Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Gene expression in major depressive disorder

An Erratum to this article was published on 23 June 2015

Abstract

The search for genetic variants underlying major depressive disorder (MDD) has not yet provided firm leads to its underlying molecular biology. A complementary approach is to study gene expression in relation to MDD. We measured gene expression in peripheral blood from 1848 subjects from The Netherlands Study of Depression and Anxiety. Subjects were divided into current MDD (N=882), remitted MDD (N=635) and control (N=331) groups. MDD status and gene expression were measured again 2 years later in 414 subjects. The strongest gene expression differences were between the current MDD and control groups (129 genes at false-discovery rate, FDR<0.1). Gene expression differences across MDD status were largely unrelated to antidepressant use, inflammatory status and blood cell counts. Genes associated with MDD were enriched for interleukin-6 (IL-6)-signaling and natural killer (NK) cell pathways. We identified 13 gene expression clusters with specific clusters enriched for genes involved in NK cell activation (downregulated in current MDD, FDR=5.8 × 10−5) and IL-6 pathways (upregulated in current MDD, FDR=3.2 × 10−3). Longitudinal analyses largely confirmed results observed in the cross-sectional data. Comparisons of gene expression results to the Psychiatric Genomics Consortium (PGC) MDD genome-wide association study results revealed overlap with DVL3. In conclusion, multiple gene expression associations with MDD were identified and suggest a measurable impact of current MDD state on gene expression. Identified genes and gene clusters are enriched with immune pathways previously associated with the etiology of MDD, in line with the immune suppression and immune activation hypothesis of MDD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature 2014; 511: 421–427.

    Article  Google Scholar 

  2. Gaugler T, Klei L, Sanders SJ, Bodea CA, Goldberg AP, Lee AB et al. Most genetic risk for autism resides with common variation. Nat Genet 2014; 46: 881–885.

    Article  CAS  Google Scholar 

  3. Nurnberger JI Jr, Koller DL, Jung J, Edenberg HJ, Foroud T, Guella I et al. Identification of pathways for bipolar disorder: a meta-analysis. JAMA Psychiatry 2014; 71: 657–664.

    Article  CAS  Google Scholar 

  4. Sullivan PF, Neale MC, Kendler KS . Genetic epidemiology of major depression: review and meta-analysis. Am J Psychiatry 2000; 157: 1552–1562.

    Article  CAS  Google Scholar 

  5. Major Depressive Disorder Working Group of the Psychiatric GWAS Consortium, Ripke S, Wray NR, Lewis CM, Hamilton SP, Weissman MM et al. A mega-analysis of genome-wide association studies for major depressive disorder. Mol Psychiatry 2013; 18: 497–511.

    Article  Google Scholar 

  6. Levinson DF, Mostafavi S, Milaneschi Y, Rivera M, Ripke S, Wray NR et al. Genetic studies of major depressive disorder: why are there no GWAS findings, and what can we do about it. in press.

  7. Westra H-J, Peters MJ, Esko T, Yaghootkar H, Schurmann C, Kettunen J et al. Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat Genet 2013; 45: 1238–1243.

    Article  CAS  Google Scholar 

  8. Wright FA, Sullivan PF, Brooks AI, Zou F, Sun W, Xia K et al. Heritability and genomics of gene expression in peripheral blood. Nat Genet 2014; 46: 430–437.

    Article  CAS  Google Scholar 

  9. Jansen R, Batista S, Brooks AI, Tischfield JA, Willemsen G, van Grootheest G et al. Sex differences in the human peripheral blood transcriptome. BMC Genomics 2014; 15: 33.

    Article  Google Scholar 

  10. Charlesworth JC, Curran JE, Johnson MP, Göring HH, Dyer TD, Diego VP et al. Transcriptomic epidemiology of smoking: the effect of smoking on gene expression in lymphocytes. BMC Med Genomics 2010; 3: 29.

    Article  Google Scholar 

  11. Fredrickson BL, Grewen KM, Coffey KA, Algoe SB, Firestine AM, Arevalo JMG et al. A functional genomic perspective on human well-being. Proc Natl Acad Sci USA 2013; 110: 13684–13689.

    Article  CAS  Google Scholar 

  12. Van den Akker EB, Passtoors WM, Jansen R, van Zwet EW, Goeman JJ, Hulsman M et al. Meta-analysis on blood transcriptomic studies identifies consistently coexpressed protein-protein interaction modules as robust markers of human aging. Aging Cell 2014; 13: 216–225.

    Article  CAS  Google Scholar 

  13. Sullivan PF, Fan C, Perou CM . Evaluating the comparability of gene expression in blood and brain. Am J Med Genet Neuropsychiatr Genet 2006; 141B: 261–268.

    Article  Google Scholar 

  14. Davies MN, Lawn S, Whatley S, Fernandes C, Williams RW, Schalkwyk LC . To what extent is blood a reasonable surrogate for brain in gene expression studies: estimation from mouse hippocampus and spleen. Front Neurosci 2009; 3: 54.

    PubMed  PubMed Central  Google Scholar 

  15. Cai C, Langfelder P, Fuller TF, Oldham MCLuo R, van den Berg LH et al. Is human blood a good surrogate for brain tissue in transcriptional studies? BMC Genomics 2010; 11: 589.

    Article  Google Scholar 

  16. Belmaker RH, Agam G . Major depressive disorder. N Engl J Med 2008; 358: 55–68.

    Article  CAS  Google Scholar 

  17. Penninx BWJH, Milaneschi Y, Lamers F, Vogelzangs N . Understanding the somatic consequences of depression: biological mechanisms and the role of depression symptom profile. BMC Med 2013; 11: 129.

    Article  Google Scholar 

  18. Zunszain PA, Hepgul N, Pariante CM . Inflammation and depression. Curr Top Behav Neurosci 2013; 14: 135–151.

    Article  CAS  Google Scholar 

  19. Blume J, Douglas SD, Evans DL . Immune suppression and immune activation in depression. Brain Behav Immun 2011; 25: 221–229.

    Article  CAS  Google Scholar 

  20. Vogelzangs N, Beekman ATF, van Reedt Dortland AKB, Schoevers RA, Giltay EJ, de Jonge P et al. Inflammatory and metabolic dysregulation and the 2-year course of depressive disorders in antidepressant users. Neuropsychopharmacology 2014; 39: 1624–1634.

    Article  CAS  Google Scholar 

  21. Hepgul N, Cattaneo A, Zunszain PA, Pariante CM . Depression pathogenesis and treatment: what can we learn from blood mRNA expression? BMC Med 2013; 11: 28.

    Article  CAS  Google Scholar 

  22. Mostafavi S, Battle A, Zhu X, Potash JB, Weissman MM, Shi J et al. Type I interferon signaling genes in recurrent major depression: increased expression detected by whole-blood RNA sequencing. Mol Psychiatry 2014; 19: 1267–1274.

    Article  CAS  Google Scholar 

  23. Penninx BWJH, Beekman ATF, Smit JH, Zitman FG, Nolen WA, Spinhoven P et al. The Netherlands Study of Depression and Anxiety (NESDA): rationale, objectives and methods. Int J Methods Psychiatr Res 2008; 17: 121–140.

    Article  Google Scholar 

  24. Boomsma DI, Willemsen G, Sullivan PF, Heutink P, Meijer P, Sondervan D et al. Genome-wide association of major depression: description of samples for the GAIN Major Depressive Disorder Study: NTR and NESDA biobank projects. Eur J Hum Genet EJHG 2008; 16: 335–342.

    Article  CAS  Google Scholar 

  25. Sullivan PF, de Geus EJC, Willemsen G, James MR, Smit JH, Zandbelt T et al. Genome-wide association for major depressive disorder: a possible role for the presynaptic protein piccolo. Mol Psychiatry 2009; 14: 359–375.

    Article  CAS  Google Scholar 

  26. American Psychiatric Association Diagnostic and Statistical Manual of Mental Disorders. American Psychiatric Association: Washington, DC, USA, 1994.

  27. Wittchen HU . Reliability and validity studies of the WHO–Composite International Diagnostic Interview (CIDI): a critical review. J Psychiatr Res 1994; 28: 57–84.

    Article  CAS  Google Scholar 

  28. Shabalin AA . Matrix eQTL: ultra fast eQTL analysis via large matrix operations. Bioinforma Oxf Engl 2012; 28: 1353–1358.

    Article  CAS  Google Scholar 

  29. Liu JZ, Mcrae AF, Nyholt DR, Medland SE, Wray NR, Brown KM et al. A versatile gene-based test for genome-wide association studies. Am J Hum Genet 2010; 87: 139–145.

    Article  CAS  Google Scholar 

  30. Lips ES, Cornelisse LN, Toonen RF, Min JL, Hultman CM et alInternational Schizophrenia Consortium. Functional gene group analysis identifies synaptic gene groups as risk factor for schizophrenia. Mol Psychiatry 2012; 17: 996–1006.

    Article  CAS  Google Scholar 

  31. Barry WT, Nobel AB, Wright FA . Significance analysis of functional categories in gene expression studies: a structured permutation approach. Bioinforma Oxf Engl 2005; 21: 1943–1949.

    Article  CAS  Google Scholar 

  32. Langfelder P, Horvath S . WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 2008; 9: 559.

    Article  Google Scholar 

  33. Wium-Andersen MK, Ørsted DD, Nielsen SF, Nordestgaard BG . Elevated C-reactive protein levels, psychological distress, and depression in 73, 131 individuals. JAMA Psychiatry 2013; 70: 176–184.

    Article  CAS  Google Scholar 

  34. Glahn DC, Curran JE, Winkler AM, Carless MA, Kent JW, Charlesworth JC et al. High dimensional endophenotype ranking in the search for major depression risk genes. Biol Psychiatry 2012; 71: 6–14.

    Article  Google Scholar 

  35. Shelton RC, Claiborne J, Sidoryk-Wegrzynowicz M, Reddy R, Aschner M, Lewis DA et al. Altered expression of genes involved in inflammation and apoptosis in frontal cortex in major depression. Mol Psychiatry 2011; 16: 751–762.

    Article  CAS  Google Scholar 

  36. Garbett KA, Vereczkei A, Kálmán S, Brown JA, Taylor WD, Faludi G et al. Coordinated messenger RNA/microRNA changes in fibroblasts of patients with major depression. Biol Psychiatry 2015; 77: 256–265.

    Article  CAS  Google Scholar 

  37. Eyre H, Baune BT . Neuroplastic changes in depression: a role for the immune system. Psychoneuroendocrinology 2012; 37: 1397–1416.

    Article  CAS  Google Scholar 

  38. Jones KA, Thomsen C . The role of the innate immune system in psychiatric disorders. Mol Cell Neurosci 2013; 53: 52–62.

    Article  CAS  Google Scholar 

  39. Herbert TB, Cohen S . Depression and immunity: a meta-analytic review. Psychol Bull 1993; 113: 472–486.

    Article  CAS  Google Scholar 

  40. Zorrilla EP, Luborsky L, McKay JR, Rosenthal R, Houldin A, Tax A et al. The relationship of depression and stressors to immunological assays: a meta-analytic review. Brain Behav Immun 2001; 15: 199–226.

    Article  CAS  Google Scholar 

  41. Howren MB, Lamkin DM, Suls J . Associations of depression with C-reactive protein, IL-1, and IL-6: a meta-analysis. Psychosom Med 2009; 71: 171–186.

    Article  CAS  Google Scholar 

  42. Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK et al. A meta-analysis of cytokines in major depression. Biol Psychiatry 2010; 67: 446–457.

    Article  CAS  Google Scholar 

  43. Valkanova V, Ebmeier KP, Allan CL . CRP, IL-6 and depression: a systematic review and meta-analysis of longitudinal studies. J Affect Disord 2013; 150: 736–744.

    Article  CAS  Google Scholar 

  44. Tsao C-W, Lin Y-S, Chen C-C, Bai C-H, Wu S-R . Cytokines and serotonin transporter in patients with major depression. Prog Neuropsychopharmacol Biol Psychiatry 2006; 30: 899–905.

    Article  CAS  Google Scholar 

  45. Cattaneo A, Gennarelli M, Uher R, Breen G, Farmer A, Aitchison KJ et al. Candidate genes expression profile associated with antidepressants response in the GENDEP study: differentiating between baseline ‘predictors’ and longitudinal ‘targets’. Neuropsychopharmacology 2013; 38: 377–385.

    Article  CAS  Google Scholar 

  46. Betten A, Dahlgren C, Hermodsson S, Hellstrand K . Serotonin protects NK cells against oxidatively induced functional inhibition and apoptosis. J Leukoc Biol 2001; 70: 65–72.

    CAS  PubMed  Google Scholar 

  47. Hernandez ME, Martinez-Fong D, Perez-Tapia M, Estrada-Garcia I, Estrada-Parra S, Pavón L . Evaluation of the effect of selective serotonin-reuptake inhibitors on lymphocyte subsets in patients with a major depressive disorder. Eur Neuropsychopharmacol J Eur Coll Neuropsychopharmacol 2010; 20: 88–95.

    Article  CAS  Google Scholar 

  48. Evans DL, Folds JD, Petitto JM, Golden RN, Pedersen CA, Corrigan M et al. Circulating natural killer cell phenotypes in men and women with major depression. Relation to cytotoxic activity and severity of depression. Arch Gen Psychiatry 1992; 49: 388–395.

    Article  CAS  Google Scholar 

  49. Frank MG, Hendricks SE, Johnson DR, Wieseler JL, Burke WJ . Antidepressants augment natural killer cell activity: in vivo and in vitro. Neuropsychobiology 1999; 39: 18–24.

    Article  CAS  Google Scholar 

  50. Cruess DG, Douglas SD, Petitto JM, Have TT, Gettes D, Dubé B et al. Association of resolution of major depression with increased natural killer cell activity among HIV-seropositive women. Am J Psychiatry 2005; 162: 2125–2130.

    Article  Google Scholar 

  51. Hussaini SMQ, Choi C-I, Cho CH, Kim HJ, Jun H, Jang M-H . Wnt signaling in neuropsychiatric disorders: ties with adult hippocampal neurogenesis and behavior. Neurosci Biobehav Rev 2014; 47: 369–38310.1016/j.neubiorev.2014.09.005.

    Article  CAS  Google Scholar 

  52. Sani G, Napoletano F, Forte AM, Kotzalidis GD, Panaccione I, Porfiri GM et al. The wnt pathway in mood disorders. Curr Neuropharmacol 2012; 10: 239–253.

    Article  CAS  Google Scholar 

  53. Pilar-Cuéllar F, Vidal R, Díaz A, Castro E, dos Anjos S, Pascual-Brazo J et al. Neural plasticity and proliferation in the generation of antidepressant effects: hippocampal implication. Neural Plast 2013; 2013: 537265.

    Article  Google Scholar 

  54. Wilkinson MB, Dias C, Magida J, Mazei-Robison M, Lobo M, Kennedy P et al. A novel role of the WNT-dishevelled-GSK3β signaling cascade in the mouse nucleus accumbens in a social defeat model of depression. J Neurosci 2011; 31: 9084–9092.

    Article  CAS  Google Scholar 

  55. Pirooznia M, Seifuddin F, Judy J, Goes FS, Potash JB, Zandi PP . Metamoodics: meta-analysis and bioinformatics resource for mood disorders. Mol Psychiatry 2014; 19: 748–749.

    Article  CAS  Google Scholar 

  56. Cole SW, Hawkley LC, Arevalo JM, Sung CY, Rose RM, Cacioppo JT . Social regulation of gene expression in human leukocytes. Genome Biol 2007; 8: R189.

    Article  Google Scholar 

  57. Ramasamy A, Trabzuni D, Guelfi S, Varghese V, Smith C, Walker R et al. Genetic variability in the regulation of gene expression in ten regions of the human brain. Nat Neurosci 2014; 17: 1418–1428.

    Article  CAS  Google Scholar 

  58. Nieratschker V, Massart R, Gilles M, Luoni A, Suderman MJ, Krumm B et al. MORC1 exhibits cross-species differential methylation in association with early life stress as well as genome-wide association with MDD. Transl Psychiatry 2014; 4: e429.

    Article  CAS  Google Scholar 

  59. Akula N, Barb J, Jiang X, Wendland JR, Choi KH, Sen SK et al. RNA-sequencing of the brain transcriptome implicates dysregulation of neuroplasticity, circadian rhythms and GTPase binding in bipolar disorder. Mol Psychiatry 2014; 19: 1179–1185.

    Article  CAS  Google Scholar 

  60. Li K, Zhou T, Liao L, Yang Z, Wong C, Henn F et al. βCaMKII in lateral habenula mediates core symptoms of depression. Science 2013; 341: 1016–1020.

    Article  CAS  Google Scholar 

  61. Novak G, Seeman P, Tallerico T . Increased expression of calcium/calmodulin-dependent protein kinase IIbeta in frontal cortex in schizophrenia and depression. Synap N Y N 2006; 59: 61–68.

    Article  CAS  Google Scholar 

  62. Kang HJ, Voleti B, Hajszan T, Rajkowska G, Stockmeier CA, Licznerski P et al. Decreased expression of synapse-related genes and loss of synapses in major depressive disorder. Nat Med 2012; 18: 1413–1417.

    Article  CAS  Google Scholar 

  63. Telegdy G, Adamik A . Anxiolytic action of neuromedin-U and neurotransmitters involved in mice. Regul Pept 2013; 186: 137–140.

    Article  CAS  Google Scholar 

  64. Tanaka M, Telegdy G . Neurotransmissions of antidepressant-like effects of neuromedin U-23 in mice. Behav Brain Res 2014; 259: 196–199.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Gene expression data were funded by the US National Institute of Mental Health (RC2 MH089951) as a part of the American Recovery and Reinvestment Act of 2009. The Netherlands Study of Depression and Anxiety (NESDA) and the Netherlands Twin Register (NTR) were funded by The Netherlands Organization for Scientific Research (MagW/ZonMW grants 904-61-090, 985-10-002,904-61-193,480-04-004, 400-05-717, 912-100-20; Spinozapremie 56-464-14192; Geestkracht program grant 10-000-1002); the Center for Medical Systems Biology (NWO Genomics), Biobanking and Biomolecular Resources Research Infrastructure (BBMRI-NL), VU University’s Institutes for Health and Care Research and Neuroscience Campus Amsterdam, NBIC/BioAssist/RK (2008.024); the European Science Foundation (EU/QLRT-2001-01254); the European Community's Seventh Framework Program (FP7/2007-2013); ENGAGE (HEALTH-F4-2007-201413); and the European Science Council (ERC, 230374). Transport, extraction, cDNA preparation and generation of microarray data for the NTR samples were carried out under a supplement to the NIMH Center for Collaborative Genomics Research on Mental Disorders (U24 MH068457, Principal Investigator JT). RJ was supported by the Biobank-based Integrative Omics Study (BIOS) consortium, which is funded by the Biobanking and Biomolecular Research Infrastructure (BBMRI-NL, NWO project 184.021.007). Gene expression data used for this study are available at dbGaP, accession number phs000486.v1.p1 (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000486.v1.p1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Jansen.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jansen, R., Penninx, B., Madar, V. et al. Gene expression in major depressive disorder. Mol Psychiatry 21, 339–347 (2016). https://doi.org/10.1038/mp.2015.57

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2015.57

This article is cited by

Search

Quick links