Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Dysregulation of soluble epoxide hydrolase and lipidomic profiles in anorexia nervosa

Abstract

Individuals with anorexia nervosa (AN) restrict eating and become emaciated. They tend to have an aversion to foods rich in fat. Because epoxide hydrolase 2 (EPHX2) was identified as a novel AN susceptibility gene, and because its protein product, soluble epoxide hydrolase (sEH), converts bioactive epoxides of polyunsaturated fatty acid (PUFA) to the corresponding diols, lipidomic and metabolomic targets of EPHX2 were assessed to evaluate the biological functions of EPHX2 and their role in AN. Epoxide substrates of sEH and associated oxylipins were measured in ill AN, recovered AN and gender- and race-matched controls. PUFA and oxylipin markers were tested as potential biomarkers for AN. Oxylipin ratios were calculated as proxy markers of in vivo sEH activity. Several free- and total PUFAs were associated with AN diagnosis and with AN recovery. AN displayed elevated n-3 PUFAs and may differ from controls in PUFA elongation and desaturation processes. Cytochrome P450 pathway oxylipins from arachidonic acid, linoleic acid, alpha-linolenic acid and docosahexaenoic acid PUFAs are associated with AN diagnosis. The diol:epoxide ratios suggest the sEH activity is higher in AN compared with controls. Multivariate analysis illustrates normalization of lipidomic profiles in recovered ANs. EPHX2 influences AN risk through in vivo interaction with dietary PUFAs. PUFA composition and concentrations as well as sEH activity may contribute to the pathogenesis and prognosis of AN. Our data support the involvement of EPHX2-associated lipidomic and oxylipin dysregulations in AN, and reveal their potential as biomarkers to assess responsiveness to future intervention or treatment.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Smink FR, van Hoeken D, Hoek HW . Epidemiology of eating disorders: incidence, prevalence and mortality rates. Curr Psychiatry Rep 2012; 14: 406–414.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Arcelus J, Mitchell AJ, Wales J, Nielsen S . Mortality rates in patients with anorexia nervosa and other eating disorders. A meta-analysis of 36 studies. Arch Gen Psychiatry 2011; 68: 724–731.

    Article  PubMed  Google Scholar 

  3. Papadopoulos FC, Ekbom A, Brandt L, Ekselius L . Excess mortality, causes of death and prognostic factors in anorexia nervosa. Br J Psychiatry 2009; 194: 10–17.

    Article  PubMed  Google Scholar 

  4. Thornton LM, Mazzeo SE, Bulik CM . The heritability of eating disorders: methods and current findings. Curr Top Behav Neurosci 2011; 6: 141–156.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Fernstrom MH, Weltzin TE, Neuberger S, Srinivasagam N, Kaye WH . Twenty-four-hour food intake in patients with anorexia nervosa and in healthy control subjects. Biol Psychiatry 1994; 36: 696–702.

    Article  CAS  PubMed  Google Scholar 

  6. Drewnowski A, Pierce B, Halmi KA . Fat aversion in eating disorders. Appetite 1988; 10: 119–131.

    Article  CAS  PubMed  Google Scholar 

  7. Ruiz-Prieto I, Bolanos-Rios P, Jauregui-Lobera I . Diet choice in weight-restored patients with eating disorders; progressive autonomy process by nutritional education. Nutr Hosp 2013; 28: 1725–1731.

    PubMed  Google Scholar 

  8. Jauregui Lobera I, Bolanos Rios P . Choice of diet in patients with anorexia nervosa. Nutr Hosp 2009; 24: 682–687.

    CAS  PubMed  Google Scholar 

  9. Steinglass JE, Sysko R, Mayer L, Berner LA, Schebendach J, Wang Y et al. Pre-meal anxiety and food intake in anorexia nervosa. Appetite 2010; 55: 214–218.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Simopoulos AP . Essential fatty acids in health and chronic disease. Am J Clin Nutr 1999; 70: 560S–569S.

    Article  CAS  PubMed  Google Scholar 

  11. Uauy R, Dangour AD . Nutrition in brain development and aging: role of essential fatty acids. Nutr Rev 2006; 64: S24–S33, discussion S72-91.

    Article  PubMed  Google Scholar 

  12. Pelliccia F, Marazzi G, Greco C, Franzoni F, Speziale G, Gaudio C . Current evidence and future perspectives on n-3 PUFAs. Int J Cardiol 2013; 170: S3–S7.

    Article  PubMed  Google Scholar 

  13. Zak A, Vecka M, Tvrzicka E, Hruby M, Novak F, Papezova H et al. Composition of plasma fatty acids and non-cholesterol sterols in anorexia nervosa. Physiol Res 2005; 54: 443–451.

    CAS  PubMed  Google Scholar 

  14. Squali Houssaini FZ, Foulon T, Payen N, Iraqi MR, Arnaud J, Groslambert P . Plasma fatty acid status in Moroccan children: increased lipid peroxidation and impaired polyunsaturated fatty acid metabolism in protein-calorie malnutrition. Biomed Pharmacother 2001; 55: 155–162.

    Article  CAS  PubMed  Google Scholar 

  15. Holman RT, Johnson SB, Mercuri O, Itarte HJ, Rodrigo MA, De Tomas ME . Essential fatty acid deficiency in malnourished children. Am J Clin Nutr 1981; 34: 1534–1539.

    Article  CAS  PubMed  Google Scholar 

  16. Holman RT, Adams CE, Nelson RA, Grater SJ, Jaskiewicz JA, Johnson SB et al. Patients with anorexia nervosa demonstrate deficiencies of selected essential fatty acids, compensatory changes in nonessential fatty acids and decreased fluidity of plasma lipids. J Nutr 1995; 125: 901–907.

    CAS  PubMed  Google Scholar 

  17. Scott-Van Zeeland AA, Bloss CS, Tewhey R, Bansal V, Torkamani A, Libiger O et al. Evidence for the role of EPHX2 gene variants in anorexia nervosa. Mol Psychiatry 2014; 19: 724–732.

    Article  CAS  PubMed  Google Scholar 

  18. Newman JW, Morisseau C, Hammock BD . Epoxide hydrolases: their roles and interactions with lipid metabolism. Prog Lipid Res 2005; 44: 1–51.

    Article  CAS  PubMed  Google Scholar 

  19. Koeners MP, Wesseling S, Ulu A, Sepulveda RL, Morisseau C, Braam B et al. Soluble epoxide hydrolase in the generation and maintenance of high blood pressure in spontaneously hypertensive rats. Am J Physiol Endocrinol Metab 2011; 300: E691–E698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Morisseau C, Sahdeo S, Cortopassi G, Hammock BD . Development of an HTS assay for EPHX2 phosphatase activity and screening of nontargeted libraries. Anal Biochem 2013; 434: 105–111.

    Article  CAS  PubMed  Google Scholar 

  21. Morisseau C, Hammock BD . Impact of soluble epoxide hydrolase and epoxyeicosanoids on human health. Annu Rev Pharmacol Toxicol 2013; 53: 37–58.

    Article  CAS  PubMed  Google Scholar 

  22. Morisseau C, Inceoglu B, Schmelzer K, Tsai HJ, Jinks SL, Hegedus CM et al. Naturally occurring monoepoxides of eicosapentaenoic acid and docosahexaenoic acid are bioactive antihyperalgesic lipids. J Lipid Res 2010; 51: 3481–3490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sura P, Sura R, Enayetallah AE, Grant DF . Distribution and expression of soluble epoxide hydrolase in human brain. J Histochem Cytochem 2008; 56: 551–559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. De Taeye BM, Morisseau C, Coyle J, Covington JW, Luria A, Yang J et al. Expression and regulation of soluble epoxide hydrolase in adipose tissue. Obesity (Silver Spring, Md) 2010; 18: 489–498.

    Article  CAS  Google Scholar 

  25. Marowsky A, Burgener J, Falck JR, Fritschy JM, Arand M . Distribution of soluble and microsomal epoxide hydrolase in the mouse brain and its contribution to cerebral epoxyeicosatrienoic acid metabolism. Neuroscience 2009; 163: 646–661.

    Article  CAS  PubMed  Google Scholar 

  26. Pinheiro AP, Bulik CM, Thornton LM, Sullivan PF, Root TL, Bloss CS et al. Association study of 182 candidate genes in anorexia nervosa. Am J Med Genet B Neuropsychiatr Genet 2010; 153B: 1070–1080.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Bloss CS, Berrettini W, Bergen AW, Magistretti P, Duvvuri V, Strober M et al. Genetic association of recovery from eating disorders: the role of GABA receptor SNPs. Neuropsychopharmacology 2011; 36: 2222–2232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. First MB, Gibbon M, Spitzer RL, Williams JBW . Users guide for the structured clinical interview for DSM-IV Axis I disorders- research versio (SCID-I, version 2.0, February 1996 FINAL VERSION). Biometrics Research Department, New York State Psychiatric Institute: New York, 1996.

    Google Scholar 

  29. Quehenberger O, Armando AM, Dennis EA . High sensitivity quantitative lipidomics analysis of fatty acids in biological samples by gas chromatography-mass spectrometry. Biochim Biophys Acta 2011; 1811: 648–656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zivkovic AM, Yang J, Georgi K, Hegedus C, Nording ML, O'Sullivan A et al. Serum oxylipin profiles in IgA nephropathy patients reflect kidney functional alterations. Metabolomics 2012; 8: 1102–1113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yang J, Dong H, Hammock BD . Profiling the regulatory lipids: another systemic way to unveil the biological mystery. Curr Opin Lipidol 2011; 22: 197–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang J, Schmelzer K, Georgi K, Hammock BD . Quantitative profiling method for oxylipin metabolome by liquid chromatography electrospray ionization tandem mass spectrometry. Anal chem 2009; 81: 8085–8093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Team RDC . R A language and environment for statistical computing. R Foundation for Statistical Computing: Vienna, Austria, 2011.

    Google Scholar 

  34. Yang J, Zhao X, Liu X, Wang C, Gao P, Wang J et al. High performance liquid chromatography-mass spectrometry for metabonomics: potential biomarkers for acute deterioration of liver function in chronic hepatitis B. J Proteome Res 2006; 5: 554–561.

    Article  CAS  PubMed  Google Scholar 

  35. Rigaud D, Tallonneau I, Verges B . Hypercholesterolaemia in anorexia nervosa: frequency and changes during refeeding. Diabetes Metab 2009; 35: 57–63.

    Article  CAS  PubMed  Google Scholar 

  36. Weinbrenner T, Zuger M, Jacoby GE, Herpertz S, Liedtke R, Sudhop T et al. Lipoprotein metabolism in patients with anorexia nervosa: a case-control study investigating the mechanisms leading to hypercholesterolaemia. Br J Nutr 2004; 91: 959–969.

    Article  CAS  PubMed  Google Scholar 

  37. Zhu P, Peck B, Licea-Perez H, Callahan JF, Booth-Genthe C . Development of a semi-automated LC/MS/MS method for the simultaneous quantitation of 14,15-epoxyeicosatrienoic acid, 14,15-dihydroxyeicosatrienoic acid, leukotoxin and leukotoxin diol in human plasma as biomarkers of soluble epoxide hydrolase activity in vivo. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879: 2487–2493.

    Article  CAS  PubMed  Google Scholar 

  38. Lee JP, Yang SH, Kim DK, Lee H, Kim B, Cho JY et al. In vivo activity of epoxide hydrolase according to sequence variation affects the progression of human IgA nephropathy. Am J Physiol Renal Physiol 2011; 300: F1283–F1290.

    Article  CAS  PubMed  Google Scholar 

  39. Bulik CM, Sullivan PF, Tozzi F, Furberg H, Lichtenstein P, Pedersen NL . Prevalence, heritability, and prospective risk factors for anorexia nervosa. Arch Gen Psychiatry 2006; 63: 305–312.

    Article  PubMed  Google Scholar 

  40. Karwautz AF, Wagner G, Waldherr K, Nader IW, Fernandez-Aranda F, Estivill X et al. Gene-environment interaction in anorexia nervosa: relevance of non-shared environment and the serotonin transporter gene. Mol Psychiatry 2011; 16: 590–592.

    Article  CAS  PubMed  Google Scholar 

  41. Hsu LK . Can dieting cause an eating disorder? Psychol Med 1997; 27: 509–513.

    Article  CAS  PubMed  Google Scholar 

  42. Isomaa R, Isomaa AL, Marttunen M, Kaltiala-Heino R, Bjorkqvist K . Psychological distress and risk for eating disorders in subgroups of dieters. Eur Eat Disord Rev 2010; 18: 296–303.

    Article  PubMed  Google Scholar 

  43. Wagner A, Barbarich-Marsteller NC, Frank GK, Bailer UF, Wonderlich SA, Crosby RD et al. Personality traits after recovery from eating disorders: do subtypes differ? Int J Eat Disord 2006; 39: 276–284.

    Article  PubMed  Google Scholar 

  44. Morisseau C . Role of epoxide hydrolases in lipid metabolism. Biochimie 2013; 95: 91–95.

    Article  CAS  PubMed  Google Scholar 

  45. Crawford MA, Doyle W, Leaf A, Leighfield M, Ghebremeskel K, Phylactos A . Nutrition and neurodevelopmental disorders. Nutr Health 1993; 9: 81–97.

    Article  CAS  PubMed  Google Scholar 

  46. Allen KL, Mori TA, Beilin L, Byrne SM, Hickling S, Oddy WH . Dietary intake in population-based adolescents: support for a relationship between eating disorder symptoms, low fatty acid intake and depressive symptoms. J Hum Nutr Diet 2012; 26: 459–469.

    Article  PubMed  Google Scholar 

  47. Swenne I, Rosling A . Omega-3 essential fatty acid status is improved during nutritional rehabilitation of adolescent girls with eating disorders and weight loss. Acta Paediatr 2012; 101: 858–861.

    Article  CAS  PubMed  Google Scholar 

  48. Caspar-Bauguil S, Montastier E, Galinon F, Frisch-Benarous D, Salvayre R, Ritz P . Anorexia nervosa patients display a deficit in membrane long chain poly-unsaturated fatty acids. Clin Nutr 2012; 31: 386–390.

    Article  CAS  PubMed  Google Scholar 

  49. Swenne I, Rosling A, Tengblad S, Vessby B . Omega-3 polyunsaturated essential fatty acids are associated with depression in adolescents with eating disorders and weight loss. Acta Paediatr 2011; 100: 1610–1615.

    Article  CAS  PubMed  Google Scholar 

  50. Swenne I, Rosling A, Tengblad S, Vessby B . Essential fatty acid status in teenage girls with eating disorders and weight loss. Acta Paediatrica 2011; 100: 762–767.

    Article  CAS  PubMed  Google Scholar 

  51. Langan SM, Farrell PM . Vitamin E, vitamin A and essential fatty acid status of patients hospitalized for anorexia nervosa. Am J Clin Nutr 1985; 41: 1054–1060.

    Article  CAS  PubMed  Google Scholar 

  52. Ayton AK, Azaz A, Horrobin DF . A pilot open case series of ethyl-EPA supplementation in the treatment of anorexia nervosa. Prostaglandins Leukot Essent Fatty Acids 2004; 71: 205–209.

    Article  CAS  PubMed  Google Scholar 

  53. Ayton AK, Azaz A, Horrobin DF . Rapid improvement of severe anorexia nervosa during treatment with ethyl-eicosapentaenoate and micronutrients. Eur Psychiatry 2004; 19: 317–319.

    Article  PubMed  Google Scholar 

  54. Catala A . Five Decades with Polyunsaturated Fatty Acids: Chemical Synthesis, Enzymatic Formation, Lipid Peroxidation and Its Biological Effects. J Lipids 2013; 2013: 710290.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Brenner RR . The oxidative desaturation of unsaturated fatty acids in animals. Mol Cell Biochem 1974; 3: 41–52.

    Article  CAS  PubMed  Google Scholar 

  56. Dacks PA, Shineman DW, Fillit HM . Current evidence for the clinical use of long-chain polyunsaturated n-3 fatty acids to prevent age-related cognitive decline and Alzheimer's disease. J Nutr Health Aging 2013; 17: 240–251.

    Article  CAS  PubMed  Google Scholar 

  57. Edwards R, Peet M, Shay J, Horrobin D . Omega-3 polyunsaturated fatty acid levels in the diet and in red blood cell membranes of depressed patients. J Affect Disord 1998; 48: 149–155.

    Article  CAS  PubMed  Google Scholar 

  58. Syrbu SI, Waterman WH, Molski TF, Nagarkatti D, Hajjar JJ, Sha'afi RI . Phosphorylation of cytosolic phospholipase A2 and the release of arachidonic acid in human neutrophils. J Immunol 1999; 162: 2334–2340.

    CAS  PubMed  Google Scholar 

  59. Diez E, Chilton FH, Stroup G, Mayer RJ, Winkler JD, Fonteh AN . Fatty acid and phospholipid selectivity of different phospholipase A2 enzymes studied by using a mammalian membrane as substrate. Biochem J 1994; 301 (Pt 3): 721–726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Damsbo-Svendsen S, Ronsholdt MD, Lauritzen L . Fish oil-supplementation increases appetite in healthy adults. A randomized controlled cross-over trial. Appetite 2013; 66: 62–66.

    Article  PubMed  Google Scholar 

  61. Dellava JE, Kendler KS, Neale MC . Generalized anxiety disorder and anorexia nervosa: evidence of shared genetic variation. Depress Anxiety 2011; 28: 728–733.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Klump KL, Strober M, Bulik CM, Thornton L, Johnson C, Devlin B et al. Personality characteristics of women before and after recovery from an eating disorder. Psychol Med 2004; 34: 1407–1418.

    Article  PubMed  Google Scholar 

  63. Bailer UF, Frank GK, Price JC, Meltzer CC, Becker C, Mathis CA et al. Interaction between serotonin transporter and dopamine D2/D3 receptor radioligand measures is associated with harm avoidant symptoms in anorexia and bulimia nervosa. Psychiatry Res 2013; 211: 160–168.

    Article  CAS  PubMed  Google Scholar 

  64. Podolin PL, Bolognese BJ, Foley JF, Long E 3rd, Peck B, Umbrecht S et al. In vitro and in vivo characterization of a novel soluble epoxide hydrolase inhibitor. Prostaglandins Other Lipid Mediat 2013; 104-105: 25–31.

    Article  CAS  PubMed  Google Scholar 

  65. Przybyla-Zawislak BD, Srivastava PK, Vazquez-Matias J, Mohrenweiser HW, Maxwell JE, Hammock BD et al. Polymorphisms in human soluble epoxide hydrolase. Mol Pharmacol 2003; 64: 482–490.

    Article  CAS  PubMed  Google Scholar 

  66. Lee CR, North KE, Bray MS, Fornage M, Seubert JM, Newman JW et al. Genetic variation in soluble epoxide hydrolase (EPHX2) and risk of coronary heart disease: The Atherosclerosis Risk in Communities (ARIC) study. Hum Mol Genet 2006; 15: 1640–1649.

    Article  CAS  PubMed  Google Scholar 

  67. Lee CR, Pretorius M, Schuck RN, Burch LH, Bartlett J, Williams SM et al. Genetic variation in soluble epoxide hydrolase (EPHX2) is associated with forearm vasodilator responses in humans. Hypertension 2011; 57: 116–122.

    Article  CAS  PubMed  Google Scholar 

  68. Fava C, Montagnana M, Danese E, Almgren P, Hedblad B, Engstrom G et al. Homozygosity for the EPHX2 K55R polymorphism increases the long-term risk of ischemic stroke in men: a study in Swedes. Pharmacogenet Genomics 2010; 20: 94–103.

    Article  CAS  PubMed  Google Scholar 

  69. Fornage M, Boerwinkle E, Doris PA, Jacobs D, Liu K, Wong ND . Polymorphism of the soluble epoxide hydrolase is associated with coronary artery calcification in African-American subjects: The Coronary Artery Risk Development in Young Adults (CARDIA) study. Circulation 2004; 109: 335–339.

    Article  CAS  PubMed  Google Scholar 

  70. Wei Q, Doris PA, Pollizotto MV, Boerwinkle E, Jacobs DR Jr., Siscovick DS et al. Sequence variation in the soluble epoxide hydrolase gene and subclinical coronary atherosclerosis: interaction with cigarette smoking. Atherosclerosis 2007; 190: 26–34.

    Article  CAS  PubMed  Google Scholar 

  71. Ohtoshi K, Kaneto H, Node K, Nakamura Y, Shiraiwa T, Matsuhisa M et al. Association of soluble epoxide hydrolase gene polymorphism with insulin resistance in type 2 diabetic patients. Biochem Biophys Res Commun 2005; 331: 347–350.

    Article  CAS  PubMed  Google Scholar 

  72. Burdon KP, Lehtinen AB, Langefeld CD, Carr JJ, Rich SS, Freedman BI et al. Genetic analysis of the soluble epoxide hydrolase gene, EPHX2, in subclinical cardiovascular disease in the Diabetes Heart Study. Diab Vasc Dis Res 2008; 5: 128–134.

    Article  PubMed  Google Scholar 

  73. Gschwendtner A, Ripke S, Freilinger T, Lichtner P, Muller-Myhsok B, Wichmann HE et al. Genetic variation in soluble epoxide hydrolase (EPHX2) is associated with an increased risk of ischemic stroke in white Europeans. Stroke 2008; 39: 1593–1596.

    Article  CAS  PubMed  Google Scholar 

  74. Wutzler A, Kestler C, Perrot A, Loehr L, Huemer M, Parwani AS et al. Variations in the human soluble epoxide hydrolase gene and recurrence of atrial fibrillation after catheter ablation. Int J Cardiol 2013; 168: 3647–3651.

    Article  PubMed  Google Scholar 

  75. Ramirez CE, Shuey MM, Milne GL, Gilbert K, Hui N, Yu C et al. Arg287Gln variant of EPHX2 and epoxyeicosatrienoic acids are associated with insulin sensitivity in humans. Prostaglandins Other Lipid Mediat 2014; 113-115: 38–44.

    Article  CAS  PubMed  Google Scholar 

  76. Li L . Association of MiRNA-146a polymorphism with risk of cardiovascular disease and ischemia stroke and the mechanisms. Master’s thesis, Central South University: China 2011.

  77. Campbell IC, Mill J, Uher R, Schmidt U . Eating disorders, gene-environment interactions and epigenetics. Neurosci Biobehav Rev 2011; 35: 784–793.

    Article  PubMed  Google Scholar 

  78. University of Minnesota. Laboratory of Physiological Hygiene. University of Minnesota. Laboratory of Physiological Hygiene. Keys AB . The Biology of Human Starvation. University of Minnesota Press: Minneapolis, 1950.

    Google Scholar 

  79. Marzola E, Nasser J, Hashim S, Shih P, Kaye W . Nutritional Rehabilitation in Anorexia Nervosa: Implications for Treatment. BMC Psychiatry 2013; 13: 290.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Gorla K, Mathews M . Pharmacological treatment of eating disorders. Psychiatry (Edgmont) 2005; 2: 43–48.

    Google Scholar 

Download references

Acknowledgements

This work was supported, in part, by National Institutes of Health (NIH/NIDDK) Career Development Award Grant (1K01DK087813-01A1—Shih); NIH West Coast Metabolomics Center Pilot Grant (Shih); Price Foundation of Geneva, Switzerland; NIH U24 DK097154/DK/NIDDK; NIEHS R01 ES002710 and NIEHS/Superfund Research Program P42 ES004699. We acknowledge the special help with PUFA data management provided by Yan Wang, and the Price Foundation study collaborators for providing the clinical data and biospecimens for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P B Shih.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shih, P., Yang, J., Morisseau, C. et al. Dysregulation of soluble epoxide hydrolase and lipidomic profiles in anorexia nervosa. Mol Psychiatry 21, 537–546 (2016). https://doi.org/10.1038/mp.2015.26

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2015.26

This article is cited by

Search

Quick links