in high-functioning medication-naive subjects with autism. Biol Psychiatry 2007; 62: 262–266.

    Article  PubMed  Google Scholar 

  43. Gothelf D, Furfaro JA, Hoeft F, Ma Eckert, Hall SS, O’Hara R et al. Neuroanatomy of fragile X syndrome is associated with aberrant behavior and the fragile X mental retardation protein (FMRP). Ann Neurol 2008; 63: 40–51.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Hazlett HC, Poe MD, Lightbody AA, Gerig G, Macfall JR, Ross AK et al. Teasing apart the heterogeneity of autism: Same behavior, different brains in toddlers with fragile X syndrome and autism. J Neurodev Disord 2009; 1: 81–90.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Schumann CM, Barnes CC, Lord C, Courchesne E . Amygdala enlargement in toddlers with autism related to severity of social and communication impairments. Biol Psychiatry 2009; 66: 942–949.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Hall SS, Lightbody AA, Hirt M, Rezvani A, Reiss AL . Autism in fragile X syndrome: a category mistake? J Am Acad Child Adoles Psychiatry 2010; 9: 921–933.

    Article  Google Scholar 

  47. Dissanayake C, Bui Q, Bulhak-Paterson D, HugginsR, Loesch DZ . Behavioural and cognitive phenotypes in idiopathic autism versus autism associated with fragile X syndrome. J Child Psychol Psychiatry 2009; 50: 290–299.

    Article  PubMed  Google Scholar 

  48. McDuffie A, Abbeduto L, Lewis P, Kover S, Kim JS, Weber A et al. Autism spectrum disorder in children and adolescents with fragile X syndrome: within-syndrome differences and age-related changes. Am J Intellect Dev Disabil 2010; 115: 307–326.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Sokol DK, Chen D, Farlow MR, Dunn DW, Maloney B, Zimmer JA et al. High levels of Alzheimer beta-amyloid precursor protein (APP) in children with severely autistic behavior and aggression. J Child Neurol 2006; 21: 444–449.

    Article  PubMed  Google Scholar 

  50. Ray B, Long JM, Sokol DK, Lahiri DK . Increased secreted amyloid precursor protein-alpha (sAPPalpha) in severe autism: Proposal of a specific, anabolic pathway and putative biomarker. PLoS One 2011; 6: e20405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lahiri DK, Sokol DK, Erickson C, Ray B, Ho CY, Maloney B . Autism as early neurodevelopmental disorder: evidence for an sAPPalpha-mediated anabolic pathway. Front Cell Neurosci 2013; 7: 94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bailey AR, Giunta BN, Obregon D, Nikolic WV, Tian J, Sanberg CD et al. Peripheral biomarkers in autism: secreted amyloid precursor protein-alpha as a probable key player in early diagnosis. Int J Clin Exp Med 2008; 1: 338–344.

    PubMed  PubMed Central  Google Scholar 

  53. Fatemi SH, Folsom TD . Dysregulation of fragile x mental retardation protein and metabotropic glutamate receptor 5 in superior frontal cortex of individuals with autism: a postmortem brain study. Mol Autism 2011; 2: 2392–22.

    Article  CAS  Google Scholar 

  54. Fatemi SH, Folsom TD, Kneeland RE, Yousefi MK, Liesch SB, Thuras PD . Impairment of fragile X mental retardation protein-metabotropic glutamate receptor 5 signaling and its downstream cognates ras-related C3 botulinum toxin substrate 1, amyloid beta A4 precursor protein, striatal-enriched protein tyrosine phosphatase, and homer 1, in autism: a postmortem study in cerebellar vermis and superior frontal cortex. Mol Autism 2013; 4: 21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bailey AR, Hou H, Obregon DF, Tian J, Zhu Y, Zou Q et al. Aberrant T-lymphocyte development and function in mice overexpressing human soluble amyloid precursor protein-alpha: Implications for autism. FASEB J 2012; 26: 1040–1051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bailey AR, Hou H, Song M, Obregon DF, Portis S, Barger S et al. GFAP expression and social deficits in transgenic mice overexpressing human sAPPalpha. Glia 2013; 61: 1556–1569.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Ferreira ST, Klein WL . The Abeta oligomer hypothesis for synapse failure and memory loss in Alzheimer's disease. Neurobiol Learn Mem 2011; 96: 529–543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zeidan-Chulia F, de Oliveira BH, Salmina AB, Casanova MF, Gelain DP, Noda M et al. Altered expression of Alzheimer's disease-related genes in the cerebellum of autistic patients: a model for disrupted brain connectome and therapy. Cell Death Dis 2014; 5: e1250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. van Eeghen AM, Pulsifer MB, Merker VL, Neumeyer AM, van Eeghen EE, Thibert RL et al. Understanding relationships between autism, intelligence, and epilepsy: a cross-disorder approach. Dev Med Child Neurol 2013; 55: 146–153.

    Article  PubMed  Google Scholar 

  60. Hagerman RJ . Epilepsy drives autism in neurodevelopmental disorders. Dev Med Child Neurol 2013; 55: 101–102.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Amiet C, Gourfinkel-An I, Bouzamondo A, Tordjman S, Baulac M, Lechat P et al. Epilepsy in autism is associated with intellectual disability and gender: Evidence from a meta-analysis. Biol Psychiatry 2008; 64: 577–582.

    Article  PubMed  Google Scholar 

  62. Hartley-McAndrew M, Weinstock A . Autism spectrum disorder: correlation between aberrant behaviors, EEG abnormalities and seizures. Neurol Int 2010; 2: e10.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Heard TT, Ramgopal S, Picker J, Lincoln SA, Rotenberg A, Kothare SV . EEG abnormalities and seizures in genetically diagnosed fragile X syndrome. Int J Dev Neurosci 2014; 38: 155–160.

    Article  PubMed  Google Scholar 

  64. Robinson DJ, Merskey H, Blume WT, Fry R, Williamson PC, Hachinski VC . Electroencephalography as an aid in the exclusion of Alzheimer's disease. Arch Neurol 1994; 51: 280–284.

    Article  CAS  PubMed  Google Scholar 

  65. Born HA . Seizures in Alzheimer's disease. Neuroscience 2015; 286C: 251–263.

    Article  CAS  Google Scholar 

  66. Westmark CJ . What's happening at synapses? the role of amyloid beta-protein precursor and beta-amyloid in neurological disorders. Mol Psychiatry 2013; 18: 425–434.

    Article  CAS  PubMed  Google Scholar 

  67. Born HA, Kim JY, Savjani RR, Das P, Dabaghian YA, Guo Q et al. Genetic suppression of transgenic APP rescues hypersynchronous network activity in a mouse model of Alzheimer's disease. J Neurosci 2014; 34: 3826–3840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Renner M, Lacor PN, Velasco PT, Xu J, Contractor A, Klein WL et al. Deleterious effects of amyloid beta oligomers acting as an extracellular scaffold for mGluR5. Neuron 2010; 66: 739–754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chen X, Lin R, Chang L, Xu S, Wei X, Zhang J et al. Enhancement of long-term depression by soluble amyloid beta protein in rat hippocampus is mediated by metabotropic glutamate receptor and involves activation of p38MAPK, STEP and caspase-3. Neuroscience 2013; 253: 435–443.

    Article  CAS  PubMed  Google Scholar 

  70. Tamagnini F, Scullion S, Brown JT, Randall AD . Intrinsic excitability changes induced by acute treatment of hippocampal CA1 pyramidal neurons with exogenous amyloid beta peptide. Hippocampus 2015; 25: 786–797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Raznahan A, Wallace GL, Antezana L, Greenstein D, Lenroot R, Thurm A et al. Compared to what? early brain overgrowth in autism and the perils of population norms. Biol Psychiatry 2013; 74: 563–575.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Davidovitch M, Patterson B, Gartside P . Head circumference measurements in children with autism. J Child Neurol 1996; 11: 389–393.

    Article  CAS  PubMed  Google Scholar 

  73. Lainhart JE, Bigler ED, Bocian M, Coon H, Dinh E, Dawson G et al. Head circumference and height in autism: A study by the collaborative program of excellence in autism. Am J Med Genet A 2006; 140: 2257–2274.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Herbert MR, Ziegler DA, Makris N, Filipek PA, Kemper TL, Normandin JJ et al. Localization of white matter volume increase in autism and developmental language disorder. Ann Neurol 2004; 55: 530–540.

    Article  PubMed  Google Scholar 

  75. Bailey A, Luthert P, Dean A, Harding B, Janota I, Montgomery M et al. A clinicopathological study of autism. Brain 1998; 121: 889–905.

    Article  PubMed  Google Scholar 

  76. Courchesne E, Carper R, Akshoomoff N . Evidence of brain overgrowth in the first year of life in autism. JAMA 2003; 290: 337–344.

    Article  PubMed  Google Scholar 

  77. Courchesne E, Karns CM, Davis HR, Ziccardi R, Carper RA, Tigue ZD et al. Unusual brain growth patterns in early life in patients with autistic disorder: An MRI study. Neurology 2001; 57: 245–254.

    Article  CAS  PubMed  Google Scholar 

  78. McCaffery P, Deutsch CK . Macrocephaly and the control of brain growth in autistic disorders. Prog Neurobiol 2005; 77: 38–56.

    Article  PubMed  Google Scholar 

  79. Aylward EH, Minshew NJ, Goldstein G, Honeycutt NA, Augustine AM, Yates KO et al. MRI volumes of amygdala and hippocampus in non-mentally retarded autistic adolescents and adults. Neurology 1999; 53: 2145–2150.

    Article  CAS  PubMed  Google Scholar 

  80. Aylward EH, Minshew NJ, Field K, Sparks BF, Singh N . Effects of age on brain volume and head circumference in autism. Neurology 2002; 59: 175–183.

    Article  CAS  PubMed  Google Scholar 

  81. Dementieva YA, Vance DD, Donnelly SL, Elston LA, Wolpert CM, Ravan SA et al. Accelerated head growth in early development of individuals with autism. Pediatr Neurol 2005; 32: 102–108.

    Article  PubMed  Google Scholar 

  82. Cohen MM Jr . Mental deficiency, alterations in performance, and CNS abnormalities in overgrowth syndromes. Am J Med Genet C Semin Med Genet 2003; 117C: 49–56.

    Article  PubMed  Google Scholar 

  83. Wegiel J, Flory M, Kuchna I, Nowicki K, Ma S, Imaki H et al. Neuronal nucleus and cytoplasm volume deficit in children with autism and volume increase in adolescents and adults. Acta Neuropathol Commun 2015; 3: 2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hallahan BP, Craig MC, Toal F, Daly EM, Moore CJ, Ambikapathy A et al. In vivo brain anatomy of adult males with fragile X syndrome: an MRI study. Neuroimage 2011; 54: 16–24.

    Article  PubMed  Google Scholar 

  85. Hoeft F, Carter JC, Lightbody AA, Cody Hazlett H, Piven J, Reiss AL . Region-specific alterations in brain development in one- to three-year-old boys with fragile X syndrome. Proc Natl Acad Sci USA 2010; 107: 9335–9339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Pacey LK, Xuan IC, Guan S, Sussman D, Henkelman RM, Chen Y et al. Delayed myelination in a mouse model of fragile X syndrome. Hum Mol Genet 2013; 22: 3920–3930.

    Article  CAS  PubMed  Google Scholar 

  87. Campbell DJ, Chang J, Chawarska K . Early generalized overgrowth in autism spectrum disorder: prevalence rates, gender effects, and clinical outcomes. J Am Acad Child Adolesc Psychiatry 2014; 53: 1063–1073.

    Article  PubMed  PubMed Central  Google Scholar 

  88. O'Roak BJ, Vives L, Girirajan S, Karakoc E, Krumm N, Coe BP et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 2012; 485: 246–250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Chen Y, Bodles AM . Amyloid precursor protein modulates beta-catenin degradation. J Neuroinflammation 2007; 4: 29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. McGrath LM, Peterson R . Autism Spectrum Disorder in Diagnosing Learning Disorders; A neuropsychological framework, 2nd edn. In: Pennington BF (ed). Guilford Press, New York, 2009, pp 108–151.

  91. Desai MK, Mastrangelo MA, Ryan DA, Sudol KL, Narrow WC, Bowers WJ . Early oligodendrocyte/myelin pathology in Alzheimer's disease mice constitutes a novel therapeutic target. Am J Pathol 2010; 177: 1422–1435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Palazuelos J, Crawford HC, Klingener M, Sun B, Karelis J, Raines EW et al. TACE/ADAM17 is essential for oligodendrocyte development and CNS myelination. J Neurosci 2014; 34: 11884–11896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Dagli AI, Mueller J, Williams CA . Angelman syndrome. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH et al. (eds). GeneReviews(R). University of Washington: Seattle, WA, 1993.

    Google Scholar 

  94. Fombonne E, Roge B, Claverie J, Courty S, Fremolle J . Microcephaly and macrocephaly in autism. J Autism Dev Disord 1999; 29: 113–119.

    Article  CAS  PubMed  Google Scholar 

  95. Singhmar P, Kumar A . Angelman syndrome protein UBE3A interacts with primary microcephaly protein ASPM, localizes to centrosomes and regulates chromosome segregation. PLoS One 2011; 6: e20397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Recuero M, Munive VA, Sastre I, Aldudo J, Valdivieso F, Bullido MJ . A free radical-generating system regulates AbetaPP metabolism/processing: Involvement of the ubiquitin/proteasome and autophagy/lysosome pathways. J Alzheimers Dis 2013; 34: 637–647.

    Article  CAS  PubMed  Google Scholar 

  97. Berry-Kravis E, Hessl D, Abbeduto L, Reiss AL, Beckel-Mitchener A, Urv TK et al. Outcome measures for clinical trials in fragile x syndrome. J Dev Behav Pediatr 2013; 34: 508–522.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Mullard A . Fragile X disappointments upset autism ambitions. Nat Rev Drug Discov 2015; 14: 151–153.

    Article  CAS  PubMed  Google Scholar 

  99. Westmark CJ, Hervey CM, Berry-Kravis EM, Malter JS . Effect of anticoagulants on amyloid beta-protein precursor and amyloid beta levels in plasma. J Alzheimers Dis Parkinsonism 2011; 1: 1–3.

    Google Scholar 

  100. Isaacs AM, Senn DB, Yuan M, Shine JP, Yankner BA . Acceleration of amyloid beta-peptide aggregation by physiological concentrations of calcium. J Biol Chem 2006; 281: 27916–27923.

    Article  CAS  PubMed  Google Scholar 

  101. Das U, Scott DA, Ganguly A, Koo EH, Tang Y, Roy S . Activity-induced convergence of APP and BACE-1 in acidic microdomains via an endocytosis-dependent pathway. Neuron 2013; 79: 447–460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lahiri DK, Farlow MR, Sambamurti K, Greig NH, Giacobini E, Schneider LS . A critical analysis of new molecular targets and strategies for drug developments in Alzheimer’s disease. Curr Drug Targets 2003; 4: 97–112.

    Article  CAS  PubMed  Google Scholar 

  103. Vincent B, Govitrapong P . Activation of the alpha-secretase processing of AbetaPP as a therapeutic approach in Alzheimer's disease. J Alzheimers Dis 2011; 24: 75–94.

    Article  CAS  PubMed  Google Scholar 

  104. Gravitz L . Drugs: a tangled web of targets. Nature 2011; 475: S9–S11.

    Article  CAS  PubMed  Google Scholar 

  105. Ghosh AK, Kumaragurubaran N, Hong L, Kulkarni S, Xu X, Miller HB et al. Potent memapsin 2 (beta-secretase) inhibitors: design, synthesis, protein-ligand X-ray structure, and in vivo evaluation. Bioorg Med Chem Lett 2008; 18: 1031–1036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Chang WP, Huang X, Downs D, Cirrito JR, Koelsch G, Holtzman DM et al. Beta-secretase inhibitor GRL-8234 rescues age-related cognitive decline in APP transgenic mice. FASEB J 2011; 25: 775–784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Li G, Percontino L, Sun Q, Qazi AS, Frederikse PH . Beta-amyloid secretases and beta-amyloid degrading enzyme expression in lens. Mol Vis 2003; 9: 179–183.

    CAS  PubMed  Google Scholar 

  108. Vassar R . BACE1 inhibitor drugs in clinical trials for Alzheimer's disease. Alzheimers Res Ther 2014; 6: 89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Jia Q, Deng Y, Qing H . Potential therapeutic strategies for Alzheimer's disease targeting or beyond beta-amyloid: insights from clinical trials. Biomed Res Int 2014; 2014: 837157.

    PubMed  PubMed Central  Google Scholar 

  110. Ding Y, Ko MH, Pehar M, Kotch F, Peters NR, Luo Y et al. Biochemical inhibition of the acetyltransferases ATase1 and ATase2 reduces beta-secretase (BACE1) levels and Abeta generation. J Biol Chem 2012; 287: 8424–8433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ko MH, Puglielli L . Two endoplasmic reticulum (ER)/ER Golgi intermediate compartment-based lysine acetyltransferases post-translationally regulate BACE1 levels. J Biol Chem 2009; 284: 2482–2492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Costantini C, Ko MH, Jonas MC, Puglielli L . A reversible form of lysine acetylation in the ER and Golgi lumen controls the molecular stabilization of BACE1. Biochem J 2007; 407: 383–395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zhang C, Saunders AJ . Therapeutic targeting of the alpha-secretase pathway to treat Alzheimer's disease. Discov Med 2007; 7: 113–117.

    CAS  PubMed  Google Scholar 

  114. Morris GP, Clark IA, Vissel B . Inconsistencies and controversies surrounding the amyloid hypothesis of Alzheimer's disease. Acta Neuropathol Commun 2014; 2: 014–0135-5.

    Article  Google Scholar 

  115. Erickson CA, Wink LK, Baindu B, Ray B, Schaefer TL, Pedapati EV et al. Analysis of peripheral amyloid precursor protein in Angelman Syndrome. Am J Med Genet A 2016 Jun 21; doi:10.1002/ajmg.a.37811.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the reviewers for their careful and insightful critiques, which greatly improved the manuscript. CJW has received funding from FRAXA Research Foundation, NIH (R21AG044714 and R03HD075881), the University of Wisconsin (UW)-Madison Alzheimer’s Disease Research Center (NIA P50AG033514), the UW-Madison Clinical and Translational Science Award (CTSA) program (NCATS UL1TR000427), Lundbeck USA, Merz Pharmaceuticals and Pierre Fabre. DKS has received funding from the Riley Memorial Foundation, Mental Health Association for the Advancement of Mental Health Research and Education, Clarian Health Partners, Indiana University Collaborative Research Grant (22-140-29). DKL has received funding from NIH (R01AG051086, R21AG4687100, P30AG010133), Alzheimer’s Association, Indiana Clinical and Translational Sciences Institute (ICTSI), and ISDH Spinal Cord and Brain Injury Board.

Disclaimer

Funding agencies had no role in the preparation of this publication.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C J Westmark or D K Lahiri.

Ethics declarations

Competing interests

DKL reports grants as a Principal Investigator from the National Institute on Aging, National Institute of Health, USA; Member, Scientific Advisory Board, QR Pharma, Berwyn, PA, USA; Member, Scientific Advisory Board, Yuma Therapeutics, Boston, MA; Member, Scientific Advisory Board, Entia Biosciences, Sherwood, OR; Member, International Advisory Board of the Drug Discovery and Therapy World Congress, Boston, MA; and Editor-in-Chief, ‘Current Alzheimer Research’, Bentham Sciences Publishers. The remaining authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Westmark, C., Sokol, D., Maloney, B. et al. Novel roles of amyloid-beta precursor protein metabolites in fragile X syndrome and autism. Mol Psychiatry 21, 1333–1341 (2016). https://doi.org/10.1038/mp.2016.134

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2016.134

This article is cited by

Search

Quick links