Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The autism-associated MET receptor tyrosine kinase engages early neuronal growth mechanism and controls glutamatergic circuits development in the forebrain

Subjects

Abstract

The human MET gene imparts a replicated risk for autism spectrum disorder (ASD), and is implicated in the structural and functional integrity of brain. MET encodes a receptor tyrosine kinase, MET, which has a pleiotropic role in embryogenesis and modifies a large number of neurodevelopmental events. Very little is known, however, on how MET signaling engages distinct cellular events to collectively affect brain development in ASD-relevant disease domains. Here, we show that MET protein expression is dynamically regulated and compartmentalized in developing neurons. MET is heavily expressed in neuronal growth cones at early developmental stages and its activation engages small GTPase Cdc42 to promote neuronal growth, dendritic arborization and spine formation. Genetic ablation of MET signaling in mouse dorsal pallium leads to altered neuronal morphology indicative of early functional maturation. In contrast, prolonged activation of MET represses the formation and functional maturation of glutamatergic synapses. Moreover, manipulating MET signaling levels in vivo in the developing prefrontal projection neurons disrupts the local circuit connectivity made onto these neurons. Therefore, normal time-delimited MET signaling is critical in regulating the timing of neuronal growth, glutamatergic synapse maturation and cortical circuit function. Dysregulated MET signaling may lead to pathological changes in forebrain maturation and connectivity, and thus contribute to the emergence of neurological symptoms associated with ASD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Park H, Poo MM . Neurotrophin regulation of neural circuit development and function. Nat Rev Neurosci 2013; 14: 7–23.

    Article  CAS  PubMed  Google Scholar 

  2. Naldini L, Vigna E, Ferracini R, Longati P, Gandino L, Prat M et al. The tyrosine kinase encoded by the MET proto-oncogene is activated by autophosphorylation. Mol Cell Biol 1991; 11: 1793–1803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Uehara Y, Minowa O, Mori C, Shiota K, Kuno J, Noda T et al. Placental defect and embryonic lethality in mice lacking hepatocyte growth factor/scatter factor. Nature 1995; 373: 702–705.

    Article  CAS  PubMed  Google Scholar 

  4. Judson MC, Amaral DG, Levitt P . Conserved subcortical and divergent cortical expression of proteins encoded by orthologs of the autism risk gene MET. Cereb Cortex 2011; 21: 1613–1626.

    Article  PubMed  Google Scholar 

  5. Judson MC, Bergman MY, Campbell DB, Eagleson KL, Levitt P . Dynamic gene and protein expression patterns of the autism-associated met receptor tyrosine kinase in the developing mouse forebrain. J Comp Neurol 2009; 513: 511–531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Maina F, Hilton MC, Ponzetto C, Davies AM, Klein R . Met receptor signaling is required for sensory nerve development and HGF promotes axonal growth and survival of sensory neurons. Genes Dev 1997; 11: 3341–3350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mukamel Z, Konopka G, Wexler E, Osborn GE, Dong H, Bergman MY et al. Regulation of MET by FOXP2, genes implicated in higher cognitive dysfunction and autism risk. J Neurosci 2011; 31: 11437–11442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Streit A, Stern CD, Thery C, Ireland GW, Aparicio S, Sharpe MJ et al. A role for HGF/SF in neural induction and its expression in Hensen's node during gastrulation. Development 1995; 121: 813–824.

    CAS  PubMed  Google Scholar 

  9. Ebens A, Brose K, Leonardo ED, Hanson MG Jr, Bladt F, Birchmeier C et al. Hepatocyte growth factor/scatter factor is an axonal chemoattractant and a neurotrophic factor for spinal motor neurons. Neuron 1996; 17: 1157–1172.

    Article  CAS  PubMed  Google Scholar 

  10. Giacobini P, Messina A, Wray S, Giampietro C, Crepaldi T, Carmeliet P et al. Hepatocyte growth factor acts as a motogen and guidance signal for gonadotropin hormone-releasing hormone-1 neuronal migration. J Neurosci 2007; 27: 431–445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bai L, Lennon DP, Caplan AI, DeChant A, Hecker J, Kranso J et al. Hepatocyte growth factor mediates mesenchymal stem cell-induced recovery in multiple sclerosis models. Nat Neurosci 2012; 15: 862–870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Davey F, Hilton M, Davies AM . Cooperation between HGF and CNTF in promoting the survival and growth of sensory and parasympathetic neurons. Mol Cell Neurosci 2000; 15: 79–87.

    Article  CAS  PubMed  Google Scholar 

  13. Gutierrez H, Dolcet X, Tolcos M, Davies A . HGF regulates the development of cortical pyramidal dendrites. Development 2004; 131: 3717–3726.

    Article  CAS  PubMed  Google Scholar 

  14. Campbell DB, D'Oronzio R, Garbett K, Ebert PJ, Mirnics K, Levitt P et al. Disruption of cerebral cortex MET signaling in autism spectrum disorder. Ann Neurol 2007; 62: 243–250.

    Article  PubMed  Google Scholar 

  15. Campbell DB, Sutcliffe JS, Ebert PJ, Militerni R, Bravaccio C, Trillo S et al. A genetic variant that disrupts MET transcription is associated with autism. Proc Natl Acad Sci USA 2006; 103: 16834–16839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jackson PB, Boccuto L, Skinner C, Collins JS, Neri G, Gurrieri F et al. Further evidence that the rs1858830 C variant in the promoter region of the MET gene is associated with autistic disorder. Autism Res 2009; 2: 232–236.

    Article  PubMed  Google Scholar 

  17. Thanseem I, Nakamura K, Miyachi T, Toyota T, Yamada S, Tsujii M et al. Further evidence for the role of MET in autism susceptibility. Neurosci Res 2010; 68: 137–141.

    Article  CAS  PubMed  Google Scholar 

  18. Geschwind DH, Levitt P . Autism spectrum disorders: developmental disconnection syndromes. Curr Opin Neurobiol 2007; 17: 103–111.

    Article  CAS  PubMed  Google Scholar 

  19. Plummer JT, Evgrafov OV, Bergman MY, Friez M, Haiman CA, Levitt P et al. Transcriptional regulation of the MET receptor tyrosine kinase gene by MeCP2 and sex-specific expression in autism and Rett syndrome. Transl Psychiatry 2013; 3: e316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Konopka G, Bomar JM, Winden K, Coppola G, Jonsson ZO, Gao F et al. Human-specific transcriptional regulation of CNS development genes by FOXP2. Nature 2009; 462: 213–217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wood L, Gray NW, Zhou Z, Greenberg ME, Shepherd GM . Synaptic circuit abnormalities of motor-frontal layer 2/3 pyramidal neurons in an RNA interference model of methyl-CpG-binding protein 2 deficiency. J Neurosci 2009; 29: 12440–12448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rudie JD, Hernandez LM, Brown JA, Beck-Pancer D, Colich NL, Gorrindo P et al. Autism-associated promoter variant in MET impacts functional and structural brain networks. Neuron 2012; 75: 904–915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Qiu S, Anderson CT, Levitt P, Shepherd GM . Circuit-specific intracortical hyperconnectivity in mice with deletion of the autism-associated Met receptor tyrosine kinase. J Neurosci 2011; 31: 5855–5864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Qiu S, Lu Z, Levitt P . MET receptor tyrosine kinase controls dendritic complexity, spine morphogenesis, and glutamatergic synapse maturation in the hippocampus. J Neurosci 2014; 34: 16166–16179.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bladt F, Riethmacher D, Isenmann S, Aguzzi A, Birchmeier C . Essential role for the c-met receptor in the migration of myogenic precursor cells into the limb bud. Nature 1995; 376: 768–771.

    Article  CAS  PubMed  Google Scholar 

  26. Niwa M, Kamiya A, Murai R, Kubo K, Gruber AJ, Tomita K et al. Knockdown of DISC1 by in utero gene transfer disturbs postnatal dopaminergic maturation in the frontal cortex and leads to adult behavioral deficits. Neuron 2010; 65: 480–489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pfenninger KH, Ellis L, Johnson MP, Friedman LB, Somlo S . Nerve growth cones isolated from fetal rat brain: subcellular fractionation and characterization. Cell 1983; 35: 573–584.

    Article  CAS  PubMed  Google Scholar 

  28. Xu X, Callaway EM . Laminar specificity of functional input to distinct types of inhibitory cortical neurons. J Neurosci 2009; 29: 70–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Judson MC, Eagleson KL, Wang L, Levitt P . Evidence of cell-nonautonomous changes in dendrite and dendritic spine morphology in the met-signaling-deficient mouse forebrain. J Comp Neurol 2010; 518: 4463–4478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pathania M, Davenport EC, Muir J, Sheehan DF, Lopez-Domenech G, Kittler JT . The autism and schizophrenia associated gene CYFIP1 is critical for the maintenance of dendritic complexity and the stabilization of mature spines. Transl Psychiatry 2014; 4: e374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gordon JA . Oscillations and hippocampal-prefrontal synchrony. Curr Opin Neurobiol 2011; 21: 486–491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Royal I, Lamarche-Vane N, Lamorte L, Kaibuchi K, Park M . Activation of cdc42, rac, PAK, and rho-kinase in response to hepatocyte growth factor differentially regulates epithelial cell colony spreading and dissociation. Mol Biol Cell 2000; 11: 1709–1725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sakkab D, Lewitzky M, Posern G, Schaeper U, Sachs M, Birchmeier W et al. Signaling of hepatocyte growth factor/scatter factor (HGF) to the small GTPase Rap1 via the large docking protein Gab1 and the adapter protein CRKL. J Biol Chem 2000; 275: 10772–10778.

    Article  CAS  PubMed  Google Scholar 

  34. Takaishi K, Sasaki T, Kato M, Yamochi W, Kuroda S, Nakamura T et al. Involvement of Rho p21 small GTP-binding protein and its regulator in the HGF-induced cell motility. Oncogene 1994; 9: 273–279.

    CAS  PubMed  Google Scholar 

  35. Hall A, Lalli G . Rho and Ras GTPases in axon growth, guidance, and branching. Cold Spring Harb Perspect Biol 2010; 2: a001818.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Newey SE, Velamoor V, Govek EE, Van Aelst L . Rho GTPases, dendritic structure, and mental retardation. J Neurobiol 2005; 64: 58–74.

    Article  CAS  PubMed  Google Scholar 

  37. Peng YR, He S, Marie H, Zeng SY, Ma J, Tan ZJ et al. Coordinated changes in dendritic arborization and synaptic strength during neural circuit development. Neuron 2009; 61: 71–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tashiro A, Minden A, Yuste R . Regulation of dendritic spine morphology by the rho family of small GTPases: antagonistic roles of Rac and Rho. Cereb Cortex 2000; 10: 927–938.

    Article  CAS  PubMed  Google Scholar 

  39. Sholl DA . Dendritic organization in the neurons of the visual and motor cortices of the cat. J Anat 1953; 87: 387–406.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Shen H, Sesack SR, Toda S, Kalivas PW . Automated quantification of dendritic spine density and spine head diameter in medium spiny neurons of the nucleus accumbens. Brain Struct Funct 2008; 213: 149–157.

    Article  PubMed  Google Scholar 

  41. Ethell IM, Pasquale EB . Molecular mechanisms of dendritic spine development and remodeling. Prog Neurobiol 2005; 75: 161–205.

    Article  CAS  PubMed  Google Scholar 

  42. Matsuzaki M, Ellis-Davies GC, Nemoto T, Miyashita Y, Iino M, Kasai H . Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat Neurosci 2001; 4: 1086–1092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. McAllister AK, Lo DC, Katz LC . Neurotrophins regulate dendritic growth in developing visual cortex. Neuron 1995; 15: 791–803.

    Article  CAS  PubMed  Google Scholar 

  44. Monyer H, Burnashev N, Laurie DJ, Sakmann B, Seeburg PH . Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 1994; 12: 529–540.

    Article  CAS  PubMed  Google Scholar 

  45. Harlow EG, Till SM, Russell TA, Wijetunge LS, Kind P, Contractor A . Critical period plasticity is disrupted in the barrel cortex of FMR1 knockout mice. Neuron 2010; 65: 385–398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Durand CM, Betancur C, Boeckers TM, Bockmann J, Chaste P, Fauchereau F et al. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat Genet 2007; 39: 25–27.

    Article  CAS  PubMed  Google Scholar 

  47. Gilman SR, Iossifov I, Levy D, Ronemus M, Wigler M, Vitkup D . Rare de novo variants associated with autism implicate a large functional network of genes involved in formation and function of synapses. Neuron 2011; 70: 898–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hamdan FF, Daoud H, Piton A, Gauthier J, Dobrzeniecka S, Krebs MO et al. De novo SYNGAP1 mutations in nonsyndromic intellectual disability and autism. Biol Psychiatry 2011; 69: 898–901.

    Article  CAS  PubMed  Google Scholar 

  49. Tabuchi K, Blundell J, Etherton MR, Hammer RE, Liu X, Powell CM et al. A neuroligin-3 mutation implicated in autism increases inhibitory synaptic transmission in mice. Science 2007; 318: 71–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Penzes P, Cahill ME, Jones KA, VanLeeuwen JE, Woolfrey KM . Dendritic spine pathology in neuropsychiatric disorders. Nat Neurosci 2011; 14: 285–293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zoghbi HY, Bear MF . Synaptic dysfunction in neurodevelopmental disorders associated with autism and intellectual disabilities. Cold Spring Harb Perspect Biol 2012; 4: 1–22.

    Article  Google Scholar 

  52. Fiala JC, Feinberg M, Popov V, Harris KM . Synaptogenesis via dendritic filopodia in developing hippocampal area CA1. J Neurosci 1998; 18: 8900–8911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Eagleson KL, Milner TA, Xie Z, Levitt P . Synaptic and extrasynaptic location of the receptor tyrosine kinase met during postnatal development in the mouse neocortex and hippocampus. J Comp Neurol 2013; 521: 3241–3259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tyndall SJ, Walikonis RS . The receptor tyrosine kinase Met and its ligand hepatocyte growth factor are clustered at excitatory synapses and can enhance clustering of synaptic proteins. Cell Cycle 2006; 5: 1560–1568.

    Article  CAS  PubMed  Google Scholar 

  55. Akimoto M, Baba A, Ikeda-Matsuo Y, Yamada MK, Itamura R, Nishiyama N et al. Hepatocyte growth factor as an enhancer of nmda currents and synaptic plasticity in the hippocampus. Neuroscience 2004; 128: 155–162.

    Article  CAS  PubMed  Google Scholar 

  56. Ansorge MS, Zhou M, Lira A, Hen R, Gingrich JA . Early-life blockade of the 5-HT transporter alters emotional behavior in adult mice. Science 2004; 306: 879–881.

    Article  CAS  PubMed  Google Scholar 

  57. Clement JP, Aceti M, Creson TK, Ozkan ED, Shi Y, Reish NJ et al. Pathogenic SYNGAP1 mutations impair cognitive development by disrupting maturation of dendritic spine synapses. Cell 2012; 151: 709–723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Luo L . Actin cytoskeleton regulation in neuronal morphogenesis and structural plasticity. Annu Rev Cell Dev Biol 2002; 18: 601–635.

    Article  CAS  PubMed  Google Scholar 

  59. Pinto D, Pagnamenta AT, Klei L, Anney R, Merico D, Regan R et al. Functional impact of global rare copy number variation in autism spectrum disorders. Nature 2010; 466: 368–372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tyndall SJ, Patel SJ, Walikonis RS . Hepatocyte growth factor-induced enhancement of dendritic branching is blocked by inhibitors of N-methyl-D-aspartate receptors and calcium/calmodulin-dependent kinases. J Neurosci Res 2007; 85: 2343–2351.

    Article  CAS  PubMed  Google Scholar 

  61. Xu B, Zang K, Ruff NL, Zhang YA, McConnell SK, Stryker MP et al. Cortical degeneration in the absence of neurotrophin signaling: dendritic retraction and neuronal loss after removal of the receptor TrkB. Neuron 2000; 26: 233–245.

    Article  CAS  PubMed  Google Scholar 

  62. Konur S, Yuste R . Imaging the motility of dendritic protrusions and axon terminals: roles in axon sampling and synaptic competition. Mol Cell Neurosci 2004; 27: 427–440.

    Article  CAS  PubMed  Google Scholar 

  63. Dahlhaus R, Hines RM, Eadie BD, Kannangara TS, Hines DJ, Brown CE et al. Overexpression of the cell adhesion protein neuroligin-1 induces learning deficits and impairs synaptic plasticity by altering the ratio of excitation to inhibition in the hippocampus. Hippocampus 2010; 20: 305–322.

    Article  CAS  PubMed  Google Scholar 

  64. Wittkowski KM, Sonakya V, Bigio B, Tonn MK, Shic F, Ascano M et al. A novel computational biostatistics approach implies impaired dephosphorylation of growth factor receptors as associated with severity of autism. Transl Psychiatry 2014; 4: e354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Berg JM, Geschwind DH . Autism genetics: searching for specificity and convergence. Genome Biol 2012; 13: 247.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Parikshak NN, Luo R, Zhang A, Won H, Lowe JK, Chandran V et al. Integrative functional genomic analyses implicate specific molecular pathways and circuits in autism. Cell 2013; 155: 1008–1021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institute of Mental Health (NIMH), grants K99MH087628 and R00MH087628, and Institute for Mental Health Research grant to SQ. We thank Dr Daping Fan (University of South Carolina) for his expert guidance in RNAi constructs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Qiu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Y., Lu, Z., Li, G. et al. The autism-associated MET receptor tyrosine kinase engages early neuronal growth mechanism and controls glutamatergic circuits development in the forebrain. Mol Psychiatry 21, 925–935 (2016). https://doi.org/10.1038/mp.2015.182

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2015.182

This article is cited by

Search

Quick links