Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Biophysical changes in subcortical nuclei: the impact of diabetes and major depression

Subjects

Abstract

Magnetization transfer (MT) is a neuroimaging technique that is frequently used to characterize the biophysical abnormalities in both gray and white matter regions of the brain. In our study, we used MT to examine the integrity of key nodes in frontal-subcortical circuits in four subject groups: patients diagnosed with type 2 diabetes with and without major depression (MDD), a healthy control group, and a group diagnosed with MDD without diabetes. In the MDD group, MT studies demonstrated lower magnetization transfer ratios (MTR), a marker of abnormalities in the macromolecular protein pool, in the thalami when compared with the control groups. The group with diabetes and MDD showed lower MTR in the globus pallidus when compared with the group with MDD. Biophysical measures, in subcortical nuclei, correlated inversely with measures of glycemic control, cerebrovascular burden and depression scores. These findings have broad implications for the underlying neuronal circuitry and neurobiology of mood disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Seaquist E . Addressing the burden of diabetes. J Am Med Assoc 2014; 311: 2267–2268.

    Article  CAS  Google Scholar 

  2. Ducat L, Philipson L, Anderson B . The mental health comorbidities of diabetes. J Am Med Assoc 2014; 312: 691–692.

    Article  CAS  Google Scholar 

  3. Yaffe K, Falvey C, Hamilton N, Shchwartz A, Simonsick E, Satterfield S et al. Diabetes, glucose control, and 9-year cognitive decline among older adults without dementia. Arch Neurol 2012; 69: 1170–1175.

    Article  Google Scholar 

  4. Sullivan M, Katon W, Lovato L, Miller M, Murray A, Horowitz K et al. Association of depression with accelerated cognitive decline among patients with type 2 diabetes in the ACCORD-MIND trial. JAMA Psychiatry 2013; 70: 1041–1047.

    Article  Google Scholar 

  5. Rawlings A, Sharrett A, Schneider A, Coresh J, Albert M, Couper D et al. Diabetes in midlife and cognitive change over 20 years. Ann Intern Med 2014; 161: 785–793.

    Article  Google Scholar 

  6. Biessels G, Staekenborg S, Brunner E, Brayne C, Scheltens P . Risk of dementia in diabetes mellitus: a systematic review. Lancet Neurol 2006; 5: 64–74.

    Article  Google Scholar 

  7. Gavard J, Lustman P, Clouse R . Prevalence of depression in adults with diabetes: an epidemiological evaluation. Diabetes Care 1993; 16: 1167–1178.

    Article  CAS  Google Scholar 

  8. Egede L, Zheng D, Simpson K . Comorbid depression is associated with increased health care use and expenditures in individuals with diabetes. Diabetes Care 2002; 25: 464–470.

    Article  Google Scholar 

  9. Katon W, Feltz-Cornelis C . Treatment of depression in patients with diabetes: efficacy, effectiveness and maintenance trials and new service models. In: Katon W, Maj M, Sartorius N (eds). Depression and Diabetes. John Wiley & Sons: Hoboken, NJ, USA, 2010 pp 81–107.

    Chapter  Google Scholar 

  10. Alexander G, DeLong M, Strick P . Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Ann Rev Neurosci 1986; 9: 357–381.

    Article  CAS  Google Scholar 

  11. Kumar A, Yang S, Ajilore O, Wu M, Charlton R, Lamar M . Subcortical biophysical abnormalities in patients with mood disorders. Mol Psychiatry 2014; 19: 710–716.

    Article  CAS  Google Scholar 

  12. Kumar A, Gupta R, Thomas A, Ajilore O, Hellemann G . Focal subcortical biophysical abnormalities in patients diagnosed with type 2 diabetes and depression. Arch Gen Psychiatry 2009; 66: 324–330.

    Article  Google Scholar 

  13. Furman D, Hamilton J, Gotlib I . Frontostriatal functional connectivity in major depressive disorder. Biol Mood Anxiety Disord 2011; 1: 11.

    Article  Google Scholar 

  14. Pandya M, Altinay M, Malone D Jr, Anand A . Where in the brain is depression? Curr Psychiatry Rep 2012; 14: 634–642.

    Article  Google Scholar 

  15. Korgaonkar M, Fornito A, Williams L, Grieve S . Abnormal structural networks characterize major depressive disorder: a connectome analysis. Biol Psychiatry 2014; 76: 567–574.

    Article  Google Scholar 

  16. Bi Y, He Y . Connectomics reveal faulty wiring patterns for depressed brain. Biol Psychiatry 2014; 76: 515–516.

    Article  Google Scholar 

  17. Ajilore O, Zhan L, GadElkarim J, Zhang A, Feusner J, Yang S et al. Constructing the resting state structural connectome. Front Neuroinform 2013; 7: 30.

    Article  Google Scholar 

  18. Charlton R, Leow A, GadElkarim J, Zhang A, Ajilore O, Yang S et al. Brain connectivity in late-life depression and aging revealed by network analysis. Am J Geriatr Psychiatry 2015; 23: 642–650.

    Article  Google Scholar 

  19. Eng J, Ceckler TL, Balaban RS . Quantitative 1H magnetization transfer imaging in vivo. Magn Reson Med 1991; 17: 304–314.

    Article  CAS  Google Scholar 

  20. Balaban RS, Ceckler TL . Magnetization transfer contrast in magnetic resonance imaging. Magn Reson Q 1992; 8: 116–137.

    CAS  PubMed  Google Scholar 

  21. Grossman RI . Magnetization transfer in multiple sclerosis. Ann Neurol 1994; 36: S97–S99.

    Article  Google Scholar 

  22. Henkelman RM, Stanisz GJ, Graham SJ . Magnetization transfer in MRI: a review. NMR Biomed 2001; 14: 57–64.

    Article  CAS  Google Scholar 

  23. Yang S, Ajilore O, Wu M, Lamar M, Kumar A . Impaired macromolecular protein pools in fronto-straito-thalamic circuits in type 2 diabetes revealed by magnetization transfer imaging. Diabetes 2015; 64: 183–192.

    Article  CAS  Google Scholar 

  24. Smith S, Farrell J, Jones C, Reich D, Calabresi P, van Zijl P . Pulsed magnetization transfer imaging with body coil transmission at 3 Tesla: feasibility and application. Magn Reson Med 2006; 56: 866–875.

    Article  Google Scholar 

  25. Pruessmann K, Weiger M, Scheidegger M, Boesiger P . SENSE: sensitivity encoding for fast MRI. Magn Reson Med 1999; 42: 952–962.

    Article  CAS  Google Scholar 

  26. Wolf PA, D'Agostino RB, Belanger AJ, Kannel WB . Probability of stroke: a risk profile from the Framingham Study. Stroke 1991; 22: 312–318.

    Article  CAS  Google Scholar 

  27. Radloff LS . The CES-D Scale: a self-report depression scale for research in the general population. Appl Psychol Meas 1977; 1: 385–401.

    Article  Google Scholar 

  28. Price J, Drevets W . Neurocircuitry of mood disorders. Neuropsychopharmacol Rev 2010; 35: 192–216.

    Article  Google Scholar 

  29. Van Waesberghe JHTM, Kamphorst W, De Groot CJA, Van Walderveen MAA, Castelijns JA, Ravid R et al. Axonal loss in multiple sclerosis lesions: Magnetic resonance imaging insights into substrates of disability. Ann Neurol 1999; 46: 747–754.

    Article  CAS  Google Scholar 

  30. Schmierer K, Tozer DJ, Scaravilli F, Altmann DR, Barker GJ, Tofts PS et al. Quantitative magnetization transfer imaging in postmortem multiple sclerosis brain. J Magn Reson Imag 2007; 26: 41–51.

    Article  Google Scholar 

  31. Khaleeli Z, Altmann DR, Cercignani M, Ciccarelli O, Miller DH, Thompson AJ . Magnetization transfer ratio in gray matter: a potential surrogate marker for progression in early primary progressive multiple sclerosis. Arch Neurol 2008; 65: 1454–1459.

    Article  Google Scholar 

  32. Bagary MS, Symms MR, Barker GJ, Mutsatsa SH, Joyce EM, Ron MA . Gray and white matter brain abnormalities in first-episode schizophrenia inferred from magnetization transfer imaging. Arch Gen Psychiatry 2003; 60: 779–788.

    Article  Google Scholar 

  33. Audoin B, Davies G, Rashid W, Fisniku L, Thompson AJ, Miller DH . Voxel-based analysis of grey matter magnetization transfer ratio maps in early relapsing remitting multiple sclerosis. Mult Scler 2007; 13: 483–489.

    Article  CAS  Google Scholar 

  34. Steens SC, Bosma GP, Steup-Beekman GM, le Cessie S, Huizinga TW, van Buchem MA . Association between microscopic brain damage as indicated by magnetization transfer imaging and anticardiolipin antibodies in neuropsychiatric lupus. Arthritis Res Ther 2006; 8: R38.

    Article  Google Scholar 

  35. Zhang A, Ajilore O, Zhan L, GadElkarim J, Korthauer L, Yang S et al. White matter tract integrity of anterior limb of internal capsule in major depression and type 2 diabetes. Neuropsychopharmacology 2013; 38: 1451–1459.

    Article  CAS  Google Scholar 

  36. Tadayonnejad R, Yang S, Kumar A, Ajilore O . Multimodal brain connectivity analysis in unmedicated late-life depression. PLoS One 2014; 9: e96033.

    Article  Google Scholar 

  37. DeLong M . Primate models of movement disorders of basal ganglia origin. Trends Neurosci 1990; 13: 281–285.

    Article  CAS  Google Scholar 

  38. Price J . Prefrontal cortical networks related to visceral function and mood. Ann NY Acad Sci 1999; 877: 383–396.

    Article  CAS  Google Scholar 

  39. Metzger C, van der Werf Y, Walter M . Functional mapping of thalamic nuclei and their integration into cortico-striatal-thalamo-cortical loops via ultra-high resolution imaging—from animal anatomy to in vivo imaging in humans. Front Neurosci 2013; 7: 24.

    Article  Google Scholar 

  40. Cullen T, Walker M, Parkinson N, Craven R, Crow T, Esiri M et al. A postmortem study of the mediodorsal nucleus of the thalamus in schizophrenia. Schizophr Res 2003; 60: 157–166.

    Article  CAS  Google Scholar 

  41. Greicius M, Flores B, Menon V, Glover G, Solvason H, Kenna H et al. Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus. Biol Psychiatry 2006; 62: 429–437.

    Article  Google Scholar 

  42. Dougherty D, Weiss A, Cosgrove G, Alpert N, Cassem E, Nierenberg A et al. Cerebral metabolic correlates as potential predictors of response to anterior cingulotomy for treatment of major depression. J Neurosurg 2003; 99: 1010–1017.

    Article  Google Scholar 

  43. Tadayonnejad R, Yang S, Kumar A, Ajilore O . Clinical, cognitive, and functional connectivity correlations of resting-state intrinsic brain activity alterations in unmedicated depression. J Affect Disord 2015; 172: 241–250.

    Article  Google Scholar 

  44. Harati Y . Diabetes and the nervous system. Endocrinol Metab Clin North Am 1996; 25: 325–359.

    Article  CAS  Google Scholar 

  45. Mitchell I, Cooper A, Griffiths M . The selective vulnerability of striatopallidal neurons. Prog Neurobiol 1999; 59: 691–719.

    Article  CAS  Google Scholar 

  46. Levinson D, Mostafavi S, Milaneschi Y, Rivera M, Ripke S, Wray N et al. Genetic studies of major depressive disorder: why are there no genome-wide association study findings and what can we do about it? Biol Psychiatry 2014; 76: 510–512.

    Article  Google Scholar 

  47. Liao Y, Huang X, Wu Q, Yang C, Kuang W, Du M et al. Is depression a disconnection syndrome? Meta-analysis of diffusion tensor imaging studies in patients with MDD. J Psychiatry Neurosci 2013; 38: 49–56.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institute of Mental Health grants 5R01MH063764-09, 5R01MH073989-05, 5K23MH081175-04 and 1K01AG040192-01A1. We would like to thank Peter van Zijl and Joseph S Gillen (Johns Hopkins University) for the MT sequence, which was developed by the support of the National Institute of Biomedical Imaging and Bioengineering resource grant P41 EB015909.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Kumar.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Yang, S., Ajilore, O. et al. Biophysical changes in subcortical nuclei: the impact of diabetes and major depression. Mol Psychiatry 21, 531–536 (2016). https://doi.org/10.1038/mp.2015.89

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2015.89

This article is cited by

Search

Quick links