Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Age-related sperm DNA methylation changes are transmitted to offspring and associated with abnormal behavior and dysregulated gene expression

Abstract

Advanced paternal age (APA) has been shown to be a significant risk factor in the offspring for neurodevelopmental psychiatric disorders, such as schizophrenia and autism spectrum disorders. During aging, de novo mutations accumulate in the male germline and are frequently transmitted to the offspring with deleterious effects. In addition, DNA methylation during spermatogenesis is an active process, which is susceptible to errors that can be propagated to subsequent generations. Here we test the hypothesis that the integrity of germline DNA methylation is compromised during the aging process. A genome-wide DNA methylation screen comparing sperm from young and old mice revealed a significant loss of methylation in the older mice in regions associated with transcriptional regulation. The offspring of older fathers had reduced exploratory and startle behaviors and exhibited similar brain DNA methylation abnormalities as observed in the paternal sperm. Offspring from old fathers also had transcriptional dysregulation of developmental genes implicated in autism and schizophrenia. Our findings demonstrate that DNA methylation abnormalities arising in the sperm of old fathers are a plausible mechanism to explain some of the risks that APA poses to resulting offspring.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Risch N, Reich EW, Wishnick MM, McCarthy JG Spontaneous mutation and parental age in humans. Am J Hum Genet 1987; 41: 218–248.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Goriely A, Wilkie AO Paternal age effect mutations and selfish spermatogonial selection: causes and consequences for human disease. Am J Hum Genet 2012; 90: 175–200.

    Article  CAS  Google Scholar 

  3. Malaspina D, Harlap S, Fennig S, Heiman D, Nahon D, Feldman D et al. Advancing paternal age and the risk of schizophrenia. Arch Gen Psychiatry 2001; 58: 361–367.

    Article  CAS  Google Scholar 

  4. Reichenberg A, Gross R, Weiser M, Bresnahan M, Silverman J, Harlap S et al. Advancing paternal age and autism. Arch Gen Psychiatry 2006; 63: 1026–1032.

    Article  Google Scholar 

  5. Hultman CM, Sandin S, Levine SZ, Lichtenstein P, Reichenberg A . Advancing paternal age and risk of autism: new evidence from a population-based study and a meta-analysis of epidemiological studies. Mol Psychiatry 2011; 16: 1203–1212.

    Article  CAS  Google Scholar 

  6. Frans EM, Sandin S, Reichenberg A, Lichtenstein P, Långström N, Hultman CM . Advancing paternal age and bipolar disorder. Arch Gen Psychiatry 2008; 65: 1034–1040.

    Article  Google Scholar 

  7. D'Onofrio BM, Rickert ME, Frans E, Kuja-Halkola R, Almqvist C, Sjölander A et al. Paternal age at childbearing and offspring psychiatric and academic morbidity. JAMA Psychiatry 2014; 71: 432–438.

    Article  Google Scholar 

  8. Malaspina D . Paternal factors and schizophrenia risk: de novo mutations and imprinting. Schizophr Bull 2001; 27: 379–393.

    Article  CAS  Google Scholar 

  9. Perrin MC, Brown AS, Malaspina D . Aberrant epigenetic regulation could explain the relationship of paternal age to schizophrenia. Schizophr Bull 2007; 33: 1270–1273.

    Article  Google Scholar 

  10. Sanders SJ, Murtha MT, Gupta AR, Murdoch JD, Raubeson MJ, Willsey AJ et al. De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature 2012; 485: 237–241.

    Article  CAS  Google Scholar 

  11. Neale BM, Kou Y, Liu L, Ma'ayan A, Samocha KE, Sabo A et al. Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature 2012; 485: 242–245.

    Article  CAS  Google Scholar 

  12. Iossifov I, Ronemus M, Levy D, Wang Z, Hakker I, Rosenbaum J et al. De novo gene disruptions in children on the autistic spectrum. Neuron 2012; 74: 285–299.

    Article  CAS  Google Scholar 

  13. O'Roak BJ, Vives L, Girirajan S, Karakoc E, Krumm N, Coe BP et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 2012; 485: 246–250.

    Article  CAS  Google Scholar 

  14. Malhotra D, McCarthy S, Michaelson JJ, Vacic V, Burdick KE, Yoon S et al. High frequencies of de novo CNVs in bipolar disorder and schizophrenia. Neuron 2011; 72: 951–963.

    Article  CAS  Google Scholar 

  15. Sebat J, Lakshmi B, Malhotra D, Troge J, Lese-Martin C, Walsh T et al. Strong association of de novo copy number mutations with autism. Science 2007; 316: 445–449.

    Article  CAS  Google Scholar 

  16. Kong A, Frigge ML, Masson G, Besenbacher S, Sulem P, Magnusson G et al. Rate of de novo mutations and the importance of father's age to disease risk. Nature 2012; 488: 471–475.

    Article  CAS  Google Scholar 

  17. Flatscher-Bader T, Foldi CJ, Chong S, Whitelaw E, Moser RJ, Burne TH et al. Increased de novo copy number variants in the offspring of older males. Transl Psychiatry 2011; 1: e34.

    Article  CAS  Google Scholar 

  18. Richardson B . Impact of aging on DNA methylation. Ageing Res Rev 2003; 2: 245–261.

    Article  CAS  Google Scholar 

  19. Dempster EL, Pidsley R, Schalkwyk LC, Owens S, Georgiades A, Kane F et al. Disease-associated epigenetic changes in monozygotic twins discordant for schizophrenia and bipolar disorder. Hum Mol Genet 2011; 20: 4786–4796.

    Article  CAS  Google Scholar 

  20. Nguyen A, Rauch TA, Pfeifer GP, Hu VW . Global methylation profiling of lymphoblastoid cell lines reveals epigenetic contributions to autism spectrum disorders and a novel autism candidate gene, RORA, whose protein product is reduced in autistic brain. FASEB J 2010; 24: 3036–3051.

    Article  CAS  Google Scholar 

  21. Edwards JR, O'Donnell AH, Rollins RA, Peckham HE, Lee C, Milekic MH et al. Chromatin and sequence features that define the fine and gross structure of genomic methylation patterns. Genome Res 2010; 20: 972–980.

    Article  CAS  Google Scholar 

  22. Xin Y, O'Donnell AH, Ge Y, Chanrion B, Milekic M, Rosoklija G et al. Role of CpG context and content in evolutionary signatures of brain DNA methylation. Epigenetics 2011; 6: 1308–1318.

    Article  CAS  Google Scholar 

  23. Xin Y, Ge Y, Haghighi F . Methyl-Analyzer—Whole Genome DNA Methylation Profiling. Bioinformatics 2011; 27: 2296–2297.

    Article  CAS  Google Scholar 

  24. Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D'Souza C, Fouse SD et al. Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 2010; 466: 253–257.

    Article  CAS  Google Scholar 

  25. Trapnell C, Pachter L, Salzberg SL . TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 2009; 25: 1105–1111.

    Article  CAS  Google Scholar 

  26. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 2010; 28: 511–515.

    Article  CAS  Google Scholar 

  27. Doi A, Park IH, Wen B, Murakami P, Aryee MJ, Irizarry R et al. Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat Genet 2009; 41: 1350–1353.

    Article  CAS  Google Scholar 

  28. Jenkins TG, Aston KI, Cairns BR, Carrell DT . Paternal aging and associated intraindividual alterations of global sperm 5-methylcytosine and 5-hydroxymethylcytosine levels. Fertil Steril 2013; 100: 945–951.

    Article  CAS  Google Scholar 

  29. Swerdlow NR, Weber M, Qu Y, Light GA, Braff DL . Realistic expectations of prepulse inhibition in translational models for schizophrenia research. Psychopharmacology (Berl) 2008; 199: 331–388.

    Article  CAS  Google Scholar 

  30. Perry W, Minassian A, Lopez B, Maron L, Lincoln A . Sensorimotor gating deficits in adults with autism. Biol Psychiatry 2007; 61: 482–486.

    Article  Google Scholar 

  31. Smith R.G, Reichenberg A, Kember RL, Buxbaum JD, Schalkwyk LC, Fernandes C et al. Advanced paternal age is associated with altered DNA methylation at brain-expressed imprinted loci in inbred mice: implications for neuropsychiatric disease. Mol Psychiatry 2013; 18: 635–636.

    Article  CAS  Google Scholar 

  32. Kohl S, Heekeren K, Klosterkötter J, Kuhn J . Prepulse inhibition in psychiatric disorders—apart from schizophrenia. J Psychiatr Res 2013; 47: 445–452.

    Article  CAS  Google Scholar 

  33. Braff DL, Geyer MA, Swerdlow NR . Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies. Psychopharmacology (Berl) 2001; 156: 234–258.

    Article  CAS  Google Scholar 

  34. Foldi CJ, Eyles DW, Flatscher-Bader T, McGrath JJ, Burne TH . New perspectives on rodent models of advanced paternal age: relevance to autism. Front Behav Neurosci 2011; 5: 32.

    Article  Google Scholar 

  35. Garcia-Palomares S, Pertusa JF, Miñarro J, García-Pérez MA, Hermenegildo C, Rausell F et al. Long-term effects of delayed fatherhood in mice on postnatal development and behavioral traits of offspring. Biol Reprod 2009; 80: 337–342.

    Article  CAS  Google Scholar 

  36. Foldi CJ, Eyles DW, McGrath JJ, Burne TH . Advanced paternal age is associated with alterations in discrete behavioural domains and cortical neuroanatomy of C57BL/6J mice. Eur J Neurosci 2010; 31: 556–564.

    Article  Google Scholar 

  37. Smith RG, Kember RL, Mill J, Fernandes C, Schalkwyk LC, Buxbaum JD et al. Advancing paternal age is associated with deficits in social and exploratory behaviors in the offspring: a mouse model. PLoS One 2009; 4: e8456.

    Article  Google Scholar 

  38. Li L, Wang L, Xu X, Lou H, Le F, Li L et al. Genome-wide DNA methylation patterns in IVF-conceived mice and their progeny: a putative model for ART-conceived humans. Reprod Toxicol 2011; 32: 98–105.

    Article  Google Scholar 

  39. Hager R, Cheverud JM, Wolf JB . Change in maternal environment induced by cross-fostering alters genetic and epigenetic effects on complex traits in mice. Proc Biol Sci 2009; 276: 2949–2954.

    Article  Google Scholar 

  40. Carone BR, Fauquier L, Habib N, Shea JM, Hart CE, Li R et al. Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. Cell 2010; 143: 1084–1096.

    Article  CAS  Google Scholar 

  41. Anway MD, Cupp AS, Uzumcu M, Skinner MK . Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 2005; 308: 1466–1469.

    Article  CAS  Google Scholar 

  42. Dias BG, Ressler KJ . Parental olfactory experience influences behavior and neural structure in subsequent generations. Nat Neurosci 2014; 17: 89–96.

    Article  CAS  Google Scholar 

  43. Reik W, Dean W, Walter J . Epigenetic reprogramming in mammalian development. Science 2001; 293: 1089–1093.

    Article  CAS  Google Scholar 

  44. Lane N, Dean W, Erhardt S, Hajkova P, Surani A, Walter J et al. Resistance of IAPs to methylation reprogramming may provide a mechanism for epigenetic inheritance in the mouse. Genesis 2003; 35: 88–93.

    Article  CAS  Google Scholar 

  45. Branco MR, Oda M, Reik W . Safeguarding parental identity: Dnmt1 maintains imprints during epigenetic reprogramming in early embryogenesis. Genes Dev 2008; 22: 1567–1571.

    Article  CAS  Google Scholar 

  46. Vavouri T, Lehner B . Chromatin organization in sperm may be the major functional consequence of base composition variation in the human genome. PLoS Genet 2011; 7: e1002036.

    Article  CAS  Google Scholar 

  47. Erkek S, Hisano M, Liang CY, Gill M, Murr R, Dieker J et al. Molecular determinants of nucleosome retention at CpG-rich sequences in mouse spermatozoa. Nat Struct Mol Biol 2013; 20: 868–875.

    Article  CAS  Google Scholar 

  48. Hitchins MP, Ward RL . Erasure of MLH1 methylation in spermatozoa-implications for epigenetic inheritance. Nat Genet 2007; 39: 1289.

    Article  CAS  Google Scholar 

  49. Ligtenberg MJ, Kuiper RP, Chan TL, Goossens M, Hebeda KM, Voorendt M et al. Heritable somatic methylation and inactivation of MSH2 in families with Lynch syndrome due to deletion of the 3' exons of TACSTD1. Nat Genet 2009; 41: 112–117.

    Article  CAS  Google Scholar 

  50. Xia J, Han L, Zhao Z . Investigating the relationship of DNA methylation with mutation rate and allele frequency in the human genome. BMC Genomics 2012; 13 (Suppl 8): S7.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr Timothy Bestor for invaluable help with experimental design and helpful discussions; Jackie Tinsley, Prashant Donthamsetti, Heather El-Amamy and Matthew Gingrich for experimental help; Caitlin McOmish for helpful discussions. This research was supported by grants from the Simons Foundation and the National Institute of Mental Health (5R21MH073794) to JAG, the G Harold & Leila Y Mathers Foundation to DM and JAG; a NARSAD Young Investigator Award and Sackler Award to MHM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M H Milekic.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milekic, M., Xin, Y., O’Donnell, A. et al. Age-related sperm DNA methylation changes are transmitted to offspring and associated with abnormal behavior and dysregulated gene expression. Mol Psychiatry 20, 995–1001 (2015). https://doi.org/10.1038/mp.2014.84

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2014.84

This article is cited by

Search

Quick links