Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

HMGCR is a genetic modifier for risk, age of onset and MCI conversion to Alzheimer’s disease in a three cohorts study

Subjects

Abstract

Several retrospective epidemiological studies report that utilization of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) inhibitors called statins at mid-life can reduce the risk of developing sporadic Alzheimer's disease (AD) by as much as 70%. Conversely, the administration of these inhibitors in clinically diagnosed subjects with AD confers little or no benefits over time. Here, we investigated the association between AD and HMGCR rs3846662, a polymorphism known to be involved in the regulation of HMGCR exon 13 skipping, in a founder population and in two distinct mixed North American populations of converting mild cognitively impaired (MCI) subjects (Alzheimer’s disease Cooperative study (ADCS) and Alzheimer’s disease Neuroimaging Initiative (ADNI) cohorts). Targeting more specifically women, the G allele negative (G−) AD subjects exhibit delayed age of onset of AD (P=0.017) and significantly reduced risk of AD (OR: 0.521; P=0.0028), matching the effect size reported by the apolipoprotein E type 2 variant. Stratification for APOE4 in a large sample of MCI patients from the ADCS cohort revealed a significant protective effect of G negative carriers on AD conversion 3 years after MCI diagnosis (odds ratio (OR): 0.554; P=0.041). Conversion rate among APOE4 carriers with the HMGCR’s G negative allele was markedly reduced (from 76% to 27%) to levels similar to APOE4 non-carriers (27.14%), which strongly indicate protection. Conversion data from the independent ADNI cohort also showed significantly reduced MCI or AD conversion among APOE4 carriers with the protective A allele (P=0.005). In conclusion, HMGCR rs3846662 acts as a potent genetic modifier for AD risk, age of onset and conversion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Kalaria RN, Maestre GE, Arizaga R, Friedland RP, Galasko D, Hall K et al. Alzheimer's disease and vascular dementia in developing countries: prevalence, management, and risk factors. Lancet Neurol 2008; 7: 812–826.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Adlard PA, Cummings BJ . Alzheimer's disease—a sum greater than its parts? Neurobiol Aging 2004; 25: 725–733, discussion 743-726.

    Article  CAS  PubMed  Google Scholar 

  3. Petersen RC, Thomas RG, Grundman M, Bennett D, Doody R, Ferris S et al. Vitamin E and donepezil for the treatment of mild cognitive impairment. N Engl J Med 2005; 352: 2379–2388.

    Article  CAS  PubMed  Google Scholar 

  4. Morris JC, Storandt M, Miller JP, McKeel DW, Price JL, Rubin EH et al. Mild cognitive impairment represents early-stage Alzheimer disease. Arch Neurol 2001; 58: 397–405.

    CAS  PubMed  Google Scholar 

  5. Petersen RC, Stevens JC, Ganguli M, Tangalos EG, Cummings JL, DeKosky ST . Practice parameter: early detection of dementia: mild cognitive impairment (an evidence-based review). Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 2001; 56: 1133–1142.

    Article  CAS  PubMed  Google Scholar 

  6. Petersen RC, Smith GE, Ivnik RJ, Tangalos EG, Schaid DJ, Thibodeau SN et al. Apolipoprotein E status as a predictor of the development of Alzheimer's disease in memory-impaired individuals. JAMA 1995; 273: 1274–1278.

    Article  CAS  PubMed  Google Scholar 

  7. Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E . Mild cognitive impairment: clinical characterization and outcome. Arch Neurol 1999; 56: 303–308.

    Article  CAS  PubMed  Google Scholar 

  8. Hardy J . Amyloid, the presenilins and Alzheimer's disease. Trends Neurosci 1997; 20: 154–159.

    Article  CAS  PubMed  Google Scholar 

  9. Gatz M, Fratiglioni L, Johansson B, Berg S, Mortimer JA, Reynolds CA et al. Complete ascertainment of dementia in the Swedish Twin Registry: the HARMONY study. Neurobiol Aging 2005; 26: 439–447.

    Article  PubMed  Google Scholar 

  10. Raiha I, Kaprio J, Koskenvuo M, Rajala T, Sourander L . Alzheimer's disease in twins. Biomed Pharmacother 1997; 51: 101–104.

    Article  CAS  PubMed  Google Scholar 

  11. Gatz M, Reynolds CA, Fratiglioni L, Johansson B, Mortimer JA, Berg S et al. Role of genes and environments for explaining Alzheimer disease. Arch Gen Psychiatry 2006; 63: 168–174.

    Article  PubMed  Google Scholar 

  12. Poirier J, Davignon J, Bouthillier D, Kogan S, Bertrand P, Gauthier S . Apolipoprotein E polymorphism and Alzheimer's disease. Lancet 1993; 342: 697–699.

    Article  CAS  PubMed  Google Scholar 

  13. Strittmatter WJ, Saunders AM, Schmechel D, Pericak-Vance M, Enghild J, Salvesen GS et al. Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci USA 1993; 90: 1977–1981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science 1993; 261: 921–923.

    Article  CAS  PubMed  Google Scholar 

  15. Saunders AM, Strittmatter WJ, Schmechel D, George-Hyslop PH, Pericak-Vance MA, Joo SH et al. Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer's disease. Neurology 1993; 43: 1467–1472.

    Article  CAS  PubMed  Google Scholar 

  16. Corder EH, Saunders AM, Risch NJ, Strittmatter WJ, Schmechel DE, Gaskell PC Jr et al. Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease. Nat Genet 1994; 7: 180–184.

    Article  CAS  PubMed  Google Scholar 

  17. Benjamin R, Leake A, McArthur FK, Ince PG, Candy JM, Edwardson JA et al. Protective effect of apoE epsilon 2 in Alzheimer's disease. Lancet 1994; 344: 473.

    Article  CAS  PubMed  Google Scholar 

  18. de Leon MJ, Convit A, Wolf OT, Tarshish CY, DeSanti S, Rusinek H et al. Prediction of cognitive decline in normal elderly subjects with 2-[(18)F]fluoro-2-deoxy-D-glucose/poitron-emission tomography (FDG/PET). Proc Natl Acad Sci USA 2001; 98: 10966–10971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Blacker D, Bertram L, Saunders AJ, Moscarillo TJ, Albert MS, Wiener H et al. Results of a high-resolution genome screen of 437 Alzheimer's disease families. Hum Mol Genet 2003; 12: 23–32.

    Article  CAS  PubMed  Google Scholar 

  20. Wollmer MA . Cholesterol-related genes in Alzheimer's disease. Biochim Biophys Acta 2010; 1801: 762–773.

    Article  CAS  PubMed  Google Scholar 

  21. Hollingworth P, Harold D, Sims R, Gerrish A, Lambert JC, Carrasquillo MM et al. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease. Nat Genet 2011; 43: 429–435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML et al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease. Nat Genet 2009; 41: 1088–1093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lambert JC, Heath S, Even G, Campion D, Sleegers K, Hiltunen M et al. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer's disease. Nat Genet 2009; 41: 1094–1099.

    Article  CAS  PubMed  Google Scholar 

  24. Bettens K, Sleegers K, Van Broeckhoven C . Current status on Alzheimer disease molecular genetics: from past, to present, to future. Hum Mol Genet 2010; 19: R4–R11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Laberge AM, Michaud J, Richter A, Lemyre E, Lambert M, Brais B et al. Population history and its impact on medical genetics in Quebec. Clin Genet 2005; 68: 287–301.

    Article  PubMed  Google Scholar 

  26. Carrasquillo MM, Belbin O, Zou F, Allen M, Ertekin-Taner N, Ansari M et al. Concordant association of insulin degrading enzyme gene (IDE) variants with IDE mRNA, Abeta, and Alzheimer's disease. PLoS One 2010; 5: e8764.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Shen L, Kim S, Risacher SL, Nho K, Swaminathan S, West JD et al. Whole genome association study of brain-wide imaging phenotypes for identifying quantitative trait loci in MCI and AD: a study of the ADNI cohort. Neuroimage 2010; 53: 1051–1063.

    Article  CAS  PubMed  Google Scholar 

  28. Poirier J, Apolipoprotein E . cholesterol transport and synthesis in sporadic Alzheimer's disease. Neurobiol Aging 2005; 26: 355–361.

    Article  CAS  PubMed  Google Scholar 

  29. Yu C, Youmans KL, LaDu MJ . Proposed mechanism for lipoprotein remodelling in the brain. Biochim Biophys Acta 2010; 1801: 819–823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ohm TG, Treiber-Held S, Distl R, Glockner F, Schonheit B, Tamanai M et al. Cholesterol and tau protein—findings in Alzheimer's and Niemann Pick C's disease. Pharmacopsychiatry 2003; 36: S120–S126.

    Article  CAS  PubMed  Google Scholar 

  31. Hofman A, Ott A, Breteler MM, Bots ML, Slooter AJ, van Harskamp F et al. Atherosclerosis, apolipoprotein E, and prevalence of dementia and Alzheimer's disease in the Rotterdam Study. Lancet 1997; 349: 151–154.

    Article  CAS  PubMed  Google Scholar 

  32. Marchant NL, Reed BR, Sanossian N, Madison CM, Kriger S, Dhada R et al. The aging brain and cognition: contribution of vascular injury and abeta to mild cognitive dysfunction. JAMA Neurol 2013; 70: 488–495.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Jick H, Zornberg GL, Jick SS, Seshadri S, Drachman DA . Statins and the risk of dementia. Lancet 2000; 356: 1627–1631.

    Article  CAS  PubMed  Google Scholar 

  34. Rockwood K, Kirkland S, Hogan DB, MacKnight C, Merry H, Verreault R et al. Use of lipid-lowering agents, indication bias, and the risk of dementia in community-dwelling elderly people. Arch Neurol 2002; 59: 223–227.

    Article  PubMed  Google Scholar 

  35. Wolozin B, Kellman W, Ruosseau P, Celesia GG, Siegel G . Decreased prevalence of Alzheimer disease associated with 3-hydroxy-3-methyglutaryl coenzyme A reductase inhibitors. Arch Neurol 2000; 57: 1439–1443.

    Article  CAS  PubMed  Google Scholar 

  36. Wolozin B, Wang SW, Li NC, Lee A, Lee TA, Kazis LE . Simvastatin is associated with a reduced incidence of dementia and Parkinson's disease. BMC Med 2007; 5: 20.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Riekse RG, Li G, Petrie EC, Leverenz JB, Vavrek D, Vuletic S et al. Effect of statins on Alzheimer's disease biomarkers in cerebrospinal fluid. J Alzheimers Dis 2006; 10: 399–406.

    Article  CAS  PubMed  Google Scholar 

  38. Li G, Larson EB, Sonnen JA, Shofer JB, Petrie EC, Schantz A et al. Statin therapy is associated with reduced neuropathologic changes of Alzheimer disease. Neurology 2007; 69: 878–885.

    Article  CAS  PubMed  Google Scholar 

  39. Kehoe P, Wavrant-De Vrieze F, Crook R, Wu WS, Holmans P, Fenton I et al. A full genome scan for late onset Alzheimer's disease. Hum Mol Genet 1999; 8: 237–245.

    Article  CAS  PubMed  Google Scholar 

  40. Porcellini E, Calabrese E, Guerini F, Govoni M, Chiappelli M, Tumini E et al. The hydroxy-methyl-glutaryl CoA reductase promoter polymorphism is associated with Alzheimer's risk and cognitive deterioration. Neurosci Lett 2007; 416: 66–70.

    Article  CAS  PubMed  Google Scholar 

  41. Rodriguez-Rodriguez E, Mateo I, Infante J, Llorca J, Garcia-Gorostiaga I, Vazquez-Higuera JL et al. Interaction between HMGCR and ABCA1 cholesterol-related genes modulates Alzheimer's disease risk. Brain Res 2009; 1280: 166–171.

    Article  CAS  PubMed  Google Scholar 

  42. Wollmer MA, Sleegers K, Ingelsson M, Zekanowski C, Brouwers N, Maruszak A et al. Association study of cholesterol-related genes in Alzheimer's disease. Neurogenetics 2007; 8: 179–188.

    Article  CAS  PubMed  Google Scholar 

  43. Medina MW, Gao F, Ruan W, Rotter JI, Krauss RM . Alternative splicing of 3-hydroxy-3-methylglutaryl coenzyme A reductase is associated with plasma low-density lipoprotein cholesterol response to simvastatin. Circulation 2008; 118: 355–362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Burkhardt R, Kenny EE, Lowe JK, Birkeland A, Josowitz R, Noel M et al. Common SNPs in HMGCR in micronesians and whites associated with LDL-cholesterol levels affect alternative splicing of exon13. Arterioscler Thromb Vasc Biol 2008; 28: 2078–2084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yu CY, Theusch E, Lo K, Mangravite LM, Naidoo D, Kutilova M et al. HNRNPA1 regulates HMGCR alternative splicing and modulates cellular cholesterol metabolism. Hum Mol Genet 2013; 23: 319–332.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Aulchenko YS, Ripatti S, Lindqvist I, Boomsma D, Heid IM, Pramstaller PP et al. Loci influencing lipid levels and coronary heart disease risk in 16 European population cohorts. Nat Genet 2009; 41: 47–55.

    Article  CAS  PubMed  Google Scholar 

  47. Chasman DI, Posada D, Subrahmanyan L, Cook NR, Stanton VP Jr, Ridker PM . Pharmacogenetic study of statin therapy and cholesterol reduction. JAMA 2004; 291: 2821–2827.

    Article  CAS  PubMed  Google Scholar 

  48. Krauss RM, Mangravite LM, Smith JD, Medina MW, Wang D, Guo X et al. Variation in the 3-hydroxyl-3-methylglutaryl coenzyme a reductase gene is associated with racial differences in low-density lipoprotein cholesterol response to simvastatin treatment. Circulation 2008; 117: 1537–1544.

    Article  CAS  PubMed  Google Scholar 

  49. Dea D Théroux L Legault V Leduc V Poirier J . HMG-COA reductase as a risk factor and modulator of Alzheimer pathology. 11th International Conference of Alzheimer’s Disease and Related Disorders; 2010. Hawai, USA: Alzheimer's & Dementia: The Journal of the Alzheimer's Association, 2010) S191.

    Google Scholar 

  50. Khachaturian ZS . Diagnosis of Alzheimer's disease. Arch Neurol 1985; 42: 1097–1105.

    Article  CAS  PubMed  Google Scholar 

  51. Gagnon A, Toupance B, Tremblay M, Beise J, Heyer E . Transmission of migration propensity increases genetic divergence between populations. Am J Phys Anthropol 2006; 129: 630–636.

    Article  PubMed  Google Scholar 

  52. Betard C, Kessling AM, Roy M, Chamberland A, Lussier-Cacan S, Davignon J . Molecular genetic evidence for a founder effect in familial hypercholesterolemia among French Canadians. Hum Genet 1992; 88: 529–536.

    Article  CAS  PubMed  Google Scholar 

  53. Royo JL, Hidalgo M, Ruiz A . Pyrosequencing protocol using a universal biotinylated primer for mutation detection and SNP genotyping. Nat Protoc 2007; 2: 1734–1739.

    Article  CAS  PubMed  Google Scholar 

  54. Li G, Higdon R, Kukull WA, Peskind E, Van Valen Moore K, Tsuang D et al. Statin therapy and risk of dementia in the elderly: a community-based prospective cohort study. Neurology 2004; 63: 1624–1628.

    Article  CAS  PubMed  Google Scholar 

  55. Rea TD, Breitner JC, Psaty BM, Fitzpatrick AL, Lopez OL, Newman AB et al. Statin use and the risk of incident dementia: the Cardiovascular Health Study. Arch Neurol 2005; 62: 1047–1051.

    Article  PubMed  Google Scholar 

  56. Haag MD, Hofman A, Koudstaal PJ, Stricker BH, Breteler MM . Statins are associated with a reduced risk of Alzheimer disease regardless of lipophilicity. The Rotterdam Study. J Neurol Neurosurg Psychiatry 2009; 80: 13–17.

    Article  CAS  PubMed  Google Scholar 

  57. Feldman HH, Doody RS, Kivipelto M, Sparks DL, Waters DD, Jones RW et al. Randomized controlled trial of atorvastatin in mild to moderate Alzheimer disease. LEADe. Neurology 2010; 74: 956–964.

    Article  CAS  PubMed  Google Scholar 

  58. Arvanitakis Z, Knopman DS . Clinical trial efforts in Alzheimer disease. Why test statins? Neurology 2010; 74: 945–946.

    Article  PubMed  Google Scholar 

  59. Keller L, Murphy C, Wang HX, Fratiglioni L, Olin M, Gafvels M et al. A functional polymorphism in the HMGCR promoter affects transcriptional activity but not the risk for Alzheimer disease in Swedish populations. Brain Res 2010; 1344: 185–191.

    Article  CAS  PubMed  Google Scholar 

  60. Bettermann K, Arnold AM, Williamson J, Rapp S, Sink K, Toole JF et al. Statins, risk of dementia, and cognitive function: secondary analysis of the ginkgo evaluation of memory study. J Stroke Cerebrovasc Dis 2011; 21: 436–444.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported in part by the Natural Sciences and Engineering Research Council of Canada (JP), JL Levesque Foundation (JP) and by the Canadian Institutes of Health Research (VL/LDB/JP). We would also like to thank Mrs Danielle Cécyre at the Douglas Institute/ Bell Canada Brain Bank for providing human brain tissues. Data collection and sharing for this project was supported by the ADNI National Institutes of Health (NIH) grant U01 AG024904 (PI: Michael W Weiner, MD, VA Medical Center and University of California, San Francisco, CA, USA). Funding sources for ADNI include the National Institute on Aging (NIA), the National Institute of Biomedical Imaging and Bioengineering, the US Food and Drug Administration, the non-profit partners of the Alzheimer’s Association, the Alzheimer’s Drug Discovery Foundation and the Dana Foundation, and the following private sector contributors: Abbott, AstraZeneca AB, Amorfix, Bayer Schering Pharma AG, Bioclinica, Biogen Idec, Bristol–Myers Squibb, Eisai Global Clinical Development, Elan Corporation, Genentech, GE Healthcare, Innogenetics, IXICO, Janssen Alzheimer Immunotherapy, Johnson and Johnson, Eli Lilly, Medpace, Merck, Meso Scale Diagnostic & LLC, Novartis AG, Pfizer, F Hoffman–La Roche, Servier, Synarc and Takeda Pharmaceuticals. Private sector contributions to ADNI are facilitated by the Foundation for the NIH (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education. The study is coordinated by the Alzheimer’s Disease Cooperative Study at the University of California, San Diego, CA, USA and ADNI data are disseminated by the Laboratory of Neuro Imaging at the University of Los Angeles, CA, USA. Additional ADNI support comes from the NIH grants P30 AG010129, K01 AG030514 and U24 AG21886. We also wish to thank all the members and funders of the ADCS who participated in the original MCI study.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to J Poirier.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leduc, V., De Beaumont, L., Théroux, L. et al. HMGCR is a genetic modifier for risk, age of onset and MCI conversion to Alzheimer’s disease in a three cohorts study. Mol Psychiatry 20, 867–873 (2015). https://doi.org/10.1038/mp.2014.81

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2014.81

This article is cited by

Search

Quick links