Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Pathogenic mechanism of an autism-associated neuroligin mutation involves altered AMPA-receptor trafficking

Subjects

Abstract

Neuroligins are postsynaptic cell-adhesion molecules that bind to presynaptic neurexins. Although the general synaptic role of neuroligins is undisputed, their specific functions at a synapse remain unclear, even controversial. Moreover, many neuroligin gene mutations were associated with autism, but the pathophysiological relevance of these mutations is often unknown, and their mechanisms of action uninvestigated. Here, we examine the synaptic effects of an autism-associated neuroligin-4 substitution (called R704C), which mutates a cytoplasmic arginine residue that is conserved in all neuroligins. We show that the R704C mutation, when introduced into neuroligin-3, enhances the interaction between neuroligin-3 and AMPA receptors, increases AMPA-receptor internalization and decreases postsynaptic AMPA-receptor levels. When introduced into neuroligin-4, conversely, the R704C mutation unexpectedly elevated AMPA-receptor-mediated synaptic responses. These results suggest a general functional link between neuroligins and AMPA receptors, indicate that both neuroligin-3 and -4 act at excitatory synapses but perform surprisingly distinct functions, and demonstrate that the R704C mutation significantly impairs the normal function of neuroligin-4, thereby validating its pathogenicity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Sudhof TC . Neuroligins and neurexins link synaptic function to cognitive disease. Nature 2008; 455: 903–911.

    Article  Google Scholar 

  2. Ichtchenko K, Hata Y, Nguyen T, Ullrich B, Missler M, Moomaw C, Südhof TC . Neuroligin 1: a splice site-specific ligand for beta-neurexins. Cell 1995; 81: 435–443.

    Article  CAS  Google Scholar 

  3. Ichtchenko K, Nguyen T, Sudhof TC . Structures, alternative splicing, and neurexin binding of multiple neuroligins. J Biol Chem 1996; 271: 2676–2682.

    Article  CAS  Google Scholar 

  4. Bolliger MF, Pei J, Maxeiner S, Boucard AA, Grishin NV, Südhof TC . Unusually rapid evolution of Neuroligin-4 in mice. Proc Natl Acad Sci USA 2008; 105: 6421–6426.

    Article  CAS  Google Scholar 

  5. Song JY, Ichtchenko K, Sudhof TC, Brose N . Neuroligin 1 is a postsynaptic cell-adhesion molecule of excitatory synapses. Proc Natl Acad Sci USA 1999; 96: 1100–1105.

    Article  CAS  Google Scholar 

  6. Varoqueaux F, Jamain S, Brose N . Neuroligin 2 is exclusively localized to inhibitory synapses. Eur J Cell Biol 2004; 83: 449–456.

    Article  CAS  Google Scholar 

  7. Hoon M, Soykan T, Falkenburger B, Hammer M, Patrizi A, Schmidt KF, et al. Neuroligin-4 is localized to glycinergic postsynapses and regulates inhibition in the retina. Proc Natl Acad Sci USA 2011; 108: 3053–3058.

    Article  CAS  Google Scholar 

  8. Takacs VT, Freund TF, Nyiri G . Neuroligin 2 is expressed in synapses established by cholinergic cells in the mouse brain. PLoS One 2013; 8: e72450.

    Article  CAS  Google Scholar 

  9. Budreck EC, Scheiffele P . Neuroligin-3 is a neuronal adhesion protein at GABAergic and glutamatergic synapses. Eur J Neurosci 2007; 26: 1738–1748.

    Article  Google Scholar 

  10. Zhang C, Milunsky JM, Newton S, Ko J, Zhao G, Maher TA, et al. A neuroligin-4 missense mutation associated with autism impairs neuroligin-4 folding and endoplasmic reticulum export. J Neurosci 2009; 29: 10843–10854.

    Article  CAS  Google Scholar 

  11. Jamain S, Quach H, Betancur C, Råstam M, Colineaux C, Gillberg IC, et al. Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat Genet 2003; 34: 27–29.

    Article  CAS  Google Scholar 

  12. Laumonnier F, Bonnet-Brilhault F, Gomot M, Blanc R, David A, Moizard MP, et al. X-linked mental retardation and autism are associated with a mutation in the NLGN4 gene, a member of the neuroligin family. Am J Hum Genet 2004; 74: 552–557.

    Article  CAS  Google Scholar 

  13. Lawson-Yuen A, Saldivar JS, Sommer S, Picker J . Familial deletion within NLGN4 associated with autism and Tourette syndrome. Eur J Hum Genet 2008; 16: 614–618.

    Article  CAS  Google Scholar 

  14. Talebizadeh Z, Lam DY, Theodoro MF, Bittel DC, Lushington GH, Butler MG . Novel splice isoforms for NLGN3 and NLGN4 with possible implications in autism. J Med Genet 2006; 43: e21.

    Article  CAS  Google Scholar 

  15. Xu X, Xiong Z, Zhang L, Liu Y, Lu L, Peng Y, et al. Variations analysis of NLGN3 and NLGN4X gene in Chinese autism patients. Mol Biol Rep 2014; 41: 4133–4140.

    Article  CAS  Google Scholar 

  16. Yan J, Oliveira G, Coutinho A, Yang C, Feng J, Katz C, et al. Analysis of the neuroligin 3 and 4 genes in autism and other neuropsychiatric patients. Mol Psychiatry 2005; 10: 329–332.

    Article  CAS  Google Scholar 

  17. Etherton MR, Tabuchi K, Sharma M, Ko J, Sudhof TC . An autism-associated point mutation in the neuroligin cytoplasmic tail selectively impairs AMPA receptor-mediated synaptic transmission in hippocampus. EMBO J 2011; 30: 2908–2919.

    Article  CAS  Google Scholar 

  18. Cao P, Maximov A, Sudhof TC . Activity-dependent IGF-1 exocytosis is controlled by the Ca(2+)-sensor synaptotagmin-10. Cell 2011; 145: 300–311.

    Article  CAS  Google Scholar 

  19. Maximov A, Pang ZP, Tervo DG, Sudhof TC . Monitoring synaptic transmission in primary neuronal cultures using local extracellular stimulation. J Neurosci Methods 2007; 161: 75–87.

    Article  Google Scholar 

  20. Ho A, Morishita W, Atasoy D, Liu X, Tabuchi K, Hammer RE, et al. Genetic analysis of Mint/X11 proteins: essential presynaptic functions of a neuronal adaptor protein family. J Neurosci 2006; 26: 13089–13101.

    Article  CAS  Google Scholar 

  21. Kaeser PS, Deng L, Chávez AE, Liu X, Castillo PE, Südhof TC, et al. ELKS2alpha/CAST deletion selectively increases neurotransmitter release at inhibitory synapses. Neuron 2009; 64: 227–239.

    Article  CAS  Google Scholar 

  22. Anderson GR, Galfin T, Xu W, Aoto J, Malenka RC, Südhof TC, et al. Candidate autism gene screen identifies critical role for cell-adhesion molecule CASPR2 in dendritic arborization and spine development. Proc Natl Acad Sci USA 2012; 109: 18120–18125.

    Article  CAS  Google Scholar 

  23. Chanda S, Marro S, Wernig M, Sudhof TC . Neurons generated by direct conversion of fibroblasts reproduce synaptic phenotype caused by autism-associated neuroligin-3 mutation. Proc Natl Acad Sci USA 2013; 110: 16622–16627.

    Article  CAS  Google Scholar 

  24. Aoto J, Martinelli DC, Malenka RC, Tabuchi K, Sudhof TC . Presynaptic neurexin-3 alternative splicing trans-synaptically controls postsynaptic AMPA receptor trafficking. Cell 2013; 154: 75–88.

    Article  CAS  Google Scholar 

  25. Uemura T, Mishina M . The amino-terminal domain of glutamate receptor delta2 triggers presynaptic differentiation. Biochem Biophys Res Commun 2008; 377: 1315–1319.

    Article  CAS  Google Scholar 

  26. Uemura T, Lee SJ, Yasumura M, Takeuchi T, Yoshida T, Ra M, et al. Trans-synaptic interaction of GluRdelta2 and neurexin through Cbln1 mediates synapse formation in the cerebellum. Cell 2010; 141: 1068–1079.

    Article  CAS  Google Scholar 

  27. Tabuchi K, Blundell J, Etherton MR, Hammer RE, Liu X, Powell CM, et al. A neuroligin-3 mutation implicated in autism increases inhibitory synaptic transmission in mice. Science 2007; 318: 71–76.

    Article  CAS  Google Scholar 

  28. Etherton M, Földy C, Sharma M, Tabuchi K, Liu X, Shamloo M, et al. Autism-linked neuroligin-3 R451C mutation differentially alters hippocampal and cortical synaptic function. Proc Natl Acad Sci USA 2011; 108: 13764–13769.

    Article  CAS  Google Scholar 

  29. Rothwell PE, Fuccillo MV, Maxeiner S, Hayton SJ, Gokce O, Lim BK, et al. Autism-associated neuroligin-3 mutations commonly impair striatal circuits to boost repetitive behaviors. Cell 2014; 158: 198–212.

    Article  CAS  Google Scholar 

  30. Irie M, Hata Y, Takeuchi M, Ichtchenko K, Toyoda A, Hirao K, et al. Binding of neuroligins to PSD-95. Science 1997; 277: 1511–1515.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Jeesun Kim, Bing Wu and Yoon Seok Kim for their help during the project. This paper was supported by grants from the NIH (R37-MH052804 to TCS; MH092931 to MW), an NIH K99 award (MH103531-01 to JA) and a postdoctoral grant award (Stanford, ChEM-H112878 to SC). MW is a New York Stem Cell Foundation-Robertson Investigator and a Tashia and John Morgridge Faculty Scholar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T C Südhof.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chanda, S., Aoto, J., Lee, SJ. et al. Pathogenic mechanism of an autism-associated neuroligin mutation involves altered AMPA-receptor trafficking. Mol Psychiatry 21, 169–177 (2016). https://doi.org/10.1038/mp.2015.20

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2015.20

This article is cited by

Search

Quick links