Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Common variants on 17q25 and gene–gene interactions conferring risk of schizophrenia in Han Chinese population and regulating gene expressions in human brain

Abstract

Recently, two genome-wide association studies (GWASs) of schizophrenia (SCZ) in Han Chinese identified several susceptibility loci. Replication efforts aiming to validate the GWAS findings were made and focused on the top hits. We conducted a more extensive follow-up study in an independent sample of 1471 cases and 1528 matched controls to verify 26 genetic variants by including nine top single-nucleotide polymorphisms (SNPs) that reached genome-wide significance and 17 promising SNPs nominated in the initial discovery phase. rs8073471 in an intron of tubulin-folding cofactor D (TBCD) obtained nominal significance (P<0.01) in single SNP analysis. Logistic regression identified significant interaction between rs3744165 (5’-untranslated region variant of exon 2 of zinc finger protein 750 (ZNF750), and in an intron of TBCD) and rs8073471 (Deviance test P-value=2.77 × 10−34). Both SNPs are located at 17q25, an interesting region that has been implicated in SCZ. By using the Genotype-Tissue Expression (GTEx) data set, we implemented an expression quantitative trait loci epistasis analysis to explore the association between the genotype combinations of the two SNPs and gene expression levels in 13 areas of human central nervous system. We observed that rs3744165 × rs8073471 interaction modulated the expression profile of TEAD3 (P=1.87 × 10−8), SH3TC2 (P=2.00 × 10−8), KCNK9 (P=5.20 × 10−7) and PPDPF (P=1.13 × 10−6) in postmortem cortex tissue; EFNA1 (P=7.26 × 10−9), RNU4ATAC (P=2.32 × 10−8) and NUPL2 (P=6.79 × 10−8) in cerebellum tissue. To the best of our knowledge, our study is the first one that links TBCD and ZNF750 mutations to SCZ susceptibility and to the transcript levels in human brain tissues. Further efforts are needed to understand the role of those variants in the pathogenesis of SCZ.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. McGrath J, Saha S, Chant D, Welham J . Schizophrenia: a concise overview of incidence, prevalence, and mortality. Epidemiol Rev 2008; 30: 67–76.

    Article  PubMed  Google Scholar 

  2. Sullivan PF, Kendler KS, Neale MC . Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch Gen Psychiatry 2003; 60: 1187–1192.

    Article  PubMed  Google Scholar 

  3. Lichtenstein P, Yip BH, Bjork C, Pawitan Y, Cannon TD, Sullivan PF et al. Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: a population-based study. Lancet 2009; 373: 234–239.

    Article  CAS  PubMed  Google Scholar 

  4. O'Donovan MC, Craddock N, Norton N, Williams H, Peirce T, Moskvina V et al. Identification of loci associated with schizophrenia by genome-wide association and follow-up. Nat Genet 2008; 40: 1053–1055.

    Article  CAS  PubMed  Google Scholar 

  5. Stefansson H, Ophoff RA, Steinberg S, Andreassen OA, Cichon S, Rujescu D et al. Common variants conferring risk of schizophrenia. Nature 2009; 460: 744–747.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium. Genome-wide association study identifies five new schizophrenia loci. Nat Genet 2011; 43: 969–976.

    Article  Google Scholar 

  7. Ripke S, O'Dushlaine C, Chambert K, Moran JL, Kahler AK, Akterin S et al. Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nat Genet 2013; 45: 1150–1159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Harrison PJ . Recent genetic findings in schizophrenia and their therapeutic relevance. J Psychopharmacol 2015; 29: 85–96.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Yue WH, Wang HF, Sun LD, Tang FL, Liu ZH, Zhang HX et al. Genome-wide association study identifies a susceptibility locus for schizophrenia in Han Chinese at 11p11.2. Nat Genet 2011; 43: 1228–1231.

    Article  CAS  PubMed  Google Scholar 

  10. Shi Y, Li Z, Xu Q, Wang T, Li T, Shen J et al. Common variants on 8p12 and 1q24.2 confer risk of schizophrenia. Nat Genet 2011; 43: 1224–1227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ma L, Tang J, Wang D, Zhang W, Liu W, Liu XH et al. Evaluating risk loci for schizophrenia distilled from genome-wide association studies in Han Chinese from Central China. Mol Psychiatry 2013; 18: 638–639.

    Article  CAS  PubMed  Google Scholar 

  12. Jin C, Zhang Y, Wang J, Zhou Z, Sha W, Wang M et al. Lack of association between MPC2 variants and schizophrenia in a replication study of Han Chinese. Neurosci Lett 2013; 552: 120–123.

    Article  CAS  PubMed  Google Scholar 

  13. Yuan J, Jin C, Qin HD, Wang J, Sha W, Wang M et al. Replication study confirms link between TSPAN18 mutation and schizophrenia in Han Chinese. PLoS One 2013; 8: e58785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang Y, Lu T, Yan H, Ruan Y, Wang L, Zhang D et al. Replication of association between schizophrenia and chromosome 6p21-6p22.1 polymorphisms in Chinese Han population. PLoS One 2013; 8: e56732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pandey A, Davis NA, White BC, Pajewski NM, Savitz J, Drevets WC et al. Epistasis network centrality analysis yields pathway replication across two GWAS cohorts for bipolar disorder. Transl Psychiatry 2012; 2: e154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ et al. Finding the missing heritability of complex diseases. Nature 2009; 461: 747–753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zuk O, Hechter E, Sunyaev SR, Lander ES . The mystery of missing heritability: Genetic interactions create phantom heritability. Proc Natl Acad Sci USA 2012; 109: 1193–1198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Verhoeven KJ, Casella G, McIntyre LM . Epistasis: obstacle or advantage for mapping complex traits? PLoS One 2010; 5: e12264.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Huang Y, Wuchty S, Przytycka TM . eQTL Epistasis - challenges and computational approaches. Front Genet 2013; 4: 51.

    PubMed  PubMed Central  Google Scholar 

  20. Mackay TF . Epistasis and quantitative traits: using model organisms to study gene-gene interactions. Nat Rev Genet 2014; 15: 22–33.

    Article  CAS  PubMed  Google Scholar 

  21. Consortium TG. The genotype-tissue expression (GTEx) project. Nat Genet 2013; 45: 580–585.

    Article  Google Scholar 

  22. Rajkumar AP, Christensen JH, Mattheisen M, Jacobsen I, Bache I, Pallesen J et al. Analysis of t(9;17)(q33.2;q25.3) chromosomal breakpoint regions and genetic association reveals novel candidate genes for bipolar disorder. Bipolar Disord 2014; 17: 205–211.

    Article  PubMed  Google Scholar 

  23. Logue MW, Brzustowicz LM, Bassett AS, Chow EW, Vieland VJ . A posterior probability of linkage-based re-analysis of schizophrenia data yields evidence of linkage to chromosomes 1 and 17. Hum Hered 2006; 62: 47–54.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang F, Liu C, Xu Y, Qi G, Yuan G, Cheng Z et al. A two-stage association study suggests BRAP as a susceptibility gene for schizophrenia. PLoS One 2014; 9: e86037.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Huang L, Hu F, Zeng X, Gan L, Luo XJ . Further evidence for the association between the LSM1 gene and schizophrenia. Schizophr Res 2013; 150: 588–589.

    Article  PubMed  Google Scholar 

  26. Syu A, Ishiguro H, Inada T, Horiuchi Y, Tanaka S, Ishikawa M et al. Association of the HSPG2 gene with neuroleptic-induced tardive dyskinesia. Neuropsychopharmacology 2010; 35: 1155–1164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tian G, Thomas S, Cowan NJ . Effect of TBCD and its regulatory interactor Arl2 on tubulin and microtubule integrity. Cytoskeleton (Hoboken) 2010; 67: 706–714.

    Article  CAS  Google Scholar 

  28. Lundin VF, Leroux MR, Stirling PC . Quality control of cytoskeletal proteins and human disease. Trends Biochem Sci 2010; 35: 288–297.

    Article  CAS  PubMed  Google Scholar 

  29. Lopez-Fanarraga M, Avila J, Guasch A, Coll M, Zabala JC . Review: postchaperonin tubulin folding cofactors and their role in microtubule dynamics. J Struct Biol 2001; 135: 219–229.

    Article  CAS  PubMed  Google Scholar 

  30. Fanarraga ML, Bellido J, Jaen C, Villegas JC, Zabala JC . TBCD links centriologenesis, spindle microtubule dynamics, and midbody abscission in human cells. PLoS One 2010; 5: e8846.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Poulton CJ, Schot R, Seufert K, Lequin MH, Accogli A, Annunzio GD et al. Severe presentation of WDR62 mutation: is there a role for modifying genetic factors? Am J Med Genet A 2014; 164A: 2161–2171.

    Article  PubMed  Google Scholar 

  32. Paschou P, Feng Y, Pakstis AJ, Speed WC, DeMille MM, Kidd JR et al. Indications of linkage and association of Gilles de la Tourette syndrome in two independent family samples: 17q25 is a putative susceptibility region. Am J Hum Genet 2004; 75: 545–560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Moehle MS, Luduena RF, Haroutunian V, Meador-Woodruff JH, McCullumsmith RE . Regional differences in expression of beta-tubulin isoforms in schizophrenia. Schizophr Res 2012; 135: 181–186.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Solis-Chagoyan H, Calixto E, Figueroa A, Montano LM, Berlanga C, Rodriguez-Verdugo MS et al. Microtubule organization and L-type voltage-activated calcium current in olfactory neuronal cells obtained from patients with schizophrenia and bipolar disorder. Schizophr Res 2013; 143: 384–389.

    Article  CAS  PubMed  Google Scholar 

  35. Fullston T, Gabb B, Callen D, Ullmann R, Woollatt E, Bain S et al. Inherited balanced translocation t(9;17)(q33.2;q25.3) concomitant with a 16p13.1 duplication in a patient with schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2011; 156: 204–214.

    Article  CAS  PubMed  Google Scholar 

  36. Brown AS, Borgmann-Winter K, Hahn CG, Role L, Talmage D, Gur R et al. Increased stability of microtubules in cultured olfactory neuroepithelial cells from individuals with schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2014; 48: 252–258.

    Article  PubMed  Google Scholar 

  37. Sen GL, Boxer LD, Webster DE, Bussat RT, Qu K, Zarnegar BJ et al. ZNF750 is a p63 target gene that induces KLF4 to drive terminal epidermal differentiation. Dev Cell 2012; 22: 669–677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Boxer LD, Barajas B, Tao S, Zhang J, Khavari PA . ZNF750 interacts with KLF4 and RCOR1, KDM1A, and CTBP1/2 chromatin regulators to repress epidermal progenitor genes and induce differentiation genes. Genes Dev 2014; 28: 2013–2026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hwu WL, Yang CF, Fann CS, Chen CL, Tsai TF, Chien YH et al. Mapping of psoriasis to 17q terminus. J Med Genet 2005; 42: 152–158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yang CF, Hwu WL, Yang LC, Chung WH, Chien YH, Hung CF et al. A promoter sequence variant of ZNF750 is linked with familial psoriasis. J Invest Dermatol 2008; 128: 1662–1668.

    Article  CAS  PubMed  Google Scholar 

  41. Birnbaum RY, Hayashi G, Cohen I, Poon A, Chen H, Lam ET et al. Association analysis identifies ZNF750 regulatory variants in psoriasis. BMC Med Genet 2011; 12: 167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Benros ME, Eaton WW, Mortensen PB . The epidemiologic evidence linking autoimmune diseases and psychosis. Biol Psychiatry 2014; 75: 300–306.

    Article  PubMed  Google Scholar 

  43. Benros ME, Pedersen MG, Rasmussen H, Eaton WW, Nordentoft M, Mortensen PB . A nationwide study on the risk of autoimmune diseases in individuals with a personal or a family history of schizophrenia and related psychosis. Am J Psychiatry 2014; 171: 218–226.

    Article  PubMed  Google Scholar 

  44. Chen SJ, Chao YL, Chen CY, Chang CM, Wu EC, Wu CS et al. Prevalence of autoimmune diseases in in-patients with schizophrenia: nationwide population-based study. Br J Psychiatry 2012; 200: 374–380.

    Article  PubMed  Google Scholar 

  45. Kumar V, Mattoo SK, Handa S . Psychiatric morbidity in pemphigus and psoriasis: a comparative study from India. Asian J Psychiatr 2013; 6: 151–156.

    Article  PubMed  Google Scholar 

  46. Andreassen OA, Harbo HF, Wang Y, Thompson WK, Schork AJ, Mattingsdal M et al. Genetic pleiotropy between multiple sclerosis and schizophrenia but not bipolar disorder: differential involvement of immune-related gene loci. Mol Psychiatry 2014; 20: 207–214.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Schroder A, Klein K, Winter S, Schwab M, Bonin M, Zell A et al. Genomics of ADME gene expression: mapping expression quantitative trait loci relevant for absorption, distribution, metabolism and excretion of drugs in human liver. Pharmacogenomics J 2013; 13: 12–20.

    Article  CAS  PubMed  Google Scholar 

  48. Xie Q, Chen J, Feng H, Peng S, Adams U, Bai Y et al. YAP/TEAD-mediated transcription controls cellular senescence. Cancer Res 2013; 73: 3615–3624.

    Article  CAS  PubMed  Google Scholar 

  49. Senderek J, Bergmann C, Stendel C, Kirfel J, Verpoorten N, De Jonghe P et al. Mutations in a gene encoding a novel SH3/TPR domain protein cause autosomal recessive Charcot-Marie-Tooth type 4C neuropathy. Am J Hum Genet 2003; 73: 1106–1119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Vincent JB, Noor A, Windpassinger C, Gianakopoulos PJ, Schwarzbraun T, Alfred SE et al. Characterization of a de novo translocation t(5;18)(q33.1;q12.1) in an autistic boy identifies a breakpoint close to SH3TC2, ADRB2, and HTR4 on 5q, and within the desmocollin gene cluster on 18q. Am J Med Genet B Neuropsychiatr Genet 2009; 150B: 817–826.

    Article  PubMed  Google Scholar 

  51. Barel O, Shalev SA, Ofir R, Cohen A, Zlotogora J, Shorer Z et al. Maternally inherited Birk Barel mental retardation dysmorphism syndrome caused by a mutation in the genomically imprinted potassium channel KCNK9. Am J Hum Genet 2008; 83: 193–199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bando Y, Hirano T, Tagawa Y . Dysfunction of KCNK potassium channels impairs neuronal migration in the developing mouse cerebral cortex. Cereb Cortex 2014; 24: 1017–1029.

    Article  PubMed  Google Scholar 

  53. Reddy S, Dolzhanskaya N, Krogh J, Velinov M . A novel 1.4 Mb de novo microdeletion of chromosome 1q21.3 in a child with microcephaly, dysmorphic features and mental retardation. Eur J Med Genet 2009; 52: 443–445.

    Article  PubMed  Google Scholar 

  54. Abdel-Salam GM, Miyake N, Eid MM, Abdel-Hamid MS, Hassan NA, Eid OM et al. A homozygous mutation in RNU4ATAC as a cause of microcephalic osteodysplastic primordial dwarfism type I (MOPD I) with associated pigmentary disorder. Am J Med Genet A 2011; 155A: 2885–2896.

    Article  PubMed  Google Scholar 

  55. Le Rouzic E, Mousnier A, Rustum C, Stutz F, Hallberg E, Dargemont C et al. Docking of HIV-1 Vpr to the nuclear envelope is mediated by the interaction with the nucleoporin hCG1. J Biol Chem 2002; 277: 45091–45098.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support from the National Basic Research Program of China (2014CB744600), and National Nature Science Foundation of China (81201039). We highly appreciated the solid supports from Professor Xin Yu and Professor Rene Kahn on organizing the GREAT-CN network. The GTEx Project was supported by the Common Fund of the Office of the Director of the National Institutes of Health (commonfund.nih.gov/GTEx). Additional funds were provided by the NCI, NHGRI, NHLBI, NIDA, HIMH and NINDS. Donors were enrolled at Biospecimen Source Sites funded by NCI\Leidos Biomedical Research subcontracts to the National Disease Research Interchange (10XS170), Roswell Park Cancer Institute (10XS171), and Science Care (X10S172). The Laboratory, Data Analysis and Coordinating Center (LDACC) were funded through a contract (HHSN268201000029C) to The Broad Institute. Biorepository operations were funded through a Leidos Biomedical Research subcontract to Van Andel Research Institute (10ST1035). Additional Data repository and project management were provided by Leidos Biomedical Research (HHSN261200800001E). The Brain Bank was supported supplements to University of Miami grant DA006227. Statistical Methods development grants were made to the University of Geneva (MH090941 and MH101814), the University of Chicago (MH090951, MH090937, MH101825 and MH101820), the University of North Carolina—Chapel Hill (MH090936), North Carolina State University (MH101819), Harvard University (MH090948), Stanford University (MH101782), Washington University (MH101810) and to the University of Pennsylvania (MH101822). The data sets used for the analyses described in this manuscript were obtained from dbGaP at http://www.ncbi.nlm.nih.gov/gap through dbGaP accession number phs000424.v4.p1.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding authors

Correspondence to M Zhang or H Ma.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, L., Wang, Q., Wang, L. et al. Common variants on 17q25 and gene–gene interactions conferring risk of schizophrenia in Han Chinese population and regulating gene expressions in human brain. Mol Psychiatry 21, 1244–1250 (2016). https://doi.org/10.1038/mp.2015.204

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2015.204

This article is cited by

Search

Quick links