Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Expert Review
  • Published:

Molecular substrates of schizophrenia: homeostatic signaling to connectivity

Abstract

Schizophrenia (SZ) is a devastating psychiatric condition affecting numerous brain systems. Recent studies have identified genetic factors that confer an increased risk of SZ and participate in the disease etiopathogenesis. In parallel to such bottom-up approaches, other studies have extensively reported biological changes in patients by brain imaging, neurochemical and pharmacological approaches. This review highlights the molecular substrates identified through studies with SZ patients, namely those using top-down approaches, while also referring to the fruitful outcomes of recent genetic studies. We have subclassified the molecular substrates by system, focusing on elements of neurotransmission, targets in white matter-associated connectivity, immune/inflammatory and oxidative stress-related substrates, and molecules in endocrine and metabolic cascades. We further touch on cross-talk among these systems and comment on the utility of animal models in charting the developmental progression and interaction of these substrates. Based on this comprehensive information, we propose a framework for SZ research based on the hypothesis of an imbalance in homeostatic signaling from immune/inflammatory, oxidative stress, endocrine and metabolic cascades that, at least in part, underlies deficits in neural connectivity relevant to SZ. Thus, this review aims to provide information that is translationally useful and complementary to pathogenic hypotheses that have emerged from genetic studies. Based on such advances in SZ research, it is highly expected that we will discover biomarkers that may help in the early intervention, diagnosis or treatment of SZ.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Perala J, Suvisaari J, Saarni SI, Kuoppasalmi K, Isometsa E, Pirkola S et al. Lifetime prevalence of psychotic and bipolar I disorders in a general population. Arch Gen Psychiatry 2007; 64: 19–28.

    Article  PubMed  Google Scholar 

  2. van Os J, Linscott RJ, Myin-Germeys I, Delespaul P, Krabbendam L . A systematic review and meta-analysis of the psychosis continuum: evidence for a psychosis proneness-persistence-impairment model of psychotic disorder. Psychol Med 2009; 39: 179–195.

    Article  CAS  PubMed  Google Scholar 

  3. van Os J, Kapur S . Schizophrenia. Lancet 2009; 374: 635–645.

    Article  CAS  PubMed  Google Scholar 

  4. Jaaro-Peled H, Hayashi-Takagi A, Seshadri S, Kamiya A, Brandon NJ, Sawa A . Neurodevelopmental mechanisms of schizophrenia: understanding disturbed postnatal brain maturation through neuregulin-1-ErbB4 and DISC1. Trends Neurosci 2009; 32: 485–495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Seeman P, Lee T . Antipsychotic drugs: direct correlation between clinical potency and presynaptic action on dopamine neurons. Science (New York, NY) 1975; 188: 1217–1219.

    Article  CAS  Google Scholar 

  6. Creese I, Burt DR, Snyder SH . Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science (New York, NY) 1976; 192: 481–483.

    Article  CAS  Google Scholar 

  7. Snyder SH . The dopamine hypothesis of schizophrenia: focus on the dopamine receptor. Am J Psychiatry 1976; 133: 197–202.

    Article  CAS  PubMed  Google Scholar 

  8. Merritt K, McGuire P, Egerton A . Relationship between glutamate dysfunction and symptoms and cognitive function in psychosis. Front Psychiatry 2013; 4: 151.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Javitt DC, Zukin SR . Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 1991; 148: 1301–1308.

    CAS  PubMed  Google Scholar 

  10. Purcell SM, Wray NR, Stone JL, Visscher PM, O'Donovan MC, Sullivan PF et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 2009; 460: 748–752.

    CAS  PubMed  Google Scholar 

  11. Ripke S, O'Dushlaine C, Chambert K, Moran JL, Kahler AK, Akterin S et al. Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nat Genet 2013; 45: 1150–1159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Purcell SM, Moran JL, Fromer M, Ruderfer D, Solovieff N, Roussos P et al. A polygenic burden of rare disruptive mutations in schizophrenia. Nature 2014; 506: 185–190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Doherty JL, O'Donovan MC, Owen MJ . Recent genomic advances in schizophrenia. Clin Genet 2012; 81: 103–109.

    Article  CAS  PubMed  Google Scholar 

  14. Fromer M, Pocklington AJ, Kavanagh DH, Williams HJ, Dwyer S, Gormley P et al. De novo mutations in schizophrenia implicate synaptic networks. Nature 2014; 506: 179–184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Carroll LS, Owen MJ . Genetic overlap between autism, schizophrenia and bipolar disorder. Genome Med 2009; 1: 102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lee SH, Ripke S, Neale BM, Faraone SV, Purcell SM, Perlis RH et al. Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nat Genet 2013; 45: 984–994.

    Article  CAS  PubMed  Google Scholar 

  17. Cross-Disorder Group of the Psychiatric Genomics Consortium. Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet 2013; 381: 1371–1379.

    Article  CAS  PubMed Central  Google Scholar 

  18. Brandon NJ, Sawa A . Linking neurodevelopmental and synaptic theories of mental illness through DISC1. Nat Rev Neurosci 2011; 12: 707–722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Insel T, Cuthbert B, Garvey M, Heinssen R, Pine DS, Quinn K et al. Research domain criteria (RDoC): toward a new classification framework for research on mental disorders. Am J Psychiatry 2010; 167: 748–751.

    Article  PubMed  Google Scholar 

  20. Malhotra D, Sebat J . CNVs: harbingers of a rare variant revolution in psychiatric genetics. Cell 2012; 148: 1223–1241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sullivan PF, Daly MJ, O'Donovan M . Genetic architectures of psychiatric disorders: the emerging picture and its implications. Nat Rev Genet 2012; 13: 537–551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pratt J, Winchester C, Dawson N, Morris B . Advancing schizophrenia drug discovery: optimizing rodent models to bridge the translational gap. Nat Rev Drug Discov 2012; 11: 560–579.

    Article  CAS  PubMed  Google Scholar 

  23. Jaaro-Peled H, Ayhan Y, Pletnikov MV, Sawa A . Review of pathological hallmarks of schizophrenia: comparison of genetic models with patients and nongenetic models. Schizophr Bull 2010; 36: 301–313.

    Article  PubMed  Google Scholar 

  24. Kvajo M, McKellar H, Gogos JA . Avoiding mouse traps in schizophrenia genetics: lessons and promises from current and emerging mouse models. Neuroscience 2012; 211: 136–164.

    Article  CAS  PubMed  Google Scholar 

  25. Hartwell L, Mankoff D, Paulovich A, Ramsey S, Swisher E . Cancer biomarkers: a systems approach. Nat Biotechnol 2006; 24: 905–908.

    Article  CAS  PubMed  Google Scholar 

  26. Lusis AJ, Attie AD, Reue K . Metabolic syndrome: from epidemiology to systems biology. Nat Rev Genet 2008; 9: 819–830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Orešič M . Systems Biology in Human Health and Disease. In: Orešič M, Vidal-Puig A, editors. A Systems Biology Approach to Study Metabolic Syndrome. Springer International Publishing: Dordrecht, pp 17–23, 2014.

    Chapter  Google Scholar 

  28. Zhang B, Gaiteri C, Bodea LG, Wang Z, McElwee J, Podtelezhnikov AA et al. Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer's disease. Cell 2013; 153: 707–720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr., Kawas CH et al. The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimer's Dement 2011; 7: 263–269.

    Article  Google Scholar 

  30. McGowan S, Lawrence AD, Sales T, Quested D, Grasby P . Presynaptic dopaminergic dysfunction in schizophrenia: a positron emission tomographic [18 F]fluorodopa study. Arch Gen Psychiatry 2004; 61: 134–142.

    Article  PubMed  Google Scholar 

  31. Howes OD, Montgomery AJ, Asselin MC, Murray RM, Valli I, Tabraham P et al. Elevated striatal dopamine function linked to prodromal signs of schizophrenia. Arch Gen Psychiatry 2009; 66: 13–20.

    Article  PubMed  Google Scholar 

  32. Meyer-Lindenberg A, Miletich RS, Kohn PD, Esposito G, Carson RE, Quarantelli M et al. Reduced prefrontal activity predicts exaggerated striatal dopaminergic function in schizophrenia. Nat Neurosci 2002; 5: 267–271.

    Article  CAS  PubMed  Google Scholar 

  33. Nozaki S, Kato M, Takano H, Ito H, Takahashi H, Arakawa R et al. Regional dopamine synthesis in patients with schizophrenia using L-[beta-11C]DOPA PET. Schizophr Res 2009; 108: 78–84.

    Article  PubMed  Google Scholar 

  34. Egerton A, Chaddock CA, Winton-Brown TT, Bloomfield MA, Bhattacharyya S, Allen P et al. Presynaptic striatal dopamine dysfunction in people at ultra-high risk for psychosis: findings in a second cohort. Biol Psychiatry 2013; 74: 106–112.

    Article  CAS  PubMed  Google Scholar 

  35. Breier A, Su TP, Saunders R, Carson RE, Kolachana BS, de Bartolomeis A et al. Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: evidence from a novel positron emission tomography method. Proc Natl Acad Sci USA 1997; 94: 2569–2574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Laruelle M, Abi-Dargham A, van Dyck CH, Gil R, D'Souza CD, Erdos J et al. Single photon emission computerized tomography imaging of amphetamine-induced dopamine release in drug-free schizophrenic subjects. Proc Natl Acad Sci USA 1996; 93: 9235–9240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Abi-Dargham A, Gil R, Krystal J, Baldwin RM, Seibyl JP, Bowers M et al. Increased striatal dopamine transmission in schizophrenia: confirmation in a second cohort. Am J Psychiatry 1998; 155: 761–767.

    Article  CAS  PubMed  Google Scholar 

  38. Howes OD, Kapur S . The dopamine hypothesis of schizophrenia: version III—the final common pathway. Schizophr Bull 2009; 35: 549–562.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kegeles LS, Abi-Dargham A, Frankle WG, Gil R, Cooper TB, Slifstein M et al. Increased synaptic dopamine function in associative regions of the striatum in schizophrenia. Arch Gen Psychiatry 2010; 67: 231–239.

    Article  CAS  PubMed  Google Scholar 

  40. Laruelle M . Imaging dopamine transmission in schizophrenia. A review and meta-analysis. Q J Nucl Med 1998; 42: 211–221.

    CAS  PubMed  Google Scholar 

  41. Kuepper R, Skinbjerg M, Abi-Dargham A . The dopamine dysfunction in schizophrenia revisited: new insights into topography and course. Handb Exp Pharmacol 2012; 212: 1–26.

    Article  CAS  Google Scholar 

  42. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature 2014; 511: 421–427.

    Article  CAS  PubMed Central  Google Scholar 

  43. Okubo Y, Suhara T, Suzuki K, Kobayashi K, Inoue O, Terasaki O et al. Decreased prefrontal dopamine D1 receptors in schizophrenia revealed by PET. Nature 1997; 385: 634–636.

    Article  CAS  PubMed  Google Scholar 

  44. Karlsson P, Farde L, Halldin C, Sedvall G . PET study of D(1) dopamine receptor binding in neuroleptic-naive patients with schizophrenia. Am J Psychiatry 2002; 159: 761–767.

    Article  PubMed  Google Scholar 

  45. Abi-Dargham A, Xu X, Thompson JL, Gil R, Kegeles LS, Urban N et al. Increased prefrontal cortical D(1) receptors in drug naive patients with schizophrenia: a PET study with [(1)(1)C]NNC112. J Psychopharmacol 2012; 26: 794–805.

    Article  CAS  PubMed  Google Scholar 

  46. Kestler LP, Walker E, Vega EM . Dopamine receptors in the brains of schizophrenia patients: a meta-analysis of the findings. Behav Pharmacol 2001; 12: 355–371.

    Article  CAS  PubMed  Google Scholar 

  47. Beuger M, van Kammen DP, Kelley ME, Yao J . Dopamine turnover in schizophrenia before and after haloperidol withdrawal. CSF, plasma, and urine studies. Neuropsychopharmacology 1996; 15: 75–86.

    Article  CAS  PubMed  Google Scholar 

  48. Wieselgren IM, Lindstrom LH . CSF levels of HVA and 5-HIAA in drug-free schizophrenic patients and healthy controls: a prospective study focused on their predictive value for outcome in schizophrenia. Psychiatry Res 1998; 81: 101–110.

    Article  CAS  PubMed  Google Scholar 

  49. Davis KL, Kahn RS, Ko G, Davidson M . Dopamine in schizophrenia: a review and reconceptualization. Am J Psychiatry 1991; 148: 1474–1486.

    CAS  PubMed  Google Scholar 

  50. Meador-Woodruff JH, Haroutunian V, Powchik P, Davidson M, Davis KL, Watson SJ . Dopamine receptor transcript expression in striatum and prefrontal and occipital cortex. Focal abnormalities in orbitofrontal cortex in schizophrenia. Arch Gen Psychiatry 1997; 54: 1089–1095.

    Article  CAS  PubMed  Google Scholar 

  51. Pantazopoulos H, Stone D, Walsh J, Benes FM . Differences in the cellular distribution of D1 receptor mRNA in the hippocampus of bipolars and schizophrenics. Synapse (New York, NY) 2004; 54: 147–155.

    Article  CAS  Google Scholar 

  52. Akil M, Pierri JN, Whitehead RE, Edgar CL, Mohila C, Sampson AR et al. Lamina-specific alterations in the dopamine innervation of the prefrontal cortex in schizophrenic subjects. Am J Psychiatry 1999; 156: 1580–1589.

    Article  CAS  PubMed  Google Scholar 

  53. Akil M, Edgar CL, Pierri JN, Casali S, Lewis DA . Decreased density of tyrosine hydroxylase-immunoreactive axons in the entorhinal cortex of schizophrenic subjects. Biol Psychiatry 2000; 47: 361–370.

    Article  CAS  PubMed  Google Scholar 

  54. Abi-Dargham A, Rodenhiser J, Printz D, Zea-Ponce Y, Gil R, Kegeles LS et al. Increased baseline occupancy of D2 receptors by dopamine in schizophrenia. Proc Natl Acad Sci USA 2000; 97: 8104–8109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Weinberger DR, Berman KF, Daniel DG . Mesoprefrontal cortical dopaminergic activity and prefrontal hypofunction in schizophrenia. Clin Neuropharmacol 1992; 15: 568 A–569.

    Article  Google Scholar 

  56. Meltzer HY, Matsubara S, Lee JC . Classification of typical and atypical antipsychotic drugs on the basis of dopamine D-1, D-2 and serotonin2 pKi values. J Pharmacol Exp Ther 1989; 251: 238–246.

    CAS  PubMed  Google Scholar 

  57. Vollenweider FX, Vollenweider-Scherpenhuyzen MF, Babler A, Vogel H, Hell D . Psilocybin induces schizophrenia-like psychosis in humans via a serotonin-2 agonist action. Neuroreport 1998; 9: 3897–3902.

    Article  CAS  PubMed  Google Scholar 

  58. Burnet PW, Eastwood SL, Harrison PJ . 5-HT1A and 5-HT2A receptor mRNAs and binding site densities are differentially altered in schizophrenia. Neuropsychopharmacology 1996; 15: 442–455.

    Article  CAS  PubMed  Google Scholar 

  59. Anticevic A, Gancsos M, Murray JD, Repovs G, Driesen NR, Ennis DJ et al. NMDA receptor function in large-scale anticorrelated neural systems with implications for cognition and schizophrenia. Proc Natl Acad Sci USA 2012; 109: 16720–16725.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, Bremner JD et al. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry 1994; 51: 199–214.

    Article  CAS  PubMed  Google Scholar 

  61. Glantz LA, Lewis DA . Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch Gen Psychiatry 2000; 57: 65–73.

    Article  CAS  PubMed  Google Scholar 

  62. Garey LJ, Ong WY, Patel TS, Kanani M, Davis A, Mortimer AM et al. Reduced dendritic spine density on cerebral cortical pyramidal neurons in schizophrenia. J Neurol Neurosurg Psychiatry 1998; 65: 446–453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ayalew M, Le-Niculescu H, Levey DF, Jain N, Changala B, Patel SD et al. Convergent functional genomics of schizophrenia: from comprehensive understanding to genetic risk prediction. Mol Psychiatry 2012; 17: 887–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Poels EM, Kegeles LS, Kantrowitz JT, Slifstein M, Javitt DC, Lieberman JA et al. Imaging glutamate in schizophrenia: review of findings and implications for drug discovery. Mol Psychiatry 2014; 19: 20–29.

    Article  CAS  PubMed  Google Scholar 

  65. Marsman A, van den Heuvel MP, Klomp DW, Kahn RS, Luijten PR, Hulshoff Pol HE . Glutamate in schizophrenia: a focused review and meta-analysis of (1)H-MRS studies. Schizophr Bull 2013; 39: 120–129.

    Article  PubMed  Google Scholar 

  66. Kegeles LS, Mao X, Stanford AD, Girgis R, Ojeil N, Xu X et al. Elevated prefrontal cortex gamma-aminobutyric acid and glutamate-glutamine levels in schizophrenia measured in vivo with proton magnetic resonance spectroscopy. Arch Gen Psychiatry 2012; 69: 449–459.

    Article  CAS  PubMed  Google Scholar 

  67. Egerton A, Brugger S, Raffin M, Barker GJ, Lythgoe DJ, McGuire PK et al. Anterior cingulate glutamate levels related to clinical status following treatment in first-episode schizophrenia. Neuropsychopharmacology 2012; 37: 2515–2521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Demjaha A, Egerton A, Murray RM, Kapur S, Howes OD, Stone JM et al. Antipsychotic treatment resistance in schizophrenia associated with elevated glutamate levels but normal dopamine function. Biol Psychiatry 2014; 75: e11–e13.

    Article  CAS  PubMed  Google Scholar 

  69. Stan AD, Ghose S, Zhao C, Hulsey K, Mihalakos P, Yanagi M et al. Magnetic resonance spectroscopy and tissue protein concentrations together suggest lower glutamate signaling in dentate gyrus in schizophrenia. Mol Psychiatry 2014; 20: 433–439.

    Article  CAS  PubMed  Google Scholar 

  70. Tsai G, van Kammen DP, Chen S, Kelley ME, Grier A, Coyle JT . Glutamatergic neurotransmission involves structural and clinical deficits of schizophrenia. Biol Psychiatry 1998; 44: 667–674.

    Article  CAS  PubMed  Google Scholar 

  71. Hashimoto K, Engberg G, Shimizu E, Nordin C, Lindstrom LH, Iyo M . Elevated glutamine/glutamate ratio in cerebrospinal fluid of first episode and drug naive schizophrenic patients. BMC Psychiatry 2005; 5: 6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Do KQ, Lauer CJ, Schreiber W, Zollinger M, Gutteck-Amsler U, Cuenod M et al. gamma-Glutamylglutamine and taurine concentrations are decreased in the cerebrospinal fluid of drug-naive patients with schizophrenic disorders. J Neurochem 1995; 65: 2652–2662.

    Article  CAS  PubMed  Google Scholar 

  73. Schobel SA, Lewandowski NM, Corcoran CM, Moore H, Brown T, Malaspina D et al. Differential targeting of the CA1 subfield of the hippocampal formation by schizophrenia and related psychotic disorders. Arch Gen Psychiatry 2009; 66: 938–946.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Schobel SA, Chaudhury NH, Khan UA, Paniagua B, Styner MA, Asllani I et al. Imaging patients with psychosis and a mouse model establishes a spreading pattern of hippocampal dysfunction and implicates glutamate as a driver. Neuron 2013; 78: 81–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wandinger KP, Saschenbrecker S, Stoecker W, Dalmau J . Anti-NMDA-receptor encephalitis: a severe, multistage, treatable disorder presenting with psychosis. J Neuroimmunol 2011; 231: 86–91.

    Article  CAS  PubMed  Google Scholar 

  76. Dalmau J, Gleichman AJ, Hughes EG, Rossi JE, Peng X, Lai M et al. Anti-NMDA-receptor encephalitis: case series and analysis of the effects of antibodies. Lancet Neurol 2008; 7: 1091–1098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Dalmau J, Lancaster E, Martinez-Hernandez E, Rosenfeld MR, Balice-Gordon R . Clinical experience and laboratory investigations in patients with anti-NMDAR encephalitis. Lancet Neurol 2011; 10: 63–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Vincent A, Bien CG, Irani SR, Waters P . Autoantibodies associated with diseases of the CNS: new developments and future challenges. Lancet Neurol 2011; 10: 759–772.

    Article  CAS  PubMed  Google Scholar 

  79. Lesher AP, Myers TJ, Tecklenburg F, Streck CJ . Anti-N-methyl-D-aspartate receptor encephalitis associated with an ovarian teratoma in an adolescent female. J Pediatr Surg 2010; 45: 1550–1553.

    Article  PubMed  Google Scholar 

  80. Seki M, Suzuki S, Iizuka T, Shimizu T, Nihei Y, Suzuki N et al. Neurological response to early removal of ovarian teratoma in anti-NMDAR encephalitis. J Neurol Neurosurg Psychiatry 2008; 79: 324–326.

    Article  CAS  PubMed  Google Scholar 

  81. Goto N, Yoshimura R, Moriya J, Kakeda S, Ueda N, Ikenouchi-Sugita A et al. Reduction of brain gamma-aminobutyric acid (GABA) concentrations in early-stage schizophrenia patients: 3 T Proton MRS study. Schizophr Research 2009; 112: 192–193.

    Article  Google Scholar 

  82. Tayoshi S, Nakataki M, Sumitani S, Taniguchi K, Shibuya-Tayoshi S, Numata S et al. GABA concentration in schizophrenia patients and the effects of antipsychotic medication: a proton magnetic resonance spectroscopy study. Schizophr Res 2010; 117: 83–91.

    Article  PubMed  Google Scholar 

  83. Yoon JH, Maddock RJ, Rokem A, Silver MA, Minzenberg MJ, Ragland JD et al. GABA concentration is reduced in visual cortex in schizophrenia and correlates with orientation-specific surround suppression. J Neurosci 2010; 30: 3777–3781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ongur D, Prescot AP, McCarthy J, Cohen BM, Renshaw PF . Elevated gamma-aminobutyric acid levels in chronic schizophrenia. Biol Psychiatry 2010; 68: 667–670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Rowland LM, Kontson K, West J, Edden RA, Zhu H, Wijtenburg SA et al. In vivo measurements of glutamate, GABA, and NAAG in schizophrenia. Schizophr Bull 2013; 39: 1096–1104.

    Article  PubMed  Google Scholar 

  86. Cousijn H, Haegens S, Wallis G, Near J, Stokes MG, Harrison PJ et al. Resting GABA and glutamate concentrations do not predict visual gamma frequency or amplitude. Proc Natl Acad Sci USA 2014; 111: 9301–9306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Gerner RH, Hare TA . CSF GABA in normal subjects and patients with depression, schizophrenia, mania, and anorexia nervosa. Am J Psychiatry 1981; 138: 1098–1101.

    Article  CAS  PubMed  Google Scholar 

  88. Lichtshtein D, Dobkin J, Ebstein RP, Biederman J, Rimon R, Belmaker RH . Gamma-aminobutyric acid (GABA) in the CSF of schizophrenic patients before and after neuroleptic treatment. Br J Psychiatry 1978; 132: 145–148.

    Article  CAS  PubMed  Google Scholar 

  89. Petty F, Sherman AD . Plasma GABA levels in psychiatric illness. J Affect Disord 1984; 6: 131–138.

    Article  CAS  PubMed  Google Scholar 

  90. van Kammen DP, Sternberg DE, Hare TA, Waters RN, Bunney WE Jr. . CSF levels of gamma-aminobutyric acid in schizophrenia. Low values in recently ill patients. Arch Gen Psychiatry 1982; 39: 91–97.

    Article  CAS  PubMed  Google Scholar 

  91. McCarthy BW, Gomes UR, Neethling AC, Shanley BC, Taljaard JJ, Potgieter L et al. gamma-Aminobutyric acid concentration in cerebrospinal fluid in schizophrenia. J Neurochem 1981; 36: 1406–1408.

    Article  CAS  PubMed  Google Scholar 

  92. Benes FM, Berretta S . GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacology 2001; 25: 1–27.

    Article  CAS  PubMed  Google Scholar 

  93. Volk DW, Lewis DA . Early developmental disturbances of cortical inhibitory neurons: contribution to cognitive deficits in schizophrenia. Schizophr Bull 2014; 40: 952–957.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Hashimoto T, Volk DW, Eggan SM, Mirnics K, Pierri JN, Sun Z et al. Gene expression deficits in a subclass of GABA neurons in the prefrontal cortex of subjects with schizophrenia. J Neurosci 2003; 23: 6315–6326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Volk DW, Matsubara T, Li S, Sengupta EJ, Georgiev D, Minabe Y et al. Deficits in transcriptional regulators of cortical parvalbumin neurons in schizophrenia. Am J Psychiatry 2012; 169: 1082–1091.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Akbarian S, Kim JJ, Potkin SG, Hagman JO, Tafazzoli A, Bunney WE Jr. et al. Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics. Arch Gen Psychiatry 1995; 52: 258–266.

    Article  CAS  PubMed  Google Scholar 

  97. Guidotti A, Auta J, Davis JM, Di-Giorgi-Gerevini V, Dwivedi Y, Grayson DR et al. Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: a postmortem brain study. Arch Gen Psychiatry 2000; 57: 1061–1069.

    Article  CAS  PubMed  Google Scholar 

  98. Curley AA, Arion D, Volk DW, Asafu-Adjei JK, Sampson AR, Fish KN et al. Cortical deficits of glutamic acid decarboxylase 67 expression in schizophrenia: clinical, protein, and cell type-specific features. Am J Psychiatry 2011; 168: 921–929.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Yanagi M, Joho RH, Southcott SA, Shukla AA, Ghose S, Tamminga CA . Kv3.1-containing K(+) channels are reduced in untreated schizophrenia and normalized with antipsychotic drugs. Mol Psychiatry 2014; 19: 573–579.

    Article  CAS  PubMed  Google Scholar 

  100. Georgiev D, Arion D, Enwright JF, Kikuchi M, Minabe Y, Corradi JP et al. Lower gene expression for KCNS3 potassium channel subunit in parvalbumin-containing neurons in the prefrontal cortex in schizophrenia. Am J Psychiatry 2014; 171: 62–71.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Lewis DA, Hashimoto T, Volk DW . Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci 2005; 6: 312–324.

    Article  CAS  PubMed  Google Scholar 

  102. Hashimoto T, Arion D, Unger T, Maldonado-Aviles JG, Morris HM, Volk DW et al. Alterations in GABA-related transcriptome in the dorsolateral prefrontal cortex of subjects with schizophrenia. Mol Psychiatry 2008; 13: 147–161.

    Article  CAS  PubMed  Google Scholar 

  103. Adler LE, Hoffer LD, Wiser A, Freedman R . Normalization of auditory physiology by cigarette smoking in schizophrenic patients. Am J Psychiatry 1993; 150: 1856–1861.

    Article  CAS  PubMed  Google Scholar 

  104. Chen XS, Li CB, Smith RC, Xiao ZP, Wang JJ . Differential sensory gating functions between smokers and non-smokers among drug-naive first episode schizophrenic patients. Psychiatry Res 2011; 188: 327–333.

    Article  PubMed  Google Scholar 

  105. Kumari V, Soni W, Sharma T . Influence of cigarette smoking on prepulse inhibition of the acoustic startle response in schizophrenia. Hum Psychopharmacol 2001; 16: 321–326.

    Article  PubMed  Google Scholar 

  106. Freedman R, Coon H, Myles-Worsley M, Orr-Urtreger A, Olincy A, Davis A et al. Linkage of a neurophysiological deficit in schizophrenia to a chromosome 15 locus. Proc Natl Acad Sci USA 1997; 94: 587–592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kaufmann CA, Suarez B, Malaspina D, Pepple J, Svrakic D, Markel PD et al. NIMH Genetics Initiative Millenium Schizophrenia Consortium: linkage analysis of African-American pedigrees. Am J Med Genet 1998; 81: 282–289.

    Article  CAS  PubMed  Google Scholar 

  108. Riley BP, Makoff A, Mogudi-Carter M, Jenkins T, Williamson R, Collier D et al. Haplotype transmission disequilibrium and evidence for linkage of the CHRNA7 gene region to schizophrenia in Southern African Bantu families. Am J Med Genet 2000; 96: 196–201.

    Article  CAS  PubMed  Google Scholar 

  109. Freedman R, Hall M, Adler LE, Leonard S . Evidence in postmortem brain tissue for decreased numbers of hippocampal nicotinic receptors in schizophrenia. Biol Psychiatry 1995; 38: 22–33.

    Article  CAS  PubMed  Google Scholar 

  110. Court J, Spurden D, Lloyd S, McKeith I, Ballard C, Cairns N et al. Neuronal nicotinic receptors in dementia with Lewy bodies and schizophrenia: alpha-bungarotoxin and nicotine binding in the thalamus. JNeurochem 1999; 73: 1590–1597.

    Article  CAS  Google Scholar 

  111. Marutle A, Zhang X, Court J, Piggott M, Johnson M, Perry R et al. Laminar distribution of nicotinic receptor subtypes in cortical regions in schizophrenia. J Chem Neuroanat 2001; 22: 115–126.

    Article  CAS  PubMed  Google Scholar 

  112. D'Souza DC, Esterlis I, Carbuto M, Krasenics M, Seibyl J, Bois F et al. Lower ss2*-nicotinic acetylcholine receptor availability in smokers with schizophrenia. Am J Psychiatry 2012; 169: 326–334.

    Article  PubMed  Google Scholar 

  113. Brasic JR, Cascella N, Kumar A, Zhou Y, Hilton J, Raymont V et al. Positron emission tomography experience with 2-[(1)(8)F]fluoro-3-(2(S)-azetidinylmethoxy)pyridine (2-[(1)(8)F]FA) in the living human brain of smokers with paranoid schizophrenia. Synapse (New York, NY) 2012; 66: 352–368.

    Article  CAS  Google Scholar 

  114. Seshadri S, Zeledon M, Sawa A . Synapse-specific contributions in the cortical pathology of schizophrenia. Neurobiol Dis 2013; 53: 26–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Hayashi-Takagi A, Takaki M, Graziane N, Seshadri S, Murdoch H, Dunlop AJ et al. Disrupted-in-Schizophrenia 1 (DISC1) regulates spines of the glutamate synapse via Rac1. Nat Neurosci 2010; 13: 327–332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Hayashi-Takagi A, Araki Y, Nakamura M, Vollrath B, Duron SG, Yan Z et al. PAKs inhibitors ameliorate schizophrenia-associated dendritic spine deterioration in vitro and in vivo during late adolescence. Proc Natl Acad Sci USA 2014; 111: 6461–6466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Morris DW, Pearson RD, Cormican P, Kenny EM, O'Dushlaine CT, Perreault LP et al. An inherited duplication at the gene p21 Protein-Activated Kinase 7 (PAK7) is a risk factor for psychosis. Hum Mol Genet 2014; 23: 3316–3326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Mirnics K, Middleton FA, Marquez A, Lewis DA, Levitt P . Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex. Neuron 2000; 28: 53–67.

    Article  CAS  PubMed  Google Scholar 

  119. Arancibia-Carcamo IL, Attwell D . The node of Ranvier in CNS pathology. Acta Neuropathol 2014; 128: 161–175.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Bjartmar C, Yin X, Trapp BD . Axonal pathology in myelin disorders. J Neurocytol 1999; 28: 383–395.

    Article  CAS  PubMed  Google Scholar 

  121. Shenton ME, Whitford TJ, Kubicki M . Structural neuroimaging in schizophrenia: from methods to insights to treatments. Dial Clin Neurosci 2010; 12: 317–332.

    Google Scholar 

  122. Kanaan R, Barker G, Brammer M, Giampietro V, Shergill S, Woolley J et al. White matter microstructure in schizophrenia: effects of disorder, duration and medication. Br J Psychiatry 2009; 194: 236–242.

    Article  PubMed  PubMed Central  Google Scholar 

  123. White T, Nelson M, Lim KO . Diffusion tensor imaging in psychiatric disorders. Top Magn Reson Imaging 2008; 19: 97–109.

    Article  PubMed  Google Scholar 

  124. Ellison-Wright I, Bullmore E . Meta-analysis of diffusion tensor imaging studies in schizophrenia. Schizophr Res 2009; 108: 3–10.

    Article  PubMed  Google Scholar 

  125. Witthaus H, Brune M, Kaufmann C, Bohner G, Ozgurdal S, Gudlowski Y et al. White matter abnormalities in subjects at ultra high-risk for schizophrenia and first-episode schizophrenic patients. Schizophr Res 2008; 102: 141–149.

    Article  PubMed  Google Scholar 

  126. Epstein KA, Cullen KR, Mueller BA, Robinson P, Lee S, Kumra S . White matter abnormalities and cognitive impairment in early-onset schizophrenia-spectrum disorders. J Am Acad Child Adolesc Psychiatry 2014; 53: 362–72 e1-2.

    Article  PubMed  Google Scholar 

  127. Andreasen NC, Nopoulos P, Magnotta V, Pierson R, Ziebell S, Ho BC . Progressive brain change in schizophrenia: a prospective longitudinal study of first-episode schizophrenia. Biol Psychiatry 2011; 70: 672–679.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Yang GJ, Murray JD, Repovs G, Cole MW, Savic A, Glasser MF et al. Altered global brain signal in schizophrenia. Proc Natl Acad Sci USA 2014; 111: 7438–7443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Lynall ME, Bassett DS, Kerwin R, McKenna PJ, Kitzbichler M, Muller U et al. Functional connectivity and brain networks in schizophrenia. J Neurosci 2010; 30: 9477–9487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Cole MW, Anticevic A, Repovs G, Barch D . Variable global dysconnectivity and individual differences in schizophrenia. Biol Psychiatry 2011; 70: 43–50.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Baker JT, Holmes AJ, Masters GA, Yeo BT, Krienen F, Buckner RL et al. Disruption of cortical association networks in schizophrenia and psychotic bipolar disorder. JAMA Psychiatry 2014; 71: 109–118.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Woodward ND, Karbasforoushan H, Heckers S . Thalamocortical dysconnectivity in schizophrenia. Am J Psychiatry 2012; 169: 1092–1099.

    Article  PubMed  Google Scholar 

  133. Anticevic A, Cole MW, Repovs G, Murray JD, Brumbaugh MS, Winkler AM et al. Characterizing Thalamo-Cortical Disturbances in Schizophrenia and Bipolar Illness. Cereb Cortex (New York, NY: 1991) 2013; 24: 3116–3130.

    Google Scholar 

  134. Jeong B, Kubicki M . Reduced task-related suppression during semantic repetition priming in schizophrenia. Psychiatry Res 2010; 181: 114–120.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Chai XJ, Whitfield-Gabrieli S, Shinn AK, Gabrieli JD, Nieto Castanon A, McCarthy JM et al. Abnormal medial prefrontal cortex resting-state connectivity in bipolar disorder and schizophrenia. Neuropsychopharmacology 2011; 36: 2009–2017.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Anticevic A, Cole MW, Murray JD, Corlett PR, Wang XJ, Krystal JH . The role of default network deactivation in cognition and disease. Trends Cogn Sci 2012; 16: 584–592.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Fitzsimmons J, Kubicki M, Shenton ME . Review of functional and anatomical brain connectivity findings in schizophrenia. Curr Opin Psychiatry 2013; 26: 172–187.

    Article  PubMed  Google Scholar 

  138. Fornito A, Zalesky A, Pantelis C, Bullmore ET . Schizophrenia, neuroimaging and connectomics. NeuroImage. 2012; 62: 2296–2314.

    Article  PubMed  Google Scholar 

  139. Anticevic A, Cole MW, Repovs G, Savic A, Driesen NR, Yang G et al. Connectivity, pharmacology, and computation: toward a mechanistic understanding of neural system dysfunction in schizophrenia. Front Psychiatry 2013; 4: 169.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Sequeira PA, Martin MV, Vawter MP . The first decade and beyond of transcriptional profiling in schizophrenia. Neurobiol Dis 2012; 45: 23–36.

    Article  CAS  PubMed  Google Scholar 

  141. Hof PR, Haroutunian V, Friedrich VL Jr., Byne W, Buitron C, Perl DP et al. Loss and altered spatial distribution of oligodendrocytes in the superior frontal gyrus in schizophrenia. Biol Psychiatry 2003; 53: 1075–1085.

    Article  CAS  PubMed  Google Scholar 

  142. Hakak Y, Walker JR, Li C, Wong WH, Davis KL, Buxbaum JD et al. Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc Natl Acad Sci USA 2001; 98: 4746–4751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Tkachev D, Mimmack ML, Ryan MM, Wayland M, Freeman T, Jones PB et al. Oligodendrocyte dysfunction in schizophrenia and bipolar disorder. Lancet 2003; 362: 798–805.

    Article  CAS  PubMed  Google Scholar 

  144. Aston C, Jiang L, Sokolov BP . Microarray analysis of postmortem temporal cortex from patients with schizophrenia. J Neurosci Res 2004; 77: 858–866.

    Article  CAS  PubMed  Google Scholar 

  145. Katsel P, Davis KL, Haroutunian V . Variations in myelin and oligodendrocyte-related gene expression across multiple brain regions in schizophrenia: a gene ontology study. Schizophr Res 2005; 79: 157–173.

    Article  PubMed  Google Scholar 

  146. Haroutunian V, Katsel P, Dracheva S, Stewart DG, Davis KL . Variations in oligodendrocyte-related gene expression across multiple cortical regions: implications for the pathophysiology of schizophrenia. Int J Neuropsychopharmacol 2007; 10: 565–573.

    Article  CAS  PubMed  Google Scholar 

  147. Takahashi N, Sakurai T, Davis KL, Buxbaum JD . Linking oligodendrocyte and myelin dysfunction to neurocircuitry abnormalities in schizophrenia. Prog Neurobiol 2011; 93: 13–24.

    Article  CAS  PubMed  Google Scholar 

  148. Stefansson H, Sigurdsson E, Steinthorsdottir V, Bjornsdottir S, Sigmundsson T, Ghosh S et al. Neuregulin 1 and susceptibility to schizophrenia. Am J Hum Genet 2002; 71: 877–892.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Williams NM, Preece A, Spurlock G, Norton N, Williams HJ, Zammit S et al. Support for genetic variation in neuregulin 1 and susceptibility to schizophrenia. Mol Psychiatry 2003; 8: 485–487.

    Article  CAS  PubMed  Google Scholar 

  150. Corfas G, Roy K, Buxbaum JD . Neuregulin 1-erbB signaling and the molecular/cellular basis of schizophrenia. Nat Neurosci 2004; 7: 575–580.

    Article  CAS  PubMed  Google Scholar 

  151. Novak G, Kim D, Seeman P, Tallerico T . Schizophrenia and Nogo: elevated mRNA in cortex, and high prevalence of a homozygous CAA insert. Brain Res Mol Brain Res 2002; 107: 183–189.

    Article  CAS  PubMed  Google Scholar 

  152. Tan EC, Chong SA, Wang H, Chew-Ping Lim E, Teo YY . Gender-specific association of insertion/deletion polymorphisms in the nogo gene and chronic schizophrenia. Brain Res Mol Brain Res 2005; 139: 212–216.

    Article  CAS  PubMed  Google Scholar 

  153. Sinibaldi L, De Luca A, Bellacchio E, Conti E, Pasini A, Paloscia C et al. Mutations of the Nogo-66 receptor (RTN4R) gene in schizophrenia. Hum Mutat 2004; 24: 534–535.

    Article  CAS  PubMed  Google Scholar 

  154. Prata DP, Kanaan RA, Barker GJ, Shergill S, Woolley J, Georgieva L et al. Risk variant of oligodendrocyte lineage transcription factor 2 is associated with reduced white matter integrity. Hum Brain Mapping 2013; 34: 2025–2031.

    Article  Google Scholar 

  155. Felsky D, Voineskos AN, Lerch JP, Nazeri A, Shaikh SA, Rajji TK et al. Myelin-associated glycoprotein gene and brain morphometry in schizophrenia. Front Psychiatry 2012; 3: 40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium. Genome-wide association study identifies five new schizophrenia loci. Nat Genet 2011; 43: 969–976.

    Article  CAS  Google Scholar 

  157. Yu H, Bi W, Liu C, Zhao Y, Zhang JF, Zhang D et al. A hypothesis-driven pathway analysis reveals myelin-related pathways that contribute to the risk of schizophrenia and bipolar disorder. Prog Neuro-psychopharmacol 2014; 51: 140–145.

    Article  CAS  Google Scholar 

  158. Goudriaan A, de Leeuw C, Ripke S, Hultman CM, Sklar P, Sullivan PF et al. Specific glial functions contribute to schizophrenia susceptibility. Schizophr Bull 2013.

  159. McIntosh AM, Moorhead TW, Job D, Lymer GK, Munoz Maniega S, McKirdy J et al. The effects of a neuregulin 1 variant on white matter density and integrity. Mol Psychiatry 2008; 13: 1054–1059.

    Article  CAS  PubMed  Google Scholar 

  160. Roussos P, Katsel P, Davis KL, Bitsios P, Giakoumaki SG, Jogia J et al. Molecular and genetic evidence for abnormalities in the nodes of Ranvier in schizophrenia. Arch Gen Psychiatry 2012; 69: 7–15.

    Article  CAS  PubMed  Google Scholar 

  161. Roussos P, Haroutunian V . Schizophrenia: susceptibility genes and oligodendroglial and myelin related abnormalities. Front Cell Neurosci 2014; 8: 5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Voineskos AN . Genetic underpinnings of white matter 'connectivity': Heritability, risk, and heterogeneity in schizophrenia. Schizophr Res 2014; 161: 50–60.

    Article  PubMed  Google Scholar 

  163. Bartzokis G . Neuroglialpharmacology: myelination as a shared mechanism of action of psychotropic treatments. Neuropharmacology 2012; 62: 2137–2153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Reis Marques T, Taylor H, Chaddock C, Dell'acqua F, Handley R, Reinders AA et al. White matter integrity as a predictor of response to treatment in first episode psychosis. Brain 2014; 137: 172–182.

    Article  PubMed  Google Scholar 

  165. Brown AS . The environment and susceptibility to schizophrenia. Progr Neurobiol 2011; 93: 23–58.

    Article  CAS  Google Scholar 

  166. Insel TR . Rethinking schizophrenia. Nature 2010; 468: 187–193.

    Article  CAS  PubMed  Google Scholar 

  167. Drexhage RC, Weigelt K, van Beveren N, Cohen D, Versnel MA, Nolen WA et al. Immune and neuroimmune alterations in mood disorders and schizophrenia. Int Rev Neurobiol 2011; 101: 169–201.

    Article  CAS  PubMed  Google Scholar 

  168. Zhang XY, Zhou DF, Cao LY, Wu GY, Shen YC . Cortisol and cytokines in chronic and treatment-resistant patients with schizophrenia: association with psychopathology and response to antipsychotics. Neuropsychopharmacology 2005; 30: 1532–1538.

    Article  CAS  PubMed  Google Scholar 

  169. Ebrinc S, Top C, Oncul O, Basoglu C, Cavuslu S, Cetin M . Serum interleukin 1 alpha and interleukin 2 levels in patients with schizophrenia. J Int Med Res 2002; 30: 314–317.

    Article  CAS  PubMed  Google Scholar 

  170. Monteleone P, Fabrazzo M, Tortorella A, Maj M . Plasma levels of interleukin-6 and tumor necrosis factor alpha in chronic schizophrenia: effects of clozapine treatment. Psychiatry Res 1997; 71: 11–17.

    Article  CAS  PubMed  Google Scholar 

  171. Song XQ, Lv LX, Li WQ, Hao YH, Zhao JP . The interaction of nuclear factor-kappa B and cytokines is associated with schizophrenia. Biol Psychiatry 2009; 65: 481–488.

    Article  CAS  PubMed  Google Scholar 

  172. Erbagci AB, Herken H, Koyluoglu O, Yilmaz N, Tarakcioglu M . Serum IL-1beta sIL-2 R, IL-6, IL-8 and TNF-alpha in schizophrenic patients, relation with symptomatology and responsiveness to risperidone treatment. Mediat Inflamm 2001; 10: 109–115.

    Article  CAS  Google Scholar 

  173. Theodoropoulou S, Spanakos G, Baxevanis CN, Economou M, Gritzapis AD, Papamichail MP et al. Cytokine serum levels, autologous mixed lymphocyte reaction and surface marker analysis in never medicated and chronically medicated schizophrenic patients. Schizophr Res 2001; 47: 13–25.

    Article  CAS  PubMed  Google Scholar 

  174. Upthegrove R, Manzanares-Teson N, Barnes NM . Cytokine function in medication-naive first episode psychosis: a systematic review and meta-analysis. Schizophr Res 2014; 155: 101–108.

    Article  PubMed  Google Scholar 

  175. Tourjman V, Kouassi E, Koue ME, Rocchetti M, Fortin-Fournier S, Fusar-Poli P et al. Antipsychotics' effects on blood levels of cytokines in schizophrenia: a meta-analysis. Schizophr Res 2013; 151: 43–47.

    Article  PubMed  Google Scholar 

  176. Brown AS, Hooton J, Schaefer CA, Zhang H, Petkova E, Babulas V et al. Elevated maternal interleukin-8 levels and risk of schizophrenia in adult offspring. Am J Psychiatry 2004; 161: 889–895.

    Article  PubMed  Google Scholar 

  177. Buka SL, Tsuang MT, Torrey EF, Klebanoff MA, Wagner RL, Yolken RH . Maternal cytokine levels during pregnancy and adult psychosis. Brain Behav Immun 2001; 15: 411–420.

    Article  CAS  PubMed  Google Scholar 

  178. Hayes LN, Severance EG, Leek JT, Gressitt KL, Rohleder C, Coughlin JM et al. Inflammatory molecular signature associated with infectious agents in psychosis. Schizophr Bull 2014; 40: 963–972.

    Article  PubMed  PubMed Central  Google Scholar 

  179. Beumer W, Gibney SM, Drexhage RC, Pont-Lezica L, Doorduin J, Klein HC et al. The immune theory of psychiatric diseases: a key role for activated microglia and circulating monocytes. J Leukoc Biol 2012; 92: 959–975.

    Article  CAS  PubMed  Google Scholar 

  180. Nikkila HV, Muller K, Ahokas A, Miettinen K, Rimon R, Andersson LC . Accumulation of macrophages in the CSF of schizophrenic patients during acute psychotic episodes. Am J Psychiatry 1999; 156: 1725–1729.

    CAS  PubMed  Google Scholar 

  181. Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 2012; 74: 691–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, Panzanelli P et al. Synaptic pruning by microglia is necessary for normal brain development. Science (New York, NY) 2011; 333: 1456–1458.

    Article  CAS  Google Scholar 

  183. Ji K, Miyauchi J, Tsirka SE . Microglia: an active player in the regulation of synaptic activity. Neural Plast 2013; 2013: 627325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Feinberg I . Schizophrenia: caused by a fault in programmed synaptic elimination during adolescence? J Psychiatr Res 1982; 17: 319–334.

    Article  PubMed  Google Scholar 

  185. Wierzba-Bobrowicz T, Lewandowska E, Lechowicz W, Stepien T, Pasennik E . Quantitative analysis of activated microglia, ramified and damage of processes in the frontal and temporal lobes of chronic schizophrenics. Folia Neuropathol 2005; 43: 81–89.

    PubMed  Google Scholar 

  186. Radewicz K, Garey LJ, Gentleman SM, Reynolds R . Increase in HLA-DR immunoreactive microglia in frontal and temporal cortex of chronic schizophrenics. J Neuropathol Exp Neurol 2000; 59: 137–150.

    Article  CAS  PubMed  Google Scholar 

  187. Arnold SE, Trojanowski JQ, Gur RE, Blackwell P, Han LY, Choi C . Absence of neurodegeneration and neural injury in the cerebral cortex in a sample of elderly patients with schizophrenia. Arch Gen Psychiatry 1998; 55: 225–232.

    Article  CAS  PubMed  Google Scholar 

  188. Falke E, Han LY, Arnold SE . Absence of neurodegeneration in the thalamus and caudate of elderly patients with schizophrenia. Psychiatry Res 2000; 93: 103–110.

    Article  CAS  PubMed  Google Scholar 

  189. Kahn RS, Sommer IE . The neurobiology and treatment of first-episode schizophrenia. Mol Psychiatry 2014; 20: 84–97.

    Article  PubMed  PubMed Central  Google Scholar 

  190. Fillman SG, Cloonan N, Catts VS, Miller LC, Wong J, McCrossin T et al. Increased inflammatory markers identified in the dorsolateral prefrontal cortex of individuals with schizophrenia. Mol Psychiatry 2013; 18: 206–214.

    Article  CAS  PubMed  Google Scholar 

  191. Fillman SG, Cloonan N, Miller LC, Weickert CS . Markers of inflammation in the prefrontal cortex of individuals with schizophrenia. Mol Psychiatry 2013; 18: 133.

    Article  CAS  PubMed  Google Scholar 

  192. Rupprecht R, Papadopoulos V, Rammes G, Baghai TC, Fan J, Akula N et al. Translocator protein (18 kDa) (TSPO) as a therapeutic target for neurological and psychiatric disorders. Nat Rev Drug Discov 2010; 9: 971–988.

    Article  CAS  PubMed  Google Scholar 

  193. Banati RB, Newcombe J, Gunn RN, Cagnin A, Turkheimer F, Heppner F et al. The peripheral benzodiazepine binding site in the brain in multiple sclerosis: quantitative in vivo imaging of microglia as a measure of disease activity. Brain 2000; 123: 2321–2337.

    Article  PubMed  Google Scholar 

  194. Banati RB, Egensperger R, Maassen A, Hager G, Kreutzberg GW, Graeber MB . Mitochondria in activated microglia in vitro. J Neurocytol 2004; 33: 535–541.

    Article  PubMed  Google Scholar 

  195. Doorduin J, de Vries EF, Willemsen AT, de Groot JC, Dierckx RA, Klein HC . Neuroinflammation in schizophrenia-related psychosis: a PET study. J Nucl Med 2009; 50: 1801–1807.

    Article  PubMed  Google Scholar 

  196. van Berckel BN, Bossong MG, Boellaard R, Kloet R, Schuitemaker A, Caspers E et al. Microglia activation in recent-onset schizophrenia: a quantitative (R)-[11C]PK11195 positron emission tomography study. Biol Psychiatry 2008; 64: 820–822.

    Article  PubMed  Google Scholar 

  197. Doorduin J, de Vries EF, Dierckx RA, Klein HC . PET imaging of the peripheral benzodiazepine receptor: monitoring disease progression and therapy response in neurodegenerative disorders. Curr Pharm Des 2008; 14: 3297–3315.

    Article  CAS  PubMed  Google Scholar 

  198. Owen DR, Yeo AJ, Gunn RN, Song K, Wadsworth G, Lewis A et al. An 18-kDa translocator protein (TSPO) polymorphism explains differences in binding affinity of the PET radioligand PBR28. J Cereb Blood Flow Metab 2012; 32: 1–5.

    Article  CAS  PubMed  Google Scholar 

  199. Manji H, Kato T, Di Prospero NA, Ness S, Beal MF, Krams M et al. Impaired mitochondrial function in psychiatric disorders. Nat Rev Neurosci 2012; 13: 293–307.

    Article  CAS  PubMed  Google Scholar 

  200. McGrath JJ, Mortensen PB, Visscher PM, Wray NR . Where GWAS and epidemiology meet: opportunities for the simultaneous study of genetic and environmental risk factors in schizophrenia. Schizophr Bull 2013; 39: 955–959.

    Article  PubMed  PubMed Central  Google Scholar 

  201. Ayhan Y, Sawa A, Ross CA, Pletnikov MV . Animal models of gene-environment interactions in schizophrenia. Behav Brain Res 2009; 204: 274–281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Kannan G, Sawa A, Pletnikov MV . Mouse models of gene-environment interactions in schizophrenia. Neurobiol Dis 2013; 57: 5–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Benros ME, Eaton WW, Mortensen PB . The epidemiologic evidence linking autoimmune diseases and psychosis. Biol Psychiatry 2013; 75: 300–306.

    Article  PubMed  PubMed Central  Google Scholar 

  204. Eaton WW, Byrne M, Ewald H, Mors O, Chen CY, Agerbo E et al. Association of schizophrenia and autoimmune diseases: linkage of Danish national registers. Am J Psychiatry 2006; 163: 521–528.

    Article  PubMed  Google Scholar 

  205. Stefansson H, Ophoff RA, Steinberg S, Andreassen OA, Cichon S, Rujescu D et al. Common variants conferring risk of schizophrenia. Nature 2009; 460: 744–747.

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Jia P, Wang L, Fanous AH, Chen X, Kendler KS, Zhao Z . A bias-reducing pathway enrichment analysis of genome-wide association data confirmed association of the MHC region with schizophrenia. J Med Genet 2012; 49: 96–103.

    Article  CAS  PubMed  Google Scholar 

  207. Bitanihirwe BK, Woo TU . Oxidative stress in schizophrenia: an integrated approach. Neurosci Biobehav Rev 2011; 35: 878–893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Emiliani FE, Sedlak TW, Sawa A . Oxidative stress and schizophrenia: recent breakthroughs from an old story. Curr Opin Psychiatry 2014; 27: 185–190.

    Article  PubMed  PubMed Central  Google Scholar 

  209. Flatow J, Buckley P, Miller BJ . Meta-analysis of oxidative stress in schizophrenia. Biol Psychiatry 2013; 74: 400–409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Gawryluk JW, Wang JF, Andreazza AC, Shao L, Young LT . Decreased levels of glutathione, the major brain antioxidant, in post-mortem prefrontal cortex from patients with psychiatric disorders. Int J Neuropsychopharmacol 2011; 14: 123–130.

    Article  CAS  PubMed  Google Scholar 

  211. Evans DR, Parikh VV, Khan MM, Coussons C, Buckley PF, Mahadik SP . Red blood cell membrane essential fatty acid metabolism in early psychotic patients following antipsychotic drug treatment. Prostaglandins Leukot Essent Fatty Acids 2003; 69: 393–399.

    Article  CAS  PubMed  Google Scholar 

  212. Coughlin JM, Ishizuka K, Kano SI, Edwards JA, Seifuddin FT, Shimano MA et al. Marked reduction of soluble superoxide dismutase-1 (SOD1) in cerebrospinal fluid of patients with recent-onset schizophrenia. Mol Psychiatry 2013; 18: 10–11.

    Article  CAS  PubMed  Google Scholar 

  213. Raffa M, Atig F, Mhalla A, Kerkeni A, Mechri A . Decreased glutathione levels and impaired antioxidant enzyme activities in drug-naive first-episode schizophrenic patients. BMC Psychiatry 2011; 11: 124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Kano S, Colantuoni C, Han F, Zhou Z, Yuan Q, Wilson A et al. Genome-wide profiling of multiple histone methylations in olfactory cells: further implications for cellular susceptibility to oxidative stress in schizophrenia. Mol Psychiatry 2013; 18: 740–742.

    Article  CAS  PubMed  Google Scholar 

  215. Do KQ, Trabesinger AH, Kirsten-Kruger M, Lauer CJ, Dydak U, Hell D et al. Schizophrenia: glutathione deficit in cerebrospinal fluid and prefrontal cortex in vivo. Eur J Neurosci 2000; 12: 3721–3728.

    Article  CAS  PubMed  Google Scholar 

  216. Terpstra M, Vaughan TJ, Ugurbil K, Lim KO, Schulz SC, Gruetter R . Validation of glutathione quantitation from STEAM spectra against edited 1H NMR spectroscopy at 4 T: application to schizophrenia. Magma (New York, NY) 2005; 18: 276–282.

    CAS  Google Scholar 

  217. Matsuzawa D, Obata T, Shirayama Y, Nonaka H, Kanazawa Y, Yoshitome E et al. Negative correlation between brain glutathione level and negative symptoms in schizophrenia: a 3 T 1H-MRS study. PLoS One 2008; 3: e1944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Wood SJ, Berger GE, Wellard RM, Proffitt TM, McConchie M, Berk M et al. Medial temporal lobe glutathione concentration in first episode psychosis: a 1H-MRS investigation. Neurobiol Dis 2009; 33: 354–357.

    Article  CAS  PubMed  Google Scholar 

  219. Borges S, Gayer-Anderson C, Mondelli V . A systematic review of the activity of the hypothalamic-pituitary-adrenal axis in first episode psychosis. Psychoneuroendocrinology 2013; 38: 603–611.

    Article  CAS  PubMed  Google Scholar 

  220. Pariante CM, Vassilopoulou K, Velakoulis D, Phillips L, Soulsby B, Wood SJ et al. Pituitary volume in psychosis. Br J Psychiatry 2004; 185: 5–10.

    Article  PubMed  Google Scholar 

  221. Takahashi T, Nakamura K, Nishiyama S, Furuichi A, Ikeda E, Kido M et al. Increased pituitary volume in subjects at risk for psychosis and patients with first-episode schizophrenia. Psychiatry Clin Neurosci 2013; 67: 540–548.

    Article  PubMed  Google Scholar 

  222. Buschlen J, Berger GE, Borgwardt SJ, Aston J, Gschwandtner U, Pflueger MO et al. Pituitary volume increase during emerging psychosis. Schizophr Res 2011; 125: 41–48.

    Article  PubMed  Google Scholar 

  223. Romo-Nava F, Hoogenboom WS, Pelavin PE, Alvarado JL, Bobrow LH, Macmaster FP et al. Pituitary volume in schizophrenia spectrum disorders. Schizophr Res 2013; 146: 301–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Gruner P, Christian C, Robinson DG, Sevy S, Gunduz-Bruce H, Napolitano B et al. Pituitary volume in first-episode schizophrenia. Psychiatry Res 2012; 203: 100–102.

    Article  PubMed  PubMed Central  Google Scholar 

  225. Tournikioti K, Tansella M, Perlini C, Rambaldelli G, Cerini R, Versace A et al. Normal pituitary volumes in chronic schizophrenia. Psychiatry Res 2007; 154: 41–48.

    Article  PubMed  Google Scholar 

  226. Upadhyaya AR, El-Sheikh R, MacMaster FP, Diwadkar VA, Keshavan MS . Pituitary volume in neuroleptic-naive schizophrenia: a structural MRI study. Schizophr Res 2007; 90: 266–273.

    Article  PubMed  Google Scholar 

  227. Tognin S, Rambaldelli G, Perlini C, Bellani M, Marinelli V, Zoccatelli G et al. Enlarged hypothalamic volumes in schizophrenia. Psychiatry Res 2012; 204: 75–81.

    Article  PubMed  Google Scholar 

  228. Goldstein JM, Seidman LJ, Makris N, Ahern T, O'Brien LM, Caviness VS Jr. et al. Hypothalamic abnormalities in schizophrenia: sex effects and genetic vulnerability. Biol Psychiatry 2007; 61: 935–945.

    Article  CAS  PubMed  Google Scholar 

  229. Koolschijn PC, van Haren NE, Hulshoff Pol HE, Kahn RS . Hypothalamus volume in twin pairs discordant for schizophrenia. Eur Neuropsychopharmacol 2008; 18: 312–315.

    Article  CAS  PubMed  Google Scholar 

  230. Klomp A, Koolschijn PC, Hulshoff Pol HE, Kahn RS, Haren NE . Hypothalamus and pituitary volume in schizophrenia: a structural MRI study. Int J Neuropsychopharmacol 2012; 15: 281–288.

    Article  PubMed  Google Scholar 

  231. Walsh P, Spelman L, Sharifi N, Thakore JH . Male patients with paranoid schizophrenia have greater ACTH and cortisol secretion in response to metoclopramide-induced AVP release. Psychoneuroendocrinology 2005; 30: 431–437.

    Article  CAS  PubMed  Google Scholar 

  232. Ritsner M, Gibel A, Maayan R, Ratner Y, Ram E, Modai I et al. State and trait related predictors of serum cortisol to DHEA(S) molar ratios and hormone concentrations in schizophrenia patients. Eur Neuropsychopharmacol 2007; 17: 257–264.

    Article  CAS  PubMed  Google Scholar 

  233. Gallagher P, Watson S, Smith MS, Young AH, Ferrier IN . Plasma cortisol-dehydroepiandrosterone (DHEA) ratios in schizophrenia and bipolar disorder. Schizophr Res 2007; 90: 258–265.

    Article  PubMed  Google Scholar 

  234. Yilmaz N, Herken H, Cicek HK, Celik A, Yurekli M, Akyol O . Increased levels of nitric oxide, cortisol and adrenomedullin in patients with chronic schizophrenia. Med Princ Pract 2007; 16: 137–141.

    Article  PubMed  Google Scholar 

  235. Ryan MC, Sharifi N, Condren R, Thakore JH . Evidence of basal pituitary-adrenal overactivity in first episode, drug naive patients with schizophrenia. Psychoneuroendocrinology 2004; 29: 1065–1070.

    Article  CAS  PubMed  Google Scholar 

  236. Walker EF, Trotman HD, Pearce BD, Addington J, Cadenhead KS, Cornblatt BA et al. Cortisol levels and risk for psychosis: initial findings from the North American prodrome longitudinal study. Biol Psychiatry 2013; 74: 410–417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Strous RD, Maayan R, Lapidus R, Goredetsky L, Zeldich E, Kotler M et al. Increased circulatory dehydroepiandrosterone and dehydroepiandrosterone-sulphate in first-episode schizophrenia: relationship to gender, aggression and symptomatology. Schizophr Res 2004; 71: 427–434.

    Article  PubMed  Google Scholar 

  238. Venkatasubramanian G, Chittiprol S, Neelakantachar N, Shetty T, Gangadhar BN . Effect of antipsychotic treatment on Insulin-like Growth Factor-1 and cortisol in schizophrenia: a longitudinal study. Schizophr Res 2010; 119: 131–137.

    Article  PubMed  Google Scholar 

  239. Krishnamurthy D, Harris LW, Levin Y, Koutroukides TA, Rahmoune H, Pietsch S et al. Metabolic, hormonal and stress-related molecular changes in post-mortem pituitary glands from schizophrenia subjects. World J Biol Psychiatry 2013; 14: 478–489.

    Article  PubMed  Google Scholar 

  240. Perlman WR, Webster MJ, Kleinman JE, Weickert CS . Reduced glucocorticoid and estrogen receptor alpha messenger ribonucleic acid levels in the amygdala of patients with major mental illness. Biol Psychiatry 2004; 56: 844–852.

    Article  CAS  PubMed  Google Scholar 

  241. Webster MJ, Knable MB, O'Grady J, Orthmann J, Weickert CS . Regional specificity of brain glucocorticoid receptor mRNA alterations in subjects with schizophrenia and mood disorders. Mol Psychiatry 2002; 7: 985–994, 24.

    Article  CAS  PubMed  Google Scholar 

  242. Hirsch D, Orr G, Kantarovich V, Hermesh H, Stern E, Blum I . Cushing's syndrome presenting as a schizophrenia-like psychotic state. Isr J Psychiatry Relat Sci 2000; 37: 46–50.

    CAS  PubMed  Google Scholar 

  243. Hall RC, Popkin MK, Stickney SK, Gardner ER . Presentation of the steroid psychoses. J Nerv Ment Dis 1979; 167: 229–236.

    Article  CAS  PubMed  Google Scholar 

  244. Flores BH, Kenna H, Keller J, Solvason HB, Schatzberg AF . Clinical and biological effects of mifepristone treatment for psychotic depression. Neuropsychopharmacology 2006; 31: 628–636.

    Article  CAS  PubMed  Google Scholar 

  245. Schatzberg AF, Lindley S . Glucocorticoid antagonists in neuropsychiatric [corrected] disorders. Eur J Pharmacol 2008; 583: 358–364.

    Article  CAS  PubMed  Google Scholar 

  246. Myers B, McKlveen JM, Herman JP . Glucocorticoid actions on synapses, circuits, and behavior: implications for the energetics of stress. Front Neuroendocrinol 2014; 35: 180–196.

    Article  CAS  PubMed  Google Scholar 

  247. Niwa M, Jaaro-Peled H, Tankou S, Seshadri S, Hikida T, Matsumoto Y et al. Adolescent stress-induced epigenetic control of dopaminergic neurons via glucocorticoids. Science (New York, NY) 2013; 339: 335–339.

    Article  CAS  Google Scholar 

  248. Huber TJ, Tettenborn C, Leifke E, Emrich HM . Sex hormones in psychotic men. Psychoneuroendocrinology 2005; 30: 111–114.

    Article  CAS  PubMed  Google Scholar 

  249. Bergemann N, Mundt C, Parzer P, Jannakos I, Nagl I, Salbach B et al. Plasma concentrations of estradiol in women suffering from schizophrenia treated with conventional versus atypical antipsychotics. Schizophr Res 2005; 73: 357–366.

    Article  PubMed  Google Scholar 

  250. Weickert CS, Miranda-Angulo AL, Wong J, Perlman WR, Ward SE, Radhakrishna V et al. Variants in the estrogen receptor alpha gene and its mRNA contribute to risk for schizophrenia. Hum Mol Genet 2008; 17: 2293–2309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Kulkarni J, Hayes E, Gavrilidis E . Hormones and schizophrenia. Curr Opin Psychiatry 2012; 25: 89–95.

    Article  PubMed  Google Scholar 

  252. Lokuge S, Frey BN, Foster JA, Soares CN, Steiner M . The rapid effects of estrogen: a mini-review. Behav Pharmacol 2010; 21: 465–472.

    Article  CAS  PubMed  Google Scholar 

  253. Cyr M, Ghribi O, Di Paolo T . Regional and selective effects of oestradiol and progesterone on NMDA and AMPA receptors in the rat brain. J Neuroendocrinol 2000; 12: 445–452.

    Article  CAS  PubMed  Google Scholar 

  254. Allison DB, Fontaine KR, Heo M, Mentore JL, Cappelleri JC, Chandler LP et al. The distribution of body mass index among individuals with and without schizophrenia. J Clin Psychiatry 1999; 60: 215–220.

    Article  CAS  PubMed  Google Scholar 

  255. American Diabetes Association American Psychiatric Association American Association of Clinical Endocrinologists North American Association for the Study of Obesity. Consensus development conference on antipsychotic drugs and obesity and diabetes. J Clin Psychiatry 2004; 65: 267–272.

    Article  Google Scholar 

  256. Boke O, Aker S, Sarisoy G, Saricicek EB, Sahin AR . Prevalence of metabolic syndrome among inpatients with schizophrenia. Int J Psychiatry Med 2008; 38: 103–112.

    Article  PubMed  Google Scholar 

  257. Takayanagi Y, Cascella NG, Sawa A, Eaton WW . Diabetes is associated with lower global cognitive function in schizophrenia. Schizophr Res 2012; 142: 183–187.

    Article  PubMed  PubMed Central  Google Scholar 

  258. Popovic V, Doknic M, Maric N, Pekic S, Damjanovic A, Miljic D et al. Changes in neuroendocrine and metabolic hormones induced by atypical antipsychotics in normal-weight patients with schizophrenia. Neuroendocrinology 2007; 85: 249–256.

    Article  CAS  PubMed  Google Scholar 

  259. Doknic M, Maric NP, Britvic D, Pekic S, Damjanovic A, Miljic D et al. Bone remodeling, bone mass and weight gain in patients with stabilized schizophrenia in real-life conditions treated with long-acting injectable risperidone. Neuroendocrinology 2011; 94: 246–254.

    Article  CAS  PubMed  Google Scholar 

  260. De Hert M, Peuskens J, van Winkel R . Mortality in patients with schizophrenia. Lancet 2009; 374: 1591, author reply 2-3.

    Article  CAS  PubMed  Google Scholar 

  261. Spelman LM, Walsh PI, Sharifi N, Collins P, Thakore JH . Impaired glucose tolerance in first-episode drug-naive patients with schizophrenia. Diabet Med 2007; 24: 481–485.

    Article  CAS  PubMed  Google Scholar 

  262. Ryan MC, Collins P, Thakore JH . Impaired fasting glucose tolerance in first-episode, drug-naive patients with schizophrenia. Am J Psychiatry 2003; 160: 284–289.

    Article  PubMed  Google Scholar 

  263. Kirkpatrick B . Schizophrenia as a systemic disease. Schizophr Bull 2009; 35: 381–382.

    Article  PubMed  PubMed Central  Google Scholar 

  264. Guest PC, Martins-de-Souza D, Vanattou-Saifoudine N, Harris LW, Bahn S . Abnormalities in metabolism and hypothalamic-pituitary-adrenal axis function in schizophrenia. Int Rev Neurobiol 2011; 101: 145–168.

    Article  CAS  PubMed  Google Scholar 

  265. Holmes E, Tsang TM, Huang JT, Leweke FM, Koethe D, Gerth CW et al. Metabolic profiling of CSF: evidence that early intervention may impact on disease progression and outcome in schizophrenia. PLoS Med 2006; 3: e327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Tamminga CA, Thaker GK, Buchanan R, Kirkpatrick B, Alphs LD, Chase TN et al. Limbic system abnormalities identified in schizophrenia using positron emission tomography with fluorodeoxyglucose and neocortical alterations with deficit syndrome. Arch Gen Psychiatry 1992; 49: 522–530.

    Article  CAS  PubMed  Google Scholar 

  267. Buchsbaum MS, Buchsbaum BR, Hazlett EA, Haznedar MM, Newmark R, Tang CY et al. Relative glucose metabolic rate higher in white matter in patients with schizophrenia. Am J Psychiatry 2007; 164: 1072–1081.

    Article  PubMed  Google Scholar 

  268. Lin CY, Sawa A, Jaaro-Peled H . Better understanding of mechanisms of schizophrenia and bipolar disorder: from human gene expression profiles to mouse models. Neurobiol Disease 2012; 45: 48–56.

    Article  CAS  Google Scholar 

  269. Zhao Z, Ksiezak-Reding H, Riggio S, Haroutunian V, Pasinetti GM . Insulin receptor deficits in schizophrenia and in cellular and animal models of insulin receptor dysfunction. Schizophr Res 2006; 84: 1–14.

    Article  PubMed  Google Scholar 

  270. Bernstein HG, Ernst T, Lendeckel U, Bukowska A, Ansorge S, Stauch R et al. Reduced neuronal expression of insulin-degrading enzyme in the dorsolateral prefrontal cortex of patients with haloperidol-treated, chronic schizophrenia. J Psychiatr Res 2009; 43: 1095–1105.

    Article  PubMed  Google Scholar 

  271. O'Neill C, Kiely AP, Coakley MF, Manning S, Long-Smith CM . Insulin and IGF-1 signalling: longevity, protein homoeostasis and Alzheimer's disease. Biochem Soc Trans 2012; 40: 721–727.

    Article  CAS  PubMed  Google Scholar 

  272. O' Neill C . PI3-kinase/Akt/mTOR signaling: impaired on/off switches in aging, cognitive decline and Alzheimer's disease. Exp Gerontol 2013; 48: 647–653.

    Article  CAS  PubMed  Google Scholar 

  273. McEvoy JP, Meyer JM, Goff DC, Nasrallah HA, Davis SM, Sullivan L et al. Prevalence of the metabolic syndrome in patients with schizophrenia: baseline results from the Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) schizophrenia trial and comparison with national estimates from NHANES III. Schizophr Res 2005; 80: 19–32.

    Article  PubMed  Google Scholar 

  274. Stone WS, Faraone SV, Su J, Tarbox SI, Van Eerdewegh P, Tsuang MT . Evidence for linkage between regulatory enzymes in glycolysis and schizophrenia in a multiplex sample. Am J Med Genet B Neuropsychiatr Genet 2004; 127B: 5–10.

    Article  PubMed  Google Scholar 

  275. Olsen L, Hansen T, Jakobsen KD, Djurovic S, Melle I, Agartz I et al. The estrogen hypothesis of schizophrenia implicates glucose metabolism: association study in three independent samples. BMC Med Genet 2008; 9: 39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Freyberg Z, Ferrando SJ, Javitch JA . Roles of the Akt/GSK-3 and Wnt signaling pathways in schizophrenia and antipsychotic drug action. Am J Psychiatry 2010; 167: 388–396.

    Article  PubMed  Google Scholar 

  277. Sinha MK, Opentanova I, Ohannesian JP, Kolaczynski JW, Heiman ML, Hale J et al. Evidence of free and bound leptin in human circulation. Studies in lean and obese subjects and during short-term fasting. J Clin Invest 1996; 98: 1277–1282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, Nyce MR et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. New Engl J Med 1996; 334: 292–295.

    Article  CAS  PubMed  Google Scholar 

  279. Pasco JA, Jacka FN, Williams LJ, Henry MJ, Nicholson GC, Kotowicz MA et al. Leptin in depressed women: cross-sectional and longitudinal data from an epidemiologic study. J Affect Disord 2008; 107: 221–225.

    Article  CAS  PubMed  Google Scholar 

  280. Malcher-Lopes R, Di S, Marcheselli VS, Weng FJ, Stuart CT, Bazan NG et al. Opposing crosstalk between leptin and glucocorticoids rapidly modulates synaptic excitation via endocannabinoid release. J Neurosci 2006; 26: 6643–6650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Kern A, Albarran-Zeckler R, Walsh HE, Smith RG . Apo-ghrelin receptor forms heteromers with DRD2 in hypothalamic neurons and is essential for anorexigenic effects of DRD2 agonism. Neuron 2012; 73: 317–332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Sentissi O, Epelbaum J, Olie JP, Poirier MF . Leptin and ghrelin levels in patients with schizophrenia during different antipsychotics treatment: a review. Schizophr Bull 2008; 34: 1189–1199.

    Article  PubMed  Google Scholar 

  283. Huang JT, Wang L, Prabakaran S, Wengenroth M, Lockstone HE, Koethe D et al. Independent protein-profiling studies show a decrease in apolipoprotein A1 levels in schizophrenia CSF, brain and peripheral tissues. Mol Psychiatry 2008; 13: 1118–1128.

    Article  CAS  PubMed  Google Scholar 

  284. Wu X, Huang Z, Wu R, Zhong Z, Wei Q, Wang H et al. The comparison of glycometabolism parameters and lipid profiles between drug-naive, first-episode schizophrenia patients and healthy controls. Schizophr Res 2013; 150: 157–162.

    Article  PubMed  Google Scholar 

  285. Martins-De-Souza D, Wobrock T, Zerr I, Schmitt A, Gawinecka J, Schneider-Axmann T et al. Different apolipoprotein E, apolipoprotein A1 and prostaglandin-H2 D-isomerase levels in cerebrospinal fluid of schizophrenia patients and healthy controls. World J Biol Psychiatry 2010; 11: 719–728.

    Article  PubMed  Google Scholar 

  286. Cieslak K, Feingold J, Antonius D, Walsh-Messinger J, Dracxler R, Rosedale M et al. Low Vitamin D levels predict clinical features of schizophrenia. Schizophr Res 2014; 159: 543–545.

    Article  PubMed  PubMed Central  Google Scholar 

  287. Crews M, Lally J, Gardner-Sood P, Howes O, Bonaccorso S, Smith S et al. Vitamin D deficiency in first episode psychosis: a case-control study. Schizophr Res 2013; 150: 533–537.

    Article  PubMed  Google Scholar 

  288. McGrath JJ, Burne TH, Feron F, Mackay-Sim A, Eyles DW . Developmental vitamin D deficiency and risk of schizophrenia: a 10-year update. Schizophr Bull 2010; 36: 1073–1078.

    Article  PubMed  PubMed Central  Google Scholar 

  289. Kao AC, Muller DJ . Genetics of antipsychotic-induced weight gain: update and current perspectives. Pharmacogenomics 2013; 14: 2067–2083.

    Article  CAS  PubMed  Google Scholar 

  290. Wallace TJ, Zai CC, Brandl EJ, Muller DJ . Role of 5-HT(2C) receptor gene variants in antipsychotic-induced weight gain. Pharmacogenomics Pers Med 2011; 4: 83–93.

    CAS  Google Scholar 

  291. Sicard MN, Zai CC, Tiwari AK, Souza RP, Meltzer HY, Lieberman JA et al. Polymorphisms of the HTR2C gene and antipsychotic-induced weight gain: an update and meta-analysis. Pharmacogenomics 2010; 11: 1561–1571.

    Article  CAS  PubMed  Google Scholar 

  292. Malhotra AK, Correll CU, Chowdhury NI, Muller DJ, Gregersen PK, Lee AT et al. Association between common variants near the melanocortin 4 receptor gene and severe antipsychotic drug-induced weight gain. Arch Gen Psychiatry 2012; 69: 904–912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Brandl EJ, Frydrychowicz C, Tiwari AK, Lett TA, Kitzrow W, Buttner S et al. Association study of polymorphisms in leptin and leptin receptor genes with antipsychotic-induced body weight gain. Prog Neuro-psychopharmacol Biol Psychiatry 2012; 38: 134–141.

    Article  CAS  Google Scholar 

  294. Bellavance MA, Rivest S . The HPA - immune axis and the immunomodulatory actions of glucocorticoids in the brain. Front Immunol 2014; 5: 136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Valleau JC, Sullivan EL . The impact of leptin on perinatal development and psychopathology. J Chem Neuroanat 2014; 61-62: 221–232.

    Article  CAS  PubMed  Google Scholar 

  296. Cai D, Liu T . Inflammatory cause of metabolic syndrome via brain stress and NF-kappaB. Aging 2012; 4: 98–115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Bernstein HG, Steiner J, Guest PC, Dobrowolny H, Bogerts B . Glial cells as key players in schizophrenia pathology: recent insights and concepts of therapy. Schizophr Res 2014; 161: 4–18.

    Article  PubMed  Google Scholar 

  298. Inui M, Miyado M, Igarashi M, Tamano M, Kubo A, Yamashita S et al. Rapid generation of mouse models with defined point mutations by the CRISPR/Cas9 system. Sci Rep 2014; 4: 5396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Shen B, Zhang W, Zhang J, Zhou J, Wang J, Chen L et al. Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nat Methods 2014; 11: 399–402.

    Article  CAS  PubMed  Google Scholar 

  300. Wijshake T, Baker DJ, van de Sluis B . Endonucleases: new tools to edit the mouse genome. Biochim Biophys Acta 2014; 1842: 1942–1950.

    Article  CAS  PubMed  Google Scholar 

  301. Hiroi N, Takahashi T, Hishimoto A, Izumi T, Boku S, Hiramoto T . Copy number variation at 22q11.2: from rare variants to common mechanisms of developmental neuropsychiatric disorders. Mol Psychiatry 2013; 18: 1153–1165.

    Article  CAS  PubMed  Google Scholar 

  302. Brennand K, Savas JN, Kim Y, Tran N, Simone A, Hashimoto-Torii K et al. Phenotypic differences in hiPSC NPCs derived from patients with schizophrenia. Mol Psychiatry 2014; 20: 361–368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Abazyan B, Nomura J, Kannan G, Ishizuka K, Tamashiro KL, Nucifora F et al. Prenatal interaction of mutant DISC1 and immune activation produces adult psychopathology. Biol Psychiatry 2010; 68: 1172–1181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  304. Desbonnet L, O'Tuathaigh C, Clarke G, O'Leary C, Petit E, Clarke N et al. Phenotypic effects of repeated psychosocial stress during adolescence in mice mutant for the schizophrenia risk gene neuregulin-1: a putative model of gene x environment interaction. Brain Behav Immun 2012; 26: 660–671.

    Article  CAS  PubMed  Google Scholar 

  305. Vuillermot S, Joodmardi E, Perlmann T, Ogren SO, Feldon J, Meyer U . Prenatal immune activation interacts with genetic Nurr1 deficiency in the development of attentional impairments. J Neurosci 2012; 32: 436–451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Niwa M, Kamiya A, Murai R, Kubo K, Gruber AJ, Tomita K et al. Knockdown of DISC1 by in utero gene transfer disturbs postnatal dopaminergic maturation in the frontal cortex and leads to adult behavioral deficits. Neuron 2010; 65: 480–489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Goto Y, O'Donnell P . Delayed mesolimbic system alteration in a developmental animal model of schizophrenia. J Neurosci 2002; 22: 9070–9077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Feleder C, Tseng KY, Calhoon GG, O'Donnell P . Neonatal intrahippocampal immune challenge alters dopamine modulation of prefrontal cortical interneurons in adult rats. Biol Psychiatry 2010; 67: 386–392.

    Article  CAS  PubMed  Google Scholar 

  309. Kluge W, Alsaif M, Guest PC, Schwarz E, Bahn S . Translating potential biomarker candidates for schizophrenia and depression to animal models of psychiatric disorders. Exp Rev Mol Diagn 2011; 11: 721–733.

    Article  CAS  Google Scholar 

  310. Pechnick RN, George R, Poland RE, Hiramatsu M, Cho AK . Characterization of the effects of the acute and chronic administration of phencyclidine on the release of adrenocorticotropin, corticosterone and prolactin in the rat: evidence for the differential development of tolerance. J Pharmacol Exp Ther 1989; 250: 534–540.

    CAS  PubMed  Google Scholar 

  311. Fattorini G, Melone M, Bragina L, Candiracci C, Cozzi A, Pellegrini Giampietro DE et al. GLT-1 expression and Glu uptake in rat cerebral cortex are increased by phencyclidine. Glia 2008; 56: 1320–1327.

    Article  PubMed  Google Scholar 

  312. Murai R, Noda Y, Matsui K, Kamei H, Mouri A, Matsuba K et al. Hypofunctional glutamatergic neurotransmission in the prefrontal cortex is involved in the emotional deficit induced by repeated treatment with phencyclidine in mice: implications for abnormalities of glutamate release and NMDA-CaMKII signaling. Behav Brain Res 2007; 180: 152–160.

    Article  CAS  PubMed  Google Scholar 

  313. Jenkins TA, Harte MK, McKibben CE, Elliott JJ, Reynolds GP . Disturbances in social interaction occur along with pathophysiological deficits following sub-chronic phencyclidine administration in the rat. Behav Brain Res 2008; 194: 230–235.

    Article  CAS  PubMed  Google Scholar 

  314. McKibben CE, Jenkins TA, Adams HN, Harte MK, Reynolds GP . Effect of pretreatment with risperidone on phencyclidine-induced disruptions in object recognition memory and prefrontal cortex parvalbumin immunoreactivity in the rat. Behav Brain Res 2010; 208: 132–136.

    Article  CAS  PubMed  Google Scholar 

  315. Braun I, Genius J, Grunze H, Bender A, Moller HJ, Rujescu D . Alterations of hippocampal and prefrontal GABAergic interneurons in an animal model of psychosis induced by NMDA receptor antagonism. Schizophr Res 2007; 97: 254–263.

    Article  PubMed  Google Scholar 

  316. Bullock WM, Bolognani F, Botta P, Valenzuela CF, Perrone-Bizzozero NI . Schizophrenia-like GABAergic gene expression deficits in cerebellar Golgi cells from rats chronically exposed to low-dose phencyclidine. Neurochem Int 2009; 55: 775–782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  317. Choi YK, Snigdha S, Shahid M, Neill JC, Tarazi FI . Subchronic effects of phencyclidine on dopamine and serotonin receptors: implications for schizophrenia. J Mol Neurosci 2009; 38: 227–235.

    Article  CAS  PubMed  Google Scholar 

  318. Beninger RJ, Beuk J, Banasikowski TJ, van Adel M, Boivin GA, Reynolds JN . Subchronic phencyclidine in rats: alterations in locomotor activity, maze performance, and GABA(A) receptor binding. Behav Pharmacol 2010; 21: 1–10.

    Article  CAS  PubMed  Google Scholar 

  319. Hyde JF . Effects of phencyclidine on 5-hydroxytryptophan- and suckling-induced prolactin release. Brain Res 1992; 573: 204–208.

    Article  CAS  PubMed  Google Scholar 

  320. Takahashi M, Kakita A, Futamura T, Watanabe Y, Mizuno M, Sakimura K et al. Sustained brain-derived neurotrophic factor up-regulation and sensorimotor gating abnormality induced by postnatal exposure to phencyclidine: comparison with adult treatment. J Neurochem 2006; 99: 770–780.

    Article  CAS  PubMed  Google Scholar 

  321. Oskvig DB, Elkahloun AG, Johnson KR, Phillips TM, Herkenham M . Maternal immune activation by LPS selectively alters specific gene expression profiles of interneuron migration and oxidative stress in the fetus without triggering a fetal immune response. Brain Behav Immun 2012; 26: 623–634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  322. Meyer U . Prenatal poly(i:C) exposure and other developmental immune activation models in rodent systems. Biol Psychiatry 2014; 75: 307–315.

    Article  CAS  PubMed  Google Scholar 

  323. Xiu Y, Kong XR, Zhang L, Qiu X, Chao FL, Peng C et al. White matter injuries induced by MK-801 in a mouse model of schizophrenia based on NMDA antagonism. Anat Rec 2014; 297: 1498–1507.

    Article  CAS  Google Scholar 

  324. Zhu S, Wang H, Shi R, Zhang R, Wang J, Kong L et al. Chronic phencyclidine induces inflammatory responses and activates GSK3beta in mice. Neurochem Res 2014; 39: 2385–2393.

    Article  CAS  PubMed  Google Scholar 

  325. Venancio C, Felix L, Almeida V, Coutinho J, Antunes L, Peixoto F et al. Acute ketamine impairs mitochondrial function and promotes superoxide dismutase activity in the rat brain. Anesth Analga 2014; 120: 320–328.

    Article  CAS  Google Scholar 

  326. Dean B, Karl T, Pavey G, Boer S, Duffy L, Scarr E . Increased levels of serotonin 2 A receptors and serotonin transporter in the CNS of neuregulin 1 hypomorphic/mutant mice. Schizophr Res 2008; 99: 341–349.

    Article  PubMed  Google Scholar 

  327. Iltis I, Koski DM, Eberly LE, Nelson CD, Deelchand DK, Valette J et al. Neurochemical changes in the rat prefrontal cortex following acute phencyclidine treatment: an in vivo localized (1)H MRS study. NMR Biomed 2009; 22: 737–744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  328. Ernst A, Ma D, Garcia-Perez I, Tsang TM, Kluge W, Schwarz E et al. Molecular validation of the acute phencyclidine rat model for schizophrenia: identification of translational changes in energy metabolism and neurotransmission. J Proteome Res 2012; 11: 3704–3714.

    Article  CAS  PubMed  Google Scholar 

  329. Hou XJ, Ni KM, Yang JM, Li XM . Neuregulin 1/ErbB4 enhances synchronized oscillations of prefrontal cortex neurons via inhibitory synapses. Neuroscience 2014; 261: 107–117.

    Article  CAS  PubMed  Google Scholar 

  330. Ginsberg Y, Lotan P, Khatib N, Awad N, Errison S, Weiner Z et al. Maternal lipopolysaccharide alters the newborn oxidative stress and C-reactive protein levels in response to an inflammatory stress. J Dev Orig Health Dis 2012; 3: 358–363.

    Article  CAS  PubMed  Google Scholar 

  331. Kirsten TB, Lippi LL, Bevilacqua E, Bernardi MM . LPS exposure increases maternal corticosterone levels, causes placental injury and increases IL-1Beta levels in adult rat offspring: relevance to autism. PLoS One 2013; 8: e82244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  332. Burt MA, Tse YC, Boksa P, Wong TP . Prenatal immune activation interacts with stress and corticosterone exposure later in life to modulate N-methyl-D-aspartate receptor synaptic function and plasticity. Int J Neuropsychopharmacol 2013; 16: 1835–1848.

    Article  CAS  PubMed  Google Scholar 

  333. Pacheco-Lopez G, Giovanoli S, Langhans W, Meyer U . Priming of metabolic dysfunctions by prenatal immune activation in mice: relevance to schizophrenia. Schizophr Bull 2013; 39: 319–329.

    Article  PubMed  Google Scholar 

  334. Cole TB, Giordano G, Co AL, Mohar I, Kavanagh TJ, Costa LG . Behavioral characterization of GCLM-knockout mice, a model for enhanced susceptibility to oxidative stress. J Toxicol 2011; 2011: 157687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  335. Flores C, Wen X, Labelle-Dumais C, Kolb B . Chronic phencyclidine treatment increases dendritic spine density in prefrontal cortex and nucleus accumbens neurons. Synapse (New York, NY) 2007; 61: 978–984.

    Article  CAS  Google Scholar 

  336. Mohn AR, Gainetdinov RR, Caron MG, Koller BH . Mice with reduced NMDA receptor expression display behaviors related to schizophrenia. Cell 1999; 98: 427–436.

    Article  CAS  PubMed  Google Scholar 

  337. Fradley RL, O'Meara GF, Newman RJ, Andrieux A, Job D, Reynolds DS . STOP knockout and NMDA NR1 hypomorphic mice exhibit deficits in sensorimotor gating. Behav Brain Res 2005; 163: 257–264.

    Article  CAS  PubMed  Google Scholar 

  338. Holloway T, Moreno JL, Umali A, Rayannavar V, Hodes GE, Russo SJ et al. Prenatal stress induces schizophrenia-like alterations of serotonin 2 A and metabotropic glutamate 2 receptors in the adult offspring: role of maternal immune system. J Neurosci 2013; 33: 1088–1098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  339. Tezuka T, Tamura M, Kondo MA, Sakaue M, Okada K, Takemoto K et al. Cuprizone short-term exposure: astrocytic IL-6 activation and behavioral changes relevant to psychosis. Neurobiol Dis 2013; 59: 63–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  340. Cabungcal JH, Steullet P, Morishita H, Kraftsik R, Cuenod M, Hensch TK et al. Perineuronal nets protect fast-spiking interneurons against oxidative stress. Proc Natl Acad Sci USA 2013; 110: 9130–9135.

    Article  PubMed  PubMed Central  Google Scholar 

  341. Monin A, Baumann PS, Griffa A, Xin L, Mekle R, Fournier M et al. Glutathione deficit impairs myelin maturation: relevance for white matter integrity in schizophrenia patients. Mol Psychiatry 2014; 20: 827–838.

    Article  CAS  PubMed  Google Scholar 

  342. Kendig EL, Chen Y, Krishan M, Johansson E, Schneider SN, Genter MB et al. Lipid metabolism and body composition in Gclm(-/-) mice. Toxicol Appl Pharmacol 2011; 257: 338–348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  343. Kulak A, Cuenod M, Do KQ . Behavioral phenotyping of glutathione-deficient mice: relevance to schizophrenia and bipolar disorder. Behav Brain Res 2012; 226: 563–570.

    Article  CAS  PubMed  Google Scholar 

  344. Chen Y, Curran CP, Nebert DW, Patel KV, Williams MT, Vorhees CV . Effect of chronic glutathione deficiency on the behavioral phenotype of Gclm-/- knockout mice. Neurotoxicol Teratol 2012; 34: 450–457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  345. Eyles D, Almeras L, Benech P, Patatian A, Mackay-Sim A, McGrath J et al. Developmental vitamin D deficiency alters the expression of genes encoding mitochondrial, cytoskeletal and synaptic proteins in the adult rat brain. J Steroid Biochem Mol Biol 2007; 103: 538–545.

    Article  CAS  PubMed  Google Scholar 

  346. Kesby JP, Burne TH, McGrath JJ, Eyles DW . Developmental vitamin D deficiency alters MK 801-induced hyperlocomotion in the adult rat: An animal model of schizophrenia. Biol Psychiatry 2006; 60: 591–596.

    Article  CAS  PubMed  Google Scholar 

  347. Eyles DW, Burne TH, McGrath JJ . Vitamin D, effects on brain development, adult brain function and the links between low levels of vitamin D and neuropsychiatric disease. Front Neuroendocrinol 2013; 34: 47–64.

    Article  CAS  PubMed  Google Scholar 

  348. Lai WS, Xu B, Westphal KG, Paterlini M, Olivier B, Pavlidis P et al. Akt1 deficiency affects neuronal morphology and predisposes to abnormalities in prefrontal cortex functioning. Proc Natl Acad Sci USA 2006; 103: 16906–16911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  349. Balu DT, Carlson GC, Talbot K, Kazi H, Hill-Smith TE, Easton RM et al. Akt1 deficiency in schizophrenia and impairment of hippocampal plasticity and function. Hippocampus 2012; 22: 230–240.

    Article  CAS  PubMed  Google Scholar 

  350. Cho H, Thorvaldsen JL, Chu Q, Feng F, Birnbaum MJ . Akt1/PKBalpha is required for normal growth but dispensable for maintenance of glucose homeostasis in mice. J Biol Chem 2001; 276: 38349–38352.

    Article  CAS  PubMed  Google Scholar 

  351. Dummler B, Hemmings BA . Physiological roles of PKB/Akt isoforms in development and disease. Biochem Soc Trans 2007; 35: 231–235.

    Article  CAS  PubMed  Google Scholar 

  352. Makinodan M, Rosen KM, Ito S, Corfas G . A critical period for social experience-dependent oligodendrocyte maturation and myelination. Science (New York, NY) 2012; 337: 1357–1360.

    Article  CAS  Google Scholar 

  353. Toua C, Brand L, Moller M, Emsley RA, Harvey BH . The effects of sub-chronic clozapine and haloperidol administration on isolation rearing induced changes in frontal cortical N-methyl-D-aspartate and D1 receptor binding in rats. Neuroscience 2010; 165: 492–499.

    Article  CAS  PubMed  Google Scholar 

  354. Malone DT, Kearn CS, Chongue L, Mackie K, Taylor DA . Effect of social isolation on CB1 and D2 receptor and fatty acid amide hydrolase expression in rats. Neuroscience 2008; 152: 265–272.

    Article  CAS  PubMed  Google Scholar 

  355. Cassidy AW, Mulvany SK, Pangalos MN, Murphy KJ, Regan CM . Developmental emergence of reelin deficits in the prefrontal cortex of Wistar rats reared in social isolation. Neuroscience 2010; 166: 377–385.

    Article  CAS  PubMed  Google Scholar 

  356. Lipska BK, Lerman DN, Khaing ZZ, Weinberger DR . The neonatal ventral hippocampal lesion model of schizophrenia: effects on dopamine and GABA mRNA markers in the rat midbrain. Eur J Neurosci 2003; 18: 3097–3104.

    Article  PubMed  Google Scholar 

  357. Wan RQ, Giovanni A, Kafka SH, Corbett R . Neonatal hippocampal lesions induced hyperresponsiveness to amphetamine: behavioral and in vivo microdialysis studies. Behav Brain Res 1996; 78: 211–223.

    Article  CAS  PubMed  Google Scholar 

  358. Mitchell CP, Goldman MB . Neonatal lesions of the ventral hippocampal formation disrupt neuroendocrine responses to auditory stress in the adult rat. Psychoneuroendocrinology 2004; 29: 1317–1325.

    Article  CAS  PubMed  Google Scholar 

  359. Francois J, Koning E, Ferrandon A, Sandner G, Nehlig A . Metabolic activity in the brain of juvenile and adult rats with a neonatal ventral hippocampal lesion. Hippocampus 2010; 20: 841–851.

    CAS  PubMed  Google Scholar 

  360. Meng Y, Payne C, Li L, Hu X, Zhang X, Bachevalier J . Alterations of hippocampal projections in adult macaques with neonatal hippocampal lesions: a Diffusion Tensor Imaging study. NeuroImage. 2014; 102: 828–837.

    Article  PubMed  Google Scholar 

  361. Roy K, Murtie JC, El-Khodor BF, Edgar N, Sardi SP, Hooks BM et al. Loss of erbB signaling in oligodendrocytes alters myelin and dopaminergic function, a potential mechanism for neuropsychiatric disorders. Proc Natl Acad Sci USA 2007; 104: 8131–8136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  362. Brinkmann BG, Agarwal A, Sereda MW, Garratt AN, Muller T, Wende H et al. Neuregulin-1/ErbB signaling serves distinct functions in myelination of the peripheral and central nervous system. Neuron 2008; 59: 581–595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  363. Flagstad P, Mork A, Glenthoj BY, van Beek J, Michael-Titus AT, Didriksen M . Disruption of neurogenesis on gestational day 17 in the rat causes behavioral changes relevant to positive and negative schizophrenia symptoms and alters amphetamine-induced dopamine release in nucleus accumbens. Neuropsychopharmacology 2004; 29: 2052–2064.

    Article  CAS  PubMed  Google Scholar 

  364. Penschuck S, Flagstad P, Didriksen M, Leist M, Michael-Titus AT . Decrease in parvalbumin-expressing neurons in the hippocampus and increased phencyclidine-induced locomotor activity in the rat methylazoxymethanol (MAM) model of schizophrenia. Eur J Neurosci 2006; 23: 279–284.

    Article  PubMed  Google Scholar 

  365. Matsutani T . A neurochemical study of experimental microencephalic rat. J Toxicol Sci 1984; 9: 205–218.

    Article  CAS  PubMed  Google Scholar 

  366. Chin CL, Curzon P, Schwartz AJ, O'Connor EM, Rueter LE, Fox GB et al. Structural abnormalities revealed by magnetic resonance imaging in rats prenatally exposed to methylazoxymethanol acetate parallel cerebral pathology in schizophrenia. Synapse (New York, NY) 2011; 65: 393–403.

    Article  CAS  Google Scholar 

  367. Fonnum F, Lock EA . The contributions of excitotoxicity, glutathione depletion and DNA repair in chemically induced injury to neurones: exemplified with toxic effects on cerebellar granule cells. J Neurochem 2004; 88: 513–531.

    Article  CAS  PubMed  Google Scholar 

  368. Zimmerman EC, Bellaire M, Ewing SG, Grace AA . Abnormal stress responsivity in a rodent developmental disruption model of schizophrenia. Neuropsychopharmacology 2013; 38: 2131–2139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  369. Fiore M, Grace AA, Korf J, Stampachiacchiere B, Aloe L . Impaired brain development in the rat following prenatal exposure to methylazoxymethanol acetate at gestational day 17 and neurotrophin distribution. Neuroreport 2004; 15: 1791–1795.

    Article  CAS  PubMed  Google Scholar 

  370. Makinodan M, Tatsumi K, Manabe T, Yamauchi T, Makinodan E, Matsuyoshi H et al. Maternal immune activation in mice delays myelination and axonal development in the hippocampus of the offspring. Journal of neuroscience research 2008; 86: 2190–2200.

    Article  CAS  PubMed  Google Scholar 

  371. Marcotte ER, Pearson DM, Srivastava LK . Animal models of schizophrenia: a critical review. J Psychiatry Neurosci 2001; 26: 395–410.

    CAS  PubMed  PubMed Central  Google Scholar 

  372. Lipska BK, Weinberger DR . To model a psychiatric disorder in animals: schizophrenia as a reality test. Neuropsychopharmacology 2000; 23: 223–239.

    Article  CAS  PubMed  Google Scholar 

  373. Johnson AW, Jaaro-Peled H, Shahani N, Sedlak TW, Zoubovsky S, Burruss D et al. Cognitive and motivational deficits together with prefrontal oxidative stress in a mouse model for neuropsychiatric illness. Proc Natl Acad Sci USA 2013; 110: 12462–12467.

    Article  PubMed  PubMed Central  Google Scholar 

  374. Yang Y, Dieter MZ, Chen Y, Shertzer HG, Nebert DW, Dalton TP . Initial characterization of the glutamate-cysteine ligase modifier subunit Gclm(-/-) knockout mouse. Novel model system for a severely compromised oxidative stress response. J Biol Chem 2002; 277: 49446–49452.

    Article  CAS  PubMed  Google Scholar 

  375. Steullet P, Cabungcal JH, Kulak A, Kraftsik R, Chen Y, Dalton TP et al. Redox dysregulation affects the ventral but not dorsal hippocampus: impairment of parvalbumin neurons, gamma oscillations, and related behaviors. J Neurosci 2010; 30: 2547–2558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  376. Matrisciano F, Tueting P, Dalal I, Kadriu B, Grayson DR, Davis JM et al. Epigenetic modifications of GABAergic interneurons are associated with the schizophrenia-like phenotype induced by prenatal stress in mice. Neuropharmacology 2013; 68: 184–194.

    Article  CAS  PubMed  Google Scholar 

  377. Ferdman N, Murmu RP, Bock J, Braun K, Leshem M . Weaning age, social isolation, and gender, interact to determine adult explorative and social behavior, and dendritic and spine morphology in prefrontal cortex of rats. Behav Brain Res 2007; 180: 174–182.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Alan Anticevic, Anissa Abi-Dargham, Jennifer Coughlin and Anouk Marsman for scientific discussion. We thank Yukiko Lema for organizing the figures, in particular for contributing to the formatting process. MRI images were kindly provided by Susumu Mori and Michael Jacobs. This work was supported by USPHS grants MH-084018 (AS), MH-094268 Silvo O. Conte center (AS), MH-069853 (AS), MH-085226 (AS), MH-088753 (AS), MH-092443 (AS), Stanley (AS), RUSK (AS), S-R foundations (AS), NARSAD (AS) and the Maryland Stem Cell Research Fund (AS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Sawa.

Ethics declarations

Competing interests

AS currently receives research funding from Johnson and Johnson, Astellas, Takeda, Tanabe-Mitsubishi, Dainippon-Sumitomo and Sucampo; has served as an advisory board and consultant for Amgen, Asubio, Eli Lilly, Pfizer, Sucampo, Taisho and Takeda, and collaborated with Afraxis, Astrazeneca and Sanofi-Aventis. However, none of these relationships affected the contents and statements of this review article.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Landek-Salgado, M., Faust, T. & Sawa, A. Molecular substrates of schizophrenia: homeostatic signaling to connectivity. Mol Psychiatry 21, 10–28 (2016). https://doi.org/10.1038/mp.2015.141

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2015.141

This article is cited by

Search

Quick links