Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A joint history of the nature of genetic variation and the nature of schizophrenia

Abstract

This essay traces the history of concepts of genetic variation and schizophrenia from Darwin and Mendel to the present. For Darwin, the important form of genetic variation for evolution is continuous in nature and small in effect. Biometricians led by Pearson agreed and developed statistical genetic approaches utilizing trait correlations in relatives. Mendel studied discontinuous traits and subsequent Mendelians, led by Bateson, assumed that important genetic variation was large in effect producing discontinuous phenotypes. Although biometricians studied ‘insanity’, schizophrenia genetics under Kraepelin and Rüdin utilized Mendelian approaches congruent with their anatomical-clinical disease model of dementia praecox. Fisher showed, assuming many genes of small effect, Mendelian and Biometrical models were consilient. Echoing prior conflicts, psychiatric genetics since then has utilized both biometrical models, largely in twins, and Mendelian models, based on advancing molecular techniques. In 1968, Gottesman proposed a polygenic model for schizophrenia based on a threshold version of Fisher’s theory. Since then, rigorous studies of the schizophrenia spectrum suggest that genetic risk for schizophrenia is more likely continuous than categorical. The last 5 years has seen increasingly convincing evidence from genome-wide association study (GWAS) and sequencing that genetic risk for schizophrenia is largely polygenic, and congruent with Fisher’s and Gottesman’s models. The gap between biometrical and molecular Mendelian models for schizophrenia has largely closed. The efforts to ground a categorical biomedical model of schizophrenia in Mendelian genetics have failed. The genetic risk for schizophrenia is widely distributed in human populations so that we all carry some degree of risk.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Provine WB . The Origins of Theoretical Population Genetics. University of Chicago Press: Chicago, 1987.

    Google Scholar 

  2. Berrios GE . Historical aspects of psychoses: 19th century issues. Br Med Bull 1987; 43: 484–498.

    CAS  Article  Google Scholar 

  3. Carter KC . The Rise of Causal Concepts of Disease: Case Histories. Ashgate Publishing Company: Burlington, VT, 2003.

    Google Scholar 

  4. Noguchi H, Moore JW . A demonstration of Treponema Pallidum in the brain in cases of general paralysis. J Exp Med 1913; 17: 232–239.

    CAS  Article  Google Scholar 

  5. Schneider OK . Clinical taxonomy and concept of disease. In: Sass H (ed), Anthology of German Psychiatric Texts. World Psychiatric Association, 2007, pp 370–382

    Google Scholar 

  6. Galton F . Hereditary Genius: An Inquiry Into Its Laws and Consequences, 1st edn.Macmillan and Company: London, UK, 1869.

    Book  Google Scholar 

  7. Pearson K . Mathematical contributions to the theory of evolution. VII. On the correlation of characters not quantitatively measurable. Proc Roy Soc 1901; 66: 241–244.

    Google Scholar 

  8. Heron D . A First Study of the Statistics of Insanity and the Inheritance of the Insane Diathesis. Dulan and Company: London, UK, 1907.

    Google Scholar 

  9. Sullivan PF, Kendler KS, Neale MC . Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch Gen Psychiatry 2003; 60: 1187–1192.

    Article  Google Scholar 

  10. Darden L . Theory Change in Science: Strategies from Mendelian Genetics. Oxford University Press: New York, NY, 1991

  11. Bateson W . Mendel's Principles of Heredity: A Defence. Cambridge University Press: Cambridge, UK, 1902.

    Book  Google Scholar 

  12. Kim K-M . Explaining Scientific Consensus: The Case of Mendelian Genetics. The Guilford Press: New York, NY, 1994.

    Google Scholar 

  13. Zerbin-Rudin E, Kendler KS . Ernst Rudin (1874-1952) and his genealogic-demographic department in Munich (1917-1986): an introduction to their family studies of schizophrenia. Am J Med Genet 1996; 67: 332–337.

    CAS  Article  Google Scholar 

  14. Rudin E . Studien uber Vererbung und entstehung geistiger Storungen. I. Zur vererbung und neuentstehung der Dementia praecox (Studies on the inheritance and origin of mental illness. I. The problem of the inheritance and primary origin of dementia praecox). Monographien aus dem Gesamtgebiet der Neurologie und Psychiatrie, Number 12. Springer: Berlin, 1916.

    Google Scholar 

  15. Kendler KS, Zerbin-Rudin E . Abstract and review of ‘Studien Uber Vererbung und Entstehung Geistiger Storungen. I. Zur Vererbung und Neuentstehung der Dementia praecox.’ (Studies on the inheritance and origin of mental illness: I. To the problem of the inheritance and primary origin of dementia praecox). 1916. Am J Med Genet 1996; 67: 338–342.

    CAS  Article  Google Scholar 

  16. Bleuler M . The Schizophrenic Disorders: Long-term Patient and Family Studies. Yale University Press: New Haven, 1978.

    Google Scholar 

  17. Kraepelin E . Dementia Praecox and Paraphrenia. Krieger Publishing: Huntington, NY, 1971.

    Google Scholar 

  18. Kendler KS . Diagnostic approaches to schizotypal personality disorder: a historical perspective. Schizophr Bull 1985; 11: 538–553.

    CAS  Article  Google Scholar 

  19. Weber MM . Ernst Rudin: Eine kritische Biographie. Springer-Verlag: Berlin, 1993.

    Book  Google Scholar 

  20. Bogerts B . The neuropathology of schizophrenic diseases: historical aspects and present knowledge. Eur Arch Psychiatry Clin Neurosci 1999; 249: 2–13.

    Article  Google Scholar 

  21. Kendler KS, Kidd KK . Recurrence risks in an oligogenic threshold model: the effect of alterations in allele frequency. Ann Hum Genet 1986; 50: 83–91.

    CAS  Article  Google Scholar 

  22. Udny Yule G . Mendel's Laws and Their Probable Relations to Intra-Racial Heredity. New Phytologist 1902; 1: 226–227.

    Google Scholar 

  23. Bateson W, Saunders ER . The Facts of Heredity in the Light of Mendel's Discovery: Reports to the Evolution Committee of the Royal Society I. 1902; 1: 125–160.

  24. Tjebbes K . Polymerism. Bibliogr Genet 1931; 8: 227–268.

    Google Scholar 

  25. East EM . A Mendelian interpretation of variation that is apparently continuous. Am Nat 1910; 44: 65–82.

    Article  Google Scholar 

  26. Kohler RE . Lords of the Fly: Drosophila Genetics and the Experimental Life. The University of Chicago Press: Chicago, IL, 1994.

    Google Scholar 

  27. Sturtevant AH . A History of Genetics, 1st edn. Cold Spring Harbor Laboratory Press, New York, NY, 2001.

    Google Scholar 

  28. Fisher RA . On the correlation between relatives on the supposition of Mendelian inheritance. Trans Roy Soc Edinburgh 1918; 52: 399–433.

    Article  Google Scholar 

  29. Falconer DS . Introduction to Quantitative Genetics, 3rd edn. Wiley: New York, 1989.

    Google Scholar 

  30. Mather K, Jinks JL . Biometrical Genetics: The Study of Continuous Variation, 3rd edn.Chapman & Hall: London, 1982.

    Book  Google Scholar 

  31. Falconer DS . The inheritance of liability to certain diseases, estimated from the incidence among relatives. Ann Hum Genet 1965; 29: 51–76.

    Article  Google Scholar 

  32. Gottesman II, Shields J . A polygenic theory of schizophrenia. Proc Natl Acad Sci USA 1967; 58: 199–205.

    CAS  Article  Google Scholar 

  33. Kendler KS . Overview: a current perspective on twin studies of schizophrenia. Am J Psychiatry 1983; 140: 1413–1425.

    CAS  Article  Google Scholar 

  34. McGuffin P, Farmer AE, Gottesman II, Murray RM, Reveley AM . Twin concordance for operationally defined schizophrenia. Confirmation of familiality and heritability. Arch Gen Psychiatry 1984; 41: 541–545.

    CAS  Article  Google Scholar 

  35. Cannon TD, Kaprio J, Lonnqvist J, Huttunen M, Koskenvuo M . The genetic epidemiology of schizophrenia in a Finnish twin cohort. A population-based modeling study. Arch Gen Psychiatry 1998; 55: 67–74.

    CAS  Article  Google Scholar 

  36. Lichtenstein P, Yip BH, Bjork C, Pawitan Y, Cannon TD, Sullivan PF et al. Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: a population-based study. Lancet 2009; 373: 234–239.

    CAS  Article  Google Scholar 

  37. Kety SS . The types and prevalence of mental illness in the biological and adoptive families of adopted schizophrenics. J Psychiat Res 1968; 6: 345–362.

    Article  Google Scholar 

  38. Kallmann FJ . The Genetics of Schizophrenia. J.S. Augustin: New York, 1938.

    Google Scholar 

  39. Book JA . A genetic and neuropsychiatric investigation of a North Swedish population with special regard to schizophrenia and mental deficiency. Acta Genet Stat Med 1953; 4: 1–100.

    CAS  PubMed  Google Scholar 

  40. Slater E . The monogenic theory of schizophrenia. Acta Genet Stat Med 1958; 8: 50–56.

    CAS  PubMed  Google Scholar 

  41. Meehl PE . Schizotaxia, schizotypy, schizophrenia. Am Psychol 1962; 17: 827–838.

    Article  Google Scholar 

  42. Golden RR, Meehl PE . Testing a single dominant gene theory without an accepted criterion variable. Ann Hum Genet 1978; 41: 507–514.

    CAS  Article  Google Scholar 

  43. O'Rourke DH, Gottesman II, Suarez BK, Rice J, Reich T . Refutation of the general single-locus model for the etiology of schizophrenia. Am J Hum Genet 1982; 34: 630–649.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. McGue M, Gottesman II, Rao DC . The transmission of schizophrenia under a multifactorial threshold model. Am J Hum Genet 1983; 35: 1161–1178.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Kendler KS, Neale MC, Walsh D . Evaluating the spectrum concept of schizophrenia in the Roscommon Family Study. Am J Psychiatry 1995; 152: 749–754.

    CAS  Article  Google Scholar 

  46. Baron M, Risch N . The spectrum concept of schizophrenia: evidence for a genetic- environmental continuum. J Psychiatr Res 1987; 21: 257–267.

    CAS  Article  Google Scholar 

  47. Tsuang MT, Bucher KD, Fleming JA . Testing the monogenic theory of schizophrenia: an application of segregation analysis to blind family study data. Br J Psychiatry 1982; 140: 595–599.

    CAS  Article  Google Scholar 

  48. Carter CL, Chung CS . Segregation analysis of schizophrenia under a mixed genetic model. Hum Hered 1980; 30: 350–356.

    CAS  Article  Google Scholar 

  49. Risch N, Baron M . Segregation analysis of schizophrenia and related disorders. Am J Hum Genet 1984; 36: 1039–1059.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Vogler GP, Gottesman II, McGue MK, Rao DC . Mixed-model segregation analysis of schizophrenia in the Lindelius Swedish pedigrees. Behav Genet 1990; 20: 461–472.

    CAS  Article  Google Scholar 

  51. Risch N, Merikangas K . The future of genetic studies of complex human diseases. Science 1996; 273: 1516–1517.

    CAS  Article  Google Scholar 

  52. Sherrington R, Brynjolfsson J, Petursson H, Potter M, Dudleston K, Barraclough B et al. Localization of a susceptibility locus for schizophrenia on chromosome 5. Nature 1988; 336: 164–167.

    CAS  Article  Google Scholar 

  53. Detera-Wadleigh SD, Goldin LR, Sherrington R, Encio I, de Miguel C, Berrettini W et al. Exclusion of linkage to 5q11-13 in families with schizophrenia and other psychiatric disorders. Nature 1989; 340: 391–393.

    CAS  Article  Google Scholar 

  54. Crowe RR, Black DW, Wesner R, Andreasen NC, Cookman A, Roby J . Lack of linkage to chromosome 5q11-q13 markers in six schizophrenia pedigrees. Arch Gen Psychiatry 1991; 48: 357–361.

    CAS  Article  Google Scholar 

  55. St Clair D, Blackwood D, Muir W, Baillie D, Hubbard A, Wright A et al. No linkage of chromosome 5q11-q13 markers to schizophrenia in Scottish families. Nature 1989; 339: 305–309.

    CAS  Article  Google Scholar 

  56. St Clair D, Blackwood D, Muir W, Carothers A, Walker M, Spowart G et al. Association within a family of a balanced autosomal translocation with major mental illness. Lancet 1990; 336: 13–16.

    CAS  Article  Google Scholar 

  57. Hodgkinson CA, Goldman D, Jaeger J, Persaud S, Kane JM, Lipsky RH et al. Disrupted in schizophrenia 1 (DISC1): association with schizophrenia, schizoaffective disorder, and bipolar disorder. Am J Hum Genet 2004; 75: 862–872.

    CAS  Article  Google Scholar 

  58. Stefansson H, Sigurdsson E, Steinthorsdottir V, Bjornsdottir S, Sigmundsson T, Ghosh S et al. Neuregulin 1 and Susceptibility to Schizophrenia. Am J Hum Genet 2002; 71: 877–892.

    Article  Google Scholar 

  59. Stefansson H, Sarginson J, Kong A, Yates P, Steinthorsdottir V, Gudfinnsson E et al. Association of neuregulin 1 with schizophrenia confirmed in a Scottish population. Am J Hum Genet 2003; 72: 83–87.

    CAS  Article  Google Scholar 

  60. Straub RE, Jiang Y, MacLean CJ, Ma Y, Webb BT, Myakishev MV et al. Genetic variation in the 6p22.3 gene DTNBP1, the human ortholog of the mouse dysbindin gene, is associated with schizophrenia. Am J Hum Genet 2002; 71: 337–348.

    CAS  Article  Google Scholar 

  61. Williams NM, O'Donovan MC, Owen MJ . Is the dysbindin gene (DTNBP1) a susceptibility gene for schizophrenia? Schizophr Bull 2005; 31: 800–805.

    Article  Google Scholar 

  62. Levinson DF, Holmans P, Straub RE, Owen MJ, Wildenauer DB, Gejman PV et al. Multicenter linkage study of schizophrenia candidate regions on chromosomes 5q, 6q, 10p, and 13q: schizophrenia linkage collaborative group III. Am J Hum Genet 2000; 67: 652–663.

    CAS  Article  Google Scholar 

  63. Lewis CM, Levinson DF, Wise LH, DeLisi LE, Straub RE, Hovatta I et al. Genome scan meta-analysis of schizophrenia and bipolar disorder, part II: Schizophrenia. Am J Hum Genet 2003; 73: 34–48.

    CAS  Article  Google Scholar 

  64. Kendler KS . The feasibility of linkage studies in schizophrenia. In: Helmchen H, Henn F (eds). Biological Perspectives of Schizophrenia. John Wiley & Sons Limited: New York, 1987 p 19–32.

    Google Scholar 

  65. Baron M, Gruen R, Rainer JD, Kane J, Asnis L, Lord S . A family study of schizophrenic and normal control probands: implications for the spectrum concept of schizophrenia. Am J Psychiatry 1985; 142: 447–455.

    CAS  Article  Google Scholar 

  66. Kendler KS, McGuire M, Gruenberg AM, O'Hare A, Spellman M, Walsh D . The Roscommon Family Study. III. Schizophrenia-related personality disorders in relatives. Arch Gen Psychiatry 1993; 50: 781–788.

    CAS  Article  Google Scholar 

  67. Asarnow RF, Nuechterlein KH, Fogelson D, Subotnik KL, Payne DA, Russell AT et al. Schizophrenia and schizophrenia-spectrum personality disorders in the first-degree relatives of children with schizophrenia: the UCLA family study. Arch Gen Psychiatry 2001; 58: 581–588.

    CAS  Article  Google Scholar 

  68. Kety SS . The significance of genetic factors in the etiology of schizophrenia: results from the national study of adoptees in Denmark. J Psychiatr Res 1987; 21: 423–429.

    CAS  Article  Google Scholar 

  69. Kendler KS, Gruenberg AM, Strauss JS . An independent analysis of the Copenhagen sample of the Danish adoption study of schizophrenia. II. The relationship between schizotypal personality disorder and schizophrenia. Arch Gen Psychiatry 1981; 38: 982–984.

    CAS  Article  Google Scholar 

  70. Kendler KS, Gruenberg AM, Kinney DK . Independent diagnoses of adoptees and relatives as defined by DSM-III in the provincial and national samples of the Danish Adoption Study of Schizophrenia. Arch Gen Psychiatry 1994; 51: 456–468.

    CAS  Article  Google Scholar 

  71. Purcell SM, Wray NR, Stone JL, Visscher PM, O'Donovan MC, Sullivan PF et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 2009; 460: 748–752.

    CAS  Article  Google Scholar 

  72. Lee SH, DeCandia TR, Ripke S, Yang J, Sullivan PF, Goddard ME et al. Estimating the proportion of variation in susceptibility to schizophrenia captured by common SNPs. Nature Genetics 2012; 44: 247–250.

    CAS  Article  Google Scholar 

  73. Yang J, Lee SH, Goddard ME, Visscher PM . GCTA: a tool for genome-wide complex trait analysis. AJHG 2011; 88: 76–82.

    CAS  Article  Google Scholar 

  74. Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR et al. Common SNPs explain a large proportion of the heritability for human height. Nat Genet 2010; 42: 565–569.

    CAS  Article  Google Scholar 

  75. Ripke S, O'Dushlaine C, Chambert K, Moran JL, Kahler AK, Akterin S et al. Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nat Genet 2013; 45: 1150–1159.

    CAS  Article  Google Scholar 

  76. Kendler KS . What psychiatric genetics has taught us about the nature of psychiatric illness and what is left to learn. Mol Psychiatry 2013; 18: 1058–1066.

    CAS  Article  Google Scholar 

  77. Kirov G, Grozeva D, Norton N, Ivanov D, Mantripragada KK, Holmans P et al. Support for the involvement of large copy number variants in the pathogenesis of schizophrenia. Hum Mol Genet 2009; 18: 1497–1503.

    CAS  Article  Google Scholar 

  78. Levinson DF, Duan J, Oh S, Wang K, Sanders AR, Shi J et al. Copy number variants in schizophrenia: confirmation of five previous findings and new evidence for 3q29 microdeletions and VIPR2 duplications. AJP 2011; 168: 302–316.

    Article  Google Scholar 

  79. Fromer M, Pocklington AJ, Kavanagh DH, Williams HJ, Dwyer S, Gormley P et al. De novo mutations in schizophrenia implicate synaptic networks. Nature 2014; 506: 179–184.

    CAS  Article  Google Scholar 

  80. Purcell SM, Moran JL, Fromer M, Ruderfer D, Solovieff N, Roussos P et al. A polygenic burden of rare disruptive mutations in schizophrenia. Nature 2014; 506: 185–190.

    CAS  Article  Google Scholar 

  81. Bigdeli TB, Bacanu SA, Webb BT, Walsh D, O'Neill FA, Fanous AH et al. Molecular validation of the schizophrenia spectrum. Schizophr Bull 2014; 40: 60–65.

    Article  Google Scholar 

  82. Agarwala V, Flannick J, Sunyaev S, Altshuler D . Evaluating empirical bounds on complex disease genetic architecture. Nat Genet 2013; 45: 1418–1427.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants NIH grants MH-094421 and MH100549. Drs Irv Gottesman and Eric Turkheimer provided helpful comments on an earlier draft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K S Kendler.

Ethics declarations

Competing interests

The author declares no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kendler, K. A joint history of the nature of genetic variation and the nature of schizophrenia. Mol Psychiatry 20, 77–83 (2015). https://doi.org/10.1038/mp.2014.94

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2014.94

Further reading

Search

Quick links