Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cocaine attenuates blood flow but not neuronal responses to stimulation while preserving neurovascular coupling for resting brain activity

Abstract

Cocaine affects neuronal activity and constricts cerebral blood vessels, making it difficult to determine whether cocaine-induced changes in cerebral blood flow (CBF) reflect neuronal activation or its vasoactive effects. Here we assessed the effects of acute cocaine on both resting-state and stimulation responses to investigate cocaine’s effects on neurovascular coupling and to differentiate its effects on neuronal activity from its vasoactive actions. We concurrently measured cortical field potentials via thinned-skull electroencephalography recordings and CBF with laser Doppler flowmetry in the rat’s somatosensory cortex for both resting state and forepaw stimulation before and following cocaine administration (1 mg kg−1, intravenously). Results show both resting-state field potentials and CBF were depressed after cocaine administration (19.8±4.7% and 52.1±13.4%, respectively) and these changes were strongly correlated with each other (r=0.81, P<0.001), indicating that cocaine did not affect neurovascular coupling at rest and that the reduction in resting CBF reflected reduction in synchronized spontaneous neuronal activity rather than vasoconstriction. In contrast, the forepaw stimulation-evoked neuronal activity was not changed by cocaine (P=0.244), whereas the CBF to the stimulation was reduced 49.9±2.6% (P=0.028) gradually recovering 20 min after cocaine injection, indicating that neurovascular coupling during stimulation was temporarily disrupted by cocaine. Neurovascular uncoupling by cocaine during stimulation but not during rest indicates that distinct processes might underlie neurovascular regulation for both stimulation and spontaneous activity. The greater reductions by cocaine to the stimulation-induced CBF increases than to the background CBF should be considered when interpreting functional MRI studies comparing activation responses between controls and cocaine abusers. Neurovascular uncoupling could contribute to cocaine’s neurotoxicity, particularly for stimulation conditions when CBF might be insufficient to cover for the energetic demands of neuronal tissue.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Sordo L, Indave BI, Barrio G, Degenhardt L, de la Fuente L, Bravo MJ . Cocaine use and risk of stroke: a systematic review. Drug Alcohol Depend 2014; 142: 1–13.

    Article  CAS  Google Scholar 

  2. De Giorgi A, Fabbian F, Pala M, Bonetti F, Babini I, Bagnaresi I et al. Cocaine and acute vascular diseases. Curr Drug Abuse Rev 2012; 5: 129–134.

    Article  CAS  Google Scholar 

  3. Volkow ND, Mullani N, Gould KL, Adler S, Krajewski K . Cerebral blood flow in chronic cocaine users: a study with positron emission tomography. Br J Psychiatry 1988; 152: 641–648.

    Article  CAS  Google Scholar 

  4. Tumeh SS, Nagel JS, English RJ, Moore M, Holman BL . Cerebral abnormalities in cocaine abusers: demonstration by SPECT perfusion brain scintigraphy. Work in progress. Radiology 1990; 176: 821–824.

    Article  CAS  Google Scholar 

  5. Mena I, Giombetti RJ, Miller BL, Garrett K, Villanueva-Meyer J, Mody C et al. Cerebral blood flow changes with acute cocaine intoxication: clinical correlations with SPECT, CT, and MRI. NIDA Res Monogr 1994; 138: 161–173.

    CAS  PubMed  Google Scholar 

  6. Kosten TR, Cheeves C, Palumbo J, Seibyl JP, Price LH, Woods SW . Regional cerebral blood flow during acute and chronic abstinence from combined cocaine-alcohol abuse. Drug Alcohol Depend 1998; 50: 187–195.

    Article  CAS  Google Scholar 

  7. Ernst T, Chang L, Oropilla G, Gustavson A, Speck O . Cerebral perfusion abnormalities in abstinent cocaine abusers: a perfusion MRI and SPECT study. Psychiatry Res 2000; 99: 63–74.

    Article  CAS  Google Scholar 

  8. Kaufman MJ, Levin JM, Ross MH, Lange N, Rose SL, Kukes TJ et al. Cocaine-induced cerebral vasoconstriction detected in humans with magnetic resonance angiography. JAMA 1998; 279: 376–380.

    Article  CAS  Google Scholar 

  9. Volkow ND, Ding YS, Fowler JS, Wang GJ . Cocaine addiction: hypothesis derived from imaging studies with PET. J Addict Dis 1996; 15: 55–71.

    Article  CAS  Google Scholar 

  10. Martin PJ, Evans DH, Naylor AR . Transcranial color-coded sonography of the basal cerebral circulation. Reference data from 115 volunteers. Stroke 1994; 25: 390–396.

    Article  CAS  Google Scholar 

  11. Cho SJ, Sohn YH, Kim GW, Kim JS . Blood flow velocity changes in the middle cerebral artery as an index of the chronicity of hypertension. J Neurol Sci 1997; 150: 77–80.

    Article  CAS  Google Scholar 

  12. Schondorf R, Benoit J, Wein T . Cerebrovascular and cardiovascular measurements during neurally mediated syncope induced by head-up tilt. Stroke 1997; 28: 1564–1568.

    Article  CAS  Google Scholar 

  13. Kaufman MJ, Levin JM, Maas LC, Rose SL, Lukas SE, Mendelson JH et al. Cocaine decreases relative cerebral blood volume in humans: a dynamic susceptibility contrast magnetic resonance imaging study. Psychopharmacology (Berl) 1998; 138: 76–81.

    Article  CAS  Google Scholar 

  14. Du C, Pan Y . Optical detection of brain function: simultaneous imaging of cerebral vascular response, tissue metabolism, and cellular activity in vivo. Rev Neurosci 2011; 22: 695–709.

    Article  CAS  Google Scholar 

  15. Mody CK, Miller BL, McIntyre HB, Cobb SK, Goldberg MA . Neurologic complications of cocaine abuse. Neurology 1988; 38: 1189–1193.

    Article  CAS  Google Scholar 

  16. Peterson PK, Gekker G, Chao CC, Schut R, Molitor TW, Balfour HH Jr . Cocaine potentiates HIV-1 replication in human peripheral blood mononuclear cell cocultures. Involvement of transforming growth factor-beta. J Immunol 1991; 146: 81–84.

    CAS  PubMed  Google Scholar 

  17. Neiman J, Haapaniemi HM, Hillbom M . Neurological complications of drug abuse: pathophysiological mechanisms. Eur J Neurol 2000; 7: 595–606.

    Article  CAS  Google Scholar 

  18. Levine SR, Welch KM . Cocaine and stroke. Stroke 1988; 19: 779–783.

    Article  CAS  Google Scholar 

  19. Klonoff DC, Andrews BT, Obana WG . Stroke associated with cocaine use. Arch Neurol 1989; 46: 989.

    Article  CAS  Google Scholar 

  20. Ren H, Du C, Pan Y . Cerebral blood flow imaged with ultrahigh-resolution optical coherence angiography and Doppler tomography. Opt Lett 2012; 37: 1388–1390.

    Article  Google Scholar 

  21. Pan Y, You J, Volkow ND, Park K, Du C . Ultrasensitive detection of 3D cerebral microvascular network dynamics in vivo. NeuroImage 2014; 103: 492–501.

    Article  Google Scholar 

  22. Li B, Freeman RD . High-resolution neurometabolic coupling in the lateral geniculate nucleus. J Neurosci 2007; 27: 10223–10229.

    Article  CAS  Google Scholar 

  23. Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A . Neurophysiological investigation of the basis of the fMRI signal. Nature 2001; 412: 150–157.

    Article  CAS  Google Scholar 

  24. Roy CS, Sherrington CS . On the regulation of the blood-supply of the brain. J Physiol 1890; 11: 85–158 117.

    Article  CAS  Google Scholar 

  25. Iannetti G, Wise RG . BOLD functional MRI in disease and pharmacological studies: room for improvement? Magn Reson Imaging 2007; 25: 978–988.

    Article  CAS  Google Scholar 

  26. Gollub RL, Breiter HC, Kantor H, Kennedy D, Gastfriend D, Mathew RT et al. Cocaine decreases cortical cerebral blood flow but does not obscure regional activation in functional magnetic resonance imaging in human subjects. J Cerebr Blood Flow Metab 1998; 18: 724–734.

    Article  CAS  Google Scholar 

  27. Li SJ, Biswal B, Li Z, Risinger R, Rainey C, Cho JK et al. Cocaine administration decreases functional connectivity in human primary visual and motor cortex as detected by functional MRI. Magn Reson Med 2000; 43: 45–51.

    Article  CAS  Google Scholar 

  28. Ritz MC, Cone EJ, Kuhar MJ . Cocaine inhibition of ligand-binding at dopamine, norepinephrine and serotonin transporters—a structure–activity study. Life Sci 1990; 46: 635–645.

    Article  CAS  Google Scholar 

  29. Rebec GV . Behavioral electrophysiology of psychostimulants. Neuropsychopharmacology 2006; 31: 2341–2348.

    Article  CAS  Google Scholar 

  30. Jimenez-Rivera CA, Segarra O, Jimenez Z, Waterhouse BD . Effects of intravenous cocaine administration on cerebellar Purkinje cell activity. Eur J Pharmacol 2000; 407: 91–100.

    Article  CAS  Google Scholar 

  31. Ueki M, Mies G, Hossmann KA . Effect of alpha-chloralose, halothane, pentobarbital and nitrous oxide anesthesia on metabolic coupling in somatosensory cortex of rat. Acta Anaesthesiol Scand 1992; 36: 318–322.

    Article  CAS  Google Scholar 

  32. Masamoto K, Kim T, Fukuda M, Wang P, Kim SG . Relationship between neural, vascular, and BOLD signals in isoflurane-anesthetized rat somatosensory cortex. Cereb Cortex 2007; 17: 942–950.

    Article  Google Scholar 

  33. Bonvento G, Charbonné R, Corrèze J-L, Borredon J, Seylaz J, Lacombe P . Is α-chloralose plus halothane induction a suitable anesthetic regimen for cerebrovascular research? Brain Res 1994; 665: 213–221.

    Article  CAS  Google Scholar 

  34. Benveniste H, Volkow ND . Dopamine-enhancing medications to accelerate emergence from general anesthesia. Anesthesiology 2013; 118: 5–6.

    Article  Google Scholar 

  35. Gozzi A, Ceolin L, Schwarz A, Reese T, Bertani S, Crestan V et al. A multimodality investigation of cerebral hemodynamics and autoregulation in pharmacological MRI. Magn Reson Imaging 2007; 25: 826–833.

    Article  Google Scholar 

  36. Yuan Z, Luo Z, Volkow ND, Pan Y, Du C . Imaging separation of neuronal from vascular effects of cocaine on rat cortical brain in vivo. NeuroImage 2011; 54: 1130–1139.

    Article  CAS  Google Scholar 

  37. Wallace DR, Mactutus CF, Booze RM . Repeated intravenous cocaine administration: locomotor activity and dopamine D2/D3 receptors. Synapse 1996; 23: 152–163.

    Article  CAS  Google Scholar 

  38. Wang G-J, Volkow ND, Fowler JS, Ferrieri R, Schlyer DJ, Alexoff D et al. Methylphenidate decreases regional cerebral blood flow in normal human subjects. Life Sci 1994; 54: PL143–PL146.

    CAS  PubMed  Google Scholar 

  39. London ED, Cascella NG, Wong DF, Phillips RL, Dannals RF, Links JM et al. Cocaine-induced reduction of glucose utilization in human brain: a study using positron emission tomography and [Fluorine 18]-fluorodeoxyglucose. Arch Gen Psychiatry 1990; 47: 567–574.

    Article  CAS  Google Scholar 

  40. Lee J-H, Telang FW, Springer CS Jr, Volkow ND . Abnormal brain activation to visual stimulation in cocaine abusers. Life Sci 2003; 73: 1953–1961.

    Article  CAS  Google Scholar 

  41. Hillman EM . Coupling mechanism and significance of the BOLD signal: a status report. Annu Rev Neurosci 2014; 37: 161–181.

    Article  CAS  Google Scholar 

  42. Du C, Volkow ND, Koretsky AP, Pan Y . Low-frequency calcium oscillations accompany deoxyhemoglobin oscillations in rat somatosensory cortex. Proc Natl Acad Sci USA 2014; 111: E4677–E4686.

    Article  CAS  Google Scholar 

  43. Sordo L, Indave B, Barrio G, Degenhardt L, de la Fuente L, Bravo M . Cocaine use and risk of stroke: a systematic review. Drug Alcohol Depend 2014; 142: 1–13.

    Article  CAS  Google Scholar 

  44. Ren H, Du C, Yuan Z, Park K, Volkow ND, Pan Y . Cocaine-induced cortical microischemia in the rodent brain: clinical implications. Mol Psychiatry 2012; 17: 1017–1025.

    Article  CAS  Google Scholar 

  45. Ueki M, Mies G, Hossmann KA . Effect of alpha‐chloralose, halothane, pentobarbital and nitrous oxide anesthesia on metabolic coupling in somatosensory cortex of rat. Acta Anaesthesiol Scand 1992; 36: 318–322.

    Article  CAS  Google Scholar 

  46. Bonvento G, Charbonne R, Correze JL, Borredon J, Seylaz J, Lacombe P . Is alpha-chloralose plus halothane induction a suitable anesthetic regimen for cerebrovascular research. Brain Res 1994; 665: 213–221.

    Article  CAS  Google Scholar 

  47. Lu H, Zuo Y, Gu H, Waltz JA, Zhan W, Scholl CA et al. Synchronized delta oscillations correlate with the resting-state functional MRI signal. Proc Natl Acad Sci USA 2007; 104: 18265–18269.

    Article  CAS  Google Scholar 

  48. Schulz K, Sydekum E, Krueppel R, Engelbrecht CJ, Schlegel F, Schröter A et al. Simultaneous BOLD fMRI and fiber-optic calcium recording in rat neocortex. Nat Methods 2012; 9: 597–602.

    Article  CAS  Google Scholar 

  49. Ma H, Harris S, Rahmani R, Lacefield CO, Zhao M, Daniel AG et al. Wide-field in vivo neocortical calcium dye imaging using a convection-enhanced loading technique combined with simultaneous multiwavelength imaging of voltage-sensitive dyes and hemodynamic signals. Neurophotonics 2014; 1: 015003–015003.

    Article  Google Scholar 

  50. Moxon K, Hale L, Aguilar J, Foffani G . Responses of infragranular neurons in the rat primary somatosensory cortex to forepaw and hindpaw tactile stimuli. Neuroscience 2008; 156: 1083–1092.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported, in part, by National Institutes of Health (NIH) Grants R21DA032228 (YP/CD), 1R01DA029718 (CD/YP), R01NS084817 (CD) and NIH’s Intramural Program (NDV).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N D Volkow.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Liu, P., Volkow, N. et al. Cocaine attenuates blood flow but not neuronal responses to stimulation while preserving neurovascular coupling for resting brain activity. Mol Psychiatry 21, 1408–1416 (2016). https://doi.org/10.1038/mp.2015.185

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2015.185

This article is cited by

Search

Quick links