Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Neurofilament subunits are integral components of synapses and modulate neurotransmission and behavior in vivo

Subjects

Abstract

Synaptic roles for neurofilament (NF) proteins have rarely been considered. Here, we establish all four NF subunits as integral resident proteins of synapses. Compared with the population in axons, NF subunits isolated from synapses have distinctive stoichiometry and phosphorylation state, and respond differently to perturbations in vivo. Completely eliminating NF proteins from brain by genetically deleting three subunits (α-internexin, NFH and NFL) markedly depresses hippocampal long-term potentiation induction without detectably altering synapse morphology. Deletion of NFM in mice, but not the deletion of any other NF subunit, amplifies dopamine D1-receptor-mediated motor responses to cocaine while redistributing postsynaptic D1-receptors from endosomes to plasma membrane, consistent with a specific modulatory role of NFM in D1-receptor recycling. These results identify a distinct pool of synaptic NF subunits and establish their key role in neurotransmission in vivo, suggesting potential novel influences of NF proteins in psychiatric as well as neurological states.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1
Figure 3
Figure 2
Figure 4
Figure 5

References

  1. Friede RL, Samorajski T . Axon caliber related to neurofilaments and microtubules in sciatic nerve fibers of rats and mice. Anat Rec 1970; 167: 379–387.

    Article  CAS  Google Scholar 

  2. Hoffman PN, Cleveland DW, Griffin JW, Landes PW, Cowan NJ, Price DL . Neurofilament gene expression: a major determinant of axonal caliber. Proc Natl Acad Sci USA 1987; 84: 3472–3476.

    Article  CAS  Google Scholar 

  3. Kong J, Tung VW, Aghajanian J, Xu Z . Antagonistic roles of neurofilament subunits NF-H and NF-M against NF-L in shaping dendritic arborization in spinal motor neurons. J Cell Biol 1998; 140: 1167–1176.

    Article  CAS  Google Scholar 

  4. Zhang Z, Casey DM, Julien JP, Xu Z . Normal dendritic arborization in spinal motoneurons requires neurofilament subunit L. J Comp Neurol 2002; 450: 144–152.

    Article  CAS  Google Scholar 

  5. Yuan A, Rao MV, Sasaki T, Chen Y, Kumar A, Veeranna et al. Alpha-internexin is structurally and functionally associated with the neurofilament triplet proteins in the mature CNS. J Neurosci 2006; 26: 10006–10019.

    Article  CAS  Google Scholar 

  6. Yuan A, Sasaki T, Kumar A, Peterhoff CM, Rao MV, Liem RK et al. Peripherin is a subunit of peripheral nerve neurofilaments: implications for differential vulnerability of CNS and peripheral nervous system axons. J Neurosci 2012; 32: 8501–8508.

    Article  CAS  Google Scholar 

  7. Yuan A, Rao MV, Veeranna, Nixon RA . Neurofilaments at a glance. J Cell Sci 2012; 125: 3257–3263.

    Article  CAS  Google Scholar 

  8. Ehlers MD, Fung ET, O'Brien RJ, Huganir RL . Splice variant-specific interaction of the NMDA receptor subunit NR1 with neuronal intermediate filaments. J Neurosci 1998; 18: 720–730.

    Article  CAS  Google Scholar 

  9. Kim OJ, Ariano MA, Lazzarini RA, Levine MS, Sibley DR . Neurofilament-M interacts with the D1 dopamine receptor to regulate cell surface expression and desensitization. J Neurosci 2002; 22: 5920–5930.

    Article  CAS  Google Scholar 

  10. Yuan A, Rao MV, Kumar A, Julien JP, Nixon RA . Neurofilament transport in vivo minimally requires hetero-oligomer formation. J Neurosci 2003; 23: 9452–9458.

    Article  CAS  Google Scholar 

  11. Matus A, Pehling G, Ackermann M, Maeder J . Brain postsynaptic densities: the relationship to glial and neuronal filaments. J Cell Biol 1980; 87: 346–359.

    Article  CAS  Google Scholar 

  12. Beitner-Johnson D, Guitart X, Nestler EJ . Neurofilament proteins and the mesolimbic dopamine system: common regulation by chronic morphine and chronic cocaine in the rat ventral tegmental area. J Neurosci 1992; 12: 2165–2176.

    Article  CAS  Google Scholar 

  13. Garcia-Sevilla JA, Ventayol P, Busquets X, La Harpe R, Walzer C, Guimon J . Marked decrease of immunolabelled 68 kDa neurofilament (NF-L) proteins in brains of opiate addicts. Neuroreport 1997; 8: 1561–1565.

    Article  CAS  Google Scholar 

  14. Sbarbati A, Bunnemann B, Cristofori P, Terron A, Chiamulera C, Merigo F et al. Chronic nicotine treatment changes the axonal distribution of 68 kDa neurofilaments in the rat ventral tegmental area. Eur J Neurosci 2002; 16: 877–882.

    Article  Google Scholar 

  15. Veeranna, Amin ND, Ahn NG, Jaffe H, Winters CA, Grant P et al. Mitogen-activated protein kinases (Erk1,2) phosphorylate Lys-Ser-Pro (KSP) repeats in neurofilament proteins NF-H and NF-M. J Neurosci 1998; 18: 4008–4021.

    Article  CAS  Google Scholar 

  16. Berhow MT, Hiroi N, Nestler EJ . Regulation of ERK (extracellular signal regulated kinase), part of the neurotrophin signal transduction cascade, in the rat mesolimbic dopamine system by chronic exposure to morphine or cocaine. J Neurosci 1996; 16: 4707–4715.

    Article  CAS  Google Scholar 

  17. Valjent E, Corvol JC, Pages C, Besson MJ, Maldonado R, Caboche J . Involvement of the extracellular signal-regulated kinase cascade for cocaine-rewarding properties. J Neurosci 2000; 20: 8701–8709.

    Article  CAS  Google Scholar 

  18. Lu L, Hope BT, Dempsey J, Liu SY, Bossert JM, Shaham Y . Central amygdala ERK signaling pathway is critical to incubation of cocaine craving. Nat Neurosci 2005; 8: 212–219.

    Article  CAS  Google Scholar 

  19. Rosengren LE, Karlsson JE, Sjogren M, Blennow K, Wallin A . Neurofilament protein levels in CSF are increased in dementia. Neurology 1999; 52: 1090–1093.

    Article  CAS  Google Scholar 

  20. Bajo M, Yoo BC, Cairns N, Gratzer M, Lubec G . Neurofilament proteins NF-L, NF-M and NF-H in brain of patients with Down syndrome and Alzheimer's disease. Amino Acids 2001; 21: 293–301.

    Article  CAS  Google Scholar 

  21. Cairns NJ, Zhukareva V, Uryu K, Zhang B, Bigio E, Mackenzie IR et al. alpha-internexin is present in the pathological inclusions of neuronal intermediate filament inclusion disease. Am J Pathol 2004; 164: 2153–2161.

    Article  CAS  Google Scholar 

  22. English JA, Dicker P, Focking M, Dunn MJ, Cotter DR . 2-D DIGE analysis implicates cytoskeletal abnormalities in psychiatric disease. Proteomics 2009; 9: 3368–3382.

    Article  CAS  Google Scholar 

  23. Reines A, Cereseto M, Ferrero A, Bonavita C, Wikinski S . Neuronal cytoskeletal alterations in an experimental model of depression. Neuroscience 2004; 129: 529–538.

    Article  CAS  Google Scholar 

  24. Hirao K, Hata Y, Deguchi M, Yao I, Ogura M, Rokukawa C et al. Association of synapse-associated protein 90/ postsynaptic density-95-associated protein (SAPAP) with neurofilaments. Genes Cells 2000; 5: 203–210.

    Article  CAS  Google Scholar 

  25. Frappier T, Stetzkowski-Marden F, Pradel LA . Interaction domains of neurofilament light chain and brain spectrin. Biochem J 1991; 275: 521–527.

    Article  CAS  Google Scholar 

  26. Vitolo OV, Sant'Angelo A, Costanzo V, Battaglia F, Arancio O, Shelanski M . Amyloid beta -peptide inhibition of the PKA/CREB pathway and long-term potentiation: reversibility by drugs that enhance cAMP signaling. Proc Natl Acad Sci USA 2002; 99: 13217–13221.

    Article  CAS  Google Scholar 

  27. Sadrian B, Subbanna S, Wilson DA, Basavarajappa BS, Saito M . Lithium prevents long-term neural and behavioral pathology induced by early alcohol exposure. Neuroscience 2012; 206: 122–135.

    Article  CAS  Google Scholar 

  28. Ouimet CC, da Cruz e Silva EF, Greengard P . The alpha and gamma 1 isoforms of protein phosphatase 1 are highly and specifically concentrated in dendritic spines. Proc Natl Acad Sci USA 1995; 92: 3396–3400.

    Article  CAS  Google Scholar 

  29. Landis DM, Reese TS . Cytoplasmic organization in cerebellar dendritic spines. J Cell Biol 1983; 97: 1169–1178.

    Article  CAS  Google Scholar 

  30. DeGiorgis JA, Galbraith JA, Dosemeci A, Chen X, Reese TS . Distribution of the scaffolding proteins PSD-95, PSD-93, and SAP97 in isolated PSDs. Brain Cell Biol 2006; 35: 239–250.

    Article  CAS  Google Scholar 

  31. Terada S, Nakata T, Peterson AC, Hirokawa N . Visualization of slow axonal transport in vivo. Science 1996; 273: 784–788.

    Article  CAS  Google Scholar 

  32. Paradies MA, Steward O . Multiple subcellular mRNA distribution patterns in neurons: a nonisotopic in situ hybridization analysis. J Neurobiol 1997; 33: 473–493.

    Article  CAS  Google Scholar 

  33. Crino PB, Eberwine J . Molecular characterization of the dendritic growth cone: regulated mRNA transport and local protein synthesis. Neuron 1996; 17: 1173–1187.

    Article  CAS  Google Scholar 

  34. Villace P, Marion RM, Ortin J . The composition of Staufen-containing RNA granules from human cells indicates their role in the regulated transport and translation of messenger RNAs. Nucleic Acids Res 2004; 32: 2411–2420.

    Article  CAS  Google Scholar 

  35. Tiruchinapalli DM, Oleynikov Y, Kelic S, Shenoy SM, Hartley A, Stanton PK et al. Activity-dependent trafficking and dynamic localization of zipcode binding protein 1 and beta-actin mRNA in dendrites and spines of hippocampal neurons. J Neurosci 2003; 23: 3251–3261.

    Article  CAS  Google Scholar 

  36. Steward O, Levy WB . Preferential localization of polyribosomes under the base of dendritic spines in granule cells of the dentate gyrus. J Neurosci 1982; 2: 284–291.

    Article  CAS  Google Scholar 

  37. Kang H, Schuman EM . A requirement for local protein synthesis in neurotrophin-induced hippocampal synaptic plasticity. Science 1996; 273: 1402–1406.

    Article  CAS  Google Scholar 

  38. Crispino M, Capano CP, Kaplan BB, Giuditta A . Neurofilament proteins are synthesized in nerve endings from squid brain. J Neurochem 1993; 61: 1144–1146.

    Article  CAS  Google Scholar 

  39. Sihag RK, Nixon RA . Phosphorylation of the amino-terminal head domain of the middle molecular mass 145-kDa subunit of neurofilaments. Evidence for regulation by second messenger-dependent protein kinases. J Biol Chem 1990; 265: 4166–4171.

    CAS  PubMed  Google Scholar 

  40. Sihag RK, Jaffe H, Nixon RA, Rong X . Serine-23 is a major protein kinase A phosphorylation site on the amino-terminal head domain of the middle molecular mass subunit of neurofilament proteins. J Neurochem 1999; 72: 491–499.

    Article  CAS  Google Scholar 

  41. Pant HC, Rudrabhatla P . Topographic regulation of neuronal intermediate filament proteins by phosphorylation: in health and disease. In: Nixon RA, Yuan A (eds) Cytoskeleton of the Nervous System vol. 3. Springer: New York: New York, NY, 2011 pp 627–656.

    Google Scholar 

  42. Clark D, Dedova I, Cordwell S, Matsumoto I . Altered proteins of the anterior cingulate cortex white matter proteome in schizophrenia. Proteomics Clin Appl 2007; 1: 157–166.

    Article  CAS  Google Scholar 

  43. Pennington K, Beasley CL, Dicker P, Fagan A, English J, Pariante CM et al. Prominent synaptic and metabolic abnormalities revealed by proteomic analysis of the dorsolateral prefrontal cortex in schizophrenia and bipolar disorder. Mol Psychiatry 2008; 13: 1102–1117.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Corrine Peterhoff for assistance with figures and Nicole Gogel for manuscript preparation. This work was supported by Grant 5R01AG005604 (RAN) from the National Institutes on Aging. BSB is supported by NIH grant (R01 AA019443).

Author Contributions

AY, HS, V, BSB and RAN designed the research; AY, HS, V, BSB, AK, AH, MB, J-HL and YS performed the research; AY, HS, V, BSB, MB, AK, AH, MVR, VD, J-PJ and RAN analyzed the data; PSM provided reagents; VM-YL provided reagents and critical advice; AY, HS and RAN wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A Yuan or R A Nixon.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yuan, A., Sershen, H., Veeranna et al. Neurofilament subunits are integral components of synapses and modulate neurotransmission and behavior in vivo. Mol Psychiatry 20, 986–994 (2015). https://doi.org/10.1038/mp.2015.45

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2015.45

This article is cited by

Search

Quick links