Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Dysfunctional tubular endoplasmic reticulum constitutes a pathological feature of Alzheimer’s disease

Abstract

Pathological features in Alzheimer’s brains include mitochondrial dysfunction and dystrophic neurites (DNs) in areas surrounding amyloid plaques. Using a mouse model that overexpresses reticulon 3 (RTN3) and spontaneously develops age-dependent hippocampal DNs, here we report that DNs contain both RTN3 and REEPs, topologically similar proteins that can shape tubular endoplasmic reticulum (ER). Importantly, ultrastructural examinations of such DNs revealed gradual accumulation of tubular ER in axonal termini, and such abnormal tubular ER inclusion is found in areas surrounding amyloid plaques in biopsy samples from Alzheimer’s disease (AD) brains. Functionally, abnormally clustered tubular ER induces enhanced mitochondrial fission in the early stages of DN formation and eventual mitochondrial degeneration at later stages. Furthermore, such DNs are abrogated when RTN3 is ablated in aging and AD mouse models. Hence, abnormally clustered tubular ER can be pathogenic in brain regions: disrupting mitochondrial integrity, inducing DNs formation and impairing cognitive function in AD and aging brains.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Terry RD . Normal aging and Alzheimer's disease: growing problems. Monogr Pathol 1990; 32: 41–54.

    Google Scholar 

  2. DuBoff B, Feany M, Gotz J . Why size matters - balancing mitochondrial dynamics in Alzheimer's disease. Trends Neurosci 2013; 36: 325–335.

    Article  CAS  Google Scholar 

  3. Holtzman DM, Mandelkow E, Selkoe DJ . Alzheimer disease in 2020. Cold Spring Harb Perspect Med 2012; 2: 11.

    Google Scholar 

  4. Tanzi RE . The genetics of Alzheimer disease. Cold Spring Harb Perspect Med 2012; 2: 10.

    Article  Google Scholar 

  5. Querfurth HW, LaFerla FM . Alzheimer's disease. N Engl J Med 2010; 362: 329–344.

    Article  CAS  Google Scholar 

  6. De SB, Vassar R, Golde T . The secretases: enzymes with therapeutic potential in Alzheimer disease. Nat Rev Neurol 2010; 6: 99–107.

    Google Scholar 

  7. Voeltz GK, Prinz WA, Shibata Y, Rist JM, Rapoport TA . A class of membrane proteins shaping the tubular endoplasmic reticulum. Cell 2006; 124: 573–586.

    Article  CAS  Google Scholar 

  8. Yang YS, Strittmatter SM . The reticulons: a family of proteins with diverse functions. Genome Biol 2007; 8: 234.

    Article  Google Scholar 

  9. Oertle T, Klinger M, Stuermer CA, Schwab ME . A reticular rhapsody: phylogenic evolution and nomenclature of the RTN/Nogo gene family. FASEB J 2003; 17: 1238–1247.

    Article  CAS  Google Scholar 

  10. Yan R, Shi Q, Hu X, Zhou X . Reticulon proteins: emerging players in neurodegenerative diseases. Cell Mol Life Sci 2006; 63: 877–889.

    Article  CAS  Google Scholar 

  11. He W, Shi Q, Hu X, Yan R . The membrane topology of RTN3 and its effect on binding of RTN3 to BACE1. J Biol Chem 2007; 282: 29144–29151.

    Article  CAS  Google Scholar 

  12. Araki W, Oda A, Motoki K, Hattori K, Itoh M, Yuasa S et al. Reduction ofbeta -amyloid accumulation by reticulon 3 in transgenic mice. Curr Alzheimer Res 2012; 10: 135–142.

    Article  Google Scholar 

  13. Shi Q, Prior M, He W, Tang X, Hu X, Yan R . Reduced amyloid deposition in mice overexpressing RTN3 is adversely affected by preformed dystrophic neurites. J Neurosci 2009; 29: 9163–9173.

    Article  CAS  Google Scholar 

  14. Prior M, Shi Q, Hu X, He W, Levey A, Yan R . RTN/Nogo in forming Alzheimer's neuritic plaques. Neurosci Biobehav Rev 2010; 34: 1201–1206.

    Article  CAS  Google Scholar 

  15. Rifenburg RP, Perry G . Dystrophic neurites define diffuse as well as core-containing senile plaques in Alzheimer's disease. Neurodegeneration 1995; 4: 235–237.

    CAS  PubMed  Google Scholar 

  16. Dickson TC, King CE, McCormack GH, Vickers JC . Neurochemical diversity of dystrophic neurites in the early and late stages of Alzheimer's disease. Exp Neurol 1999; 156: 100–110.

    Article  CAS  Google Scholar 

  17. Masliah E, Mallory M, Hansen L, Alford M, Albright T, DeTeresa R et al. Patterns of aberrant sprouting in Alzheimer's disease. Neuron 1991; 6: 729–739.

    Article  CAS  Google Scholar 

  18. Hu X, Shi Q, Zhou X, He W, Yi H, Yin X et al. Transgenic mice overexpressing reticulon 3 develop neuritic abnormalities. EMBO J 2007; 26: 2755–2767.

    Article  CAS  Google Scholar 

  19. Shi Q, Hu X, Prior M, Yan R . The occurrence of aging-dependent reticulon 3 immunoreactive dystrophic neurites decreases cognitive function. J Neurosci 2009; 29: 5108–5115.

    Article  CAS  Google Scholar 

  20. Shi Q, Prior M, Zhou X, Tang X, He W, Hu X et al. Preventing formation of reticulon 3 immunoreactive dystrophic neurites improves cognitive function in mice. J Neurosci 2013; 33: 3059–3066.

    Article  CAS  Google Scholar 

  21. He W, Lu Y, Qahwash I, Hu XY, Chang A, Yan R . Reticulon family members modulate BACE1 activity and amyloid-beta peptide generation. Nat Med 2004; 10: 959–965.

    Article  CAS  Google Scholar 

  22. Shi Q, Ge Y, Sharoar MG, He W, Xiang R, Zhang Z et al. Impact of RTN3 Deficiency on Expression of BACE1 and Amyloid Deposition. J Neurosci 2014; 34: 13954–13962.

    Article  Google Scholar 

  23. He W, Hu X, Shi Q, Zhou X, Lu Y, Fisher C et al. Mapping of Interaction Domains Mediating Binding between BACE1 and RTN/Nogo Proteins. J Mol Biol 2006; 363: 625–634.

    Article  CAS  Google Scholar 

  24. Bjork S, Hurt CM, Ho VK, Angelotti T . REEPs are membrane shaping adapter proteins that modulate specific g protein-coupled receptor trafficking by affecting ER cargo capacity. PLoS One 2013; 8: e76366.

    Article  CAS  Google Scholar 

  25. Blackstone C, O'Kane CJ, Reid E . Hereditary spastic paraplegias: membrane traffic and the motor pathway. Nat Rev Neurosci 2011; 12: 31–42.

    Article  CAS  Google Scholar 

  26. Westermann B . Organelle dynamics: ER embraces mitochondria for fission. Curr Biol 2011; 21: R922–R924.

    Article  CAS  Google Scholar 

  27. Heath JE, Siedlak SL, Zhu X, Lee HG, Thakur A, Yan R et al. Widespread distribution of reticulon-3 in various neurodegenerative diseases. Neuropathology 2010; 30: 574–579.

    Article  Google Scholar 

  28. Kandalepas PC, Sadleir KR, Eimer WA, Zhao J, Nicholson DA, Vassar R . The Alzheimer's beta-secretase BACE1 localizes to normal presynaptic terminals and to dystrophic presynaptic terminals surrounding amyloid plaques. Acta Neuropathol 2013; 126: 329–352.

    Article  CAS  Google Scholar 

  29. Lee S, Sato Y, Nixon RA . Lysosomal proteolysis inhibition selectively disrupts axonal transport of degradative organelles and causes an Alzheimer's-like axonal dystrophy. J Neurosci 2011; 31: 7817–7830.

    Article  CAS  Google Scholar 

  30. Shibata Y, Hu J, Kozlov MM, Rapoport TA . Mechanisms shaping the membranes of cellular organelles. Annu Rev Cell Dev Biol 2009; 25: 329–354.

    Article  CAS  Google Scholar 

  31. Chen S, Novick P, Ferro-Novick S . ER structure and function. Curr Opin Cell Biol 2013; 25: 428–433.

    Article  CAS  Google Scholar 

  32. O'Sullivan NC, Jahn TR, Reid E, O'Kane CJ . Reticulon-like-1 the Drosophila orthologue of the hereditary spastic paraplegia gene reticulon 2, is required for organization of endoplasmic reticulum and of distal motor axons. Hum Mol Genet 2012; 21: 3356–3365.

    Article  CAS  Google Scholar 

  33. Ramirez OA, Couve A . The endoplasmic reticulum and protein trafficking in dendrites and axons. Trends Cell Biol 2011; 21: 219–227.

    Article  CAS  Google Scholar 

  34. English AR, Voeltz GK . Endoplasmic reticulum structure and interconnections with other organelles. Cold Spring Harb Perspect Biol 2013; 5: a013227.

    Article  Google Scholar 

  35. Shnyrova A, Frolov VA, Zimmerberg J . ER biogenesis: self-assembly of tubular topology by protein hairpins. Curr Biol 2008; 18: R474–R476.

    Article  CAS  Google Scholar 

  36. Deng M, He W, Tan Y, Han H, Hu X, Xia K et al. Increased expression of reticulon 3 in neurons leads to reduced axonal transport of beta site amyloid precursor protein-cleaving enzyme 1. J Biol Chem 2013; 288: 30236–30245.

    Article  CAS  Google Scholar 

  37. Park SH, Zhu PP, Parker RL, Blackstone C . Hereditary spastic paraplegia proteins REEP1, spastin, and atlastin-1 coordinate microtubule interactions with the tubular ER network. J Clin Invest 2010; 120: 1097–1110.

    Article  CAS  Google Scholar 

  38. Friedman JR, DiBenedetto JR, West M, Rowland AA, Voeltz GK . Endoplasmic reticulum-endosome contact increases as endosomes traffic and mature. Mol Biol Cell 2013; 24: 1030–1040.

    Article  CAS  Google Scholar 

  39. Joachim CL, Morris JH, Selkoe DJ . Diffuse senile plaques occur commonly in the cerebellum in Alzheimer's disease. Am J Pathol 1989; 135: 309–319.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Morris JC, Storandt M, McKeel DW Jr, Rubin EH, Price JL, Grant EA et al. Cerebral amyloid deposition and diffuse plaques in "normal" aging: Evidence for presymptomatic and very mild Alzheimer's disease. Neurology 1996; 46: 707–719.

    Article  CAS  Google Scholar 

  41. Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT . Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med 2011; 1: a006189.

    Article  Google Scholar 

  42. Ferrer I, Marti E, Tortosa A, Blasi J . Dystrophic neurites of senile plaques are defective in proteins involved in exocytosis and neurotransmission. J Neuropathol Exp Neurol 1998; 57: 218–225.

    Article  CAS  Google Scholar 

  43. Richard S, Brion JP, Couck AM, Flament-Durand J . Accumulation of smooth endoplasmic reticulum in Alzheimer's disease: new morphological evidence of axoplasmic flow disturbances. J Submicrosc Cytol Pathol 1989; 21: 461–467.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Xinghua Yin for capturing EM images and Hisashi Fujioka (Case Western Reserve University EM facility) for immune-EM, Qinyuan Fan and Hailong Hou for their helpful discussions during the study, and Chris Nelson for critical reading of this manuscript. This work is partially supported by NIH grants to RY (AG025493, NS074256 and AG046929), and an award from Alzheimer’s Association (NPSPAD-10-174543) as well as a gift from the Scholtz family fund to RY. XZ was supported by NIH R01NS083385 and GP was supported by Alzheimer's Association (IIRG-13-284849) and the Semmes Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Yan.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharoar, M., Shi, Q., Ge, Y. et al. Dysfunctional tubular endoplasmic reticulum constitutes a pathological feature of Alzheimer’s disease. Mol Psychiatry 21, 1263–1271 (2016). https://doi.org/10.1038/mp.2015.181

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2015.181

This article is cited by

Search

Quick links