Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Dentate gyrus-CA3 glutamate release/NMDA transmission mediates behavioral despair and antidepressant-like responses to leptin

Abstract

Compelling evidence supports the important role of the glutamatergic system in the pathophysiology of major depression and also as a target for rapid-acting antidepressants. However, the functional role of glutamate release/transmission in behavioral processes related to depression and antidepressant efficacy remains to be elucidated. In this study, glutamate release and behavioral responses to tail suspension, a procedure commonly used for inducing behavioral despair, were simultaneously monitored in real time. The onset of tail suspension stress evoked a rapid increase in glutamate release in hippocampal field CA3, which declined gradually after its offset. Blockade of N-methyl-D-aspartic acid (NMDA) receptors by intra-CA3 infusion of MK-801, a non-competitive NMDA receptor antagonist, reversed behavioral despair. A subpopulation of granule neurons that innervated the CA3 region expressed leptin receptors and these cells were not activated by stress. Leptin treatment dampened tail suspension-evoked glutamate release in CA3. On the other hand, intra-CA3 infusion of NMDA blocked the antidepressant-like effect of leptin in reversing behavioral despair in both the tail suspension and forced swim tests, which involved activation of Akt signaling in DG. Taken together, these results suggest that the DG-CA3 glutamatergic pathway is critical for mediating behavioral despair and antidepressant-like responses to leptin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Skolnick P, Popik P, Trullas R . Glutamate-based antidepressants: 20 years on. Trends Pharmacol Sci 2009; 30: 563–569.

    Article  CAS  PubMed  Google Scholar 

  2. Zarate C Jr, Machado-Vieira R, Henter I, Ibrahim L, Diazgranados N, Salvadore G . Glutamatergic modulators: the future of treating mood disorders? Harv Rev Psychiatry 2010; 18: 293–303.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Krystal JH, Sanacora G, Duman RS . Rapid-acting glutamatergic antidepressants: the path to ketamine and beyond. Biol Psychiatry 73: 1133–1141.

  4. Lowy MT, Gault L, Yamamoto BK . Adrenalectomy attenuates stress-induced elevations in extracellular glutamate concentrations in the hippocampus. J Neurochem 1993; 61: 1957–1960.

    Article  CAS  PubMed  Google Scholar 

  5. Lowy MT, Wittenberg L, Yamamoto BK . Effect of acute stress on hippocampal glutamate levels and spectrin proteolysis in young and aged rats. J Neurochem 1995; 65: 268–274.

    Article  CAS  PubMed  Google Scholar 

  6. Moghaddam B . Stress preferentially increases extraneuronal levels of excitatory amino acids in the prefrontal cortex: comparison to hippocampus and basal ganglia. J Neurochem 1993; 60: 1650–1657.

    Article  CAS  PubMed  Google Scholar 

  7. Bagley J, Moghaddam B . Temporal dynamics of glutamate efflux in the prefrontal cortex and in the hippocampus following repeated stress: effects of pretreatment with saline or diazepam. Neuroscience 1997; 77: 65–73.

    Article  CAS  PubMed  Google Scholar 

  8. Musazzi L, Milanese M, Farisello P, Zappettini S, Tardito D, Barbiero VS et al. Acute stress increases depolarization-evoked glutamate release in the rat prefrontal/frontal cortex: the dampening action of antidepressants. PLoS One 2010; 5: e8566.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Satoh E, Shimeki S . Acute restraint stress enhances calcium mobilization and glutamate exocytosis in cerebrocortical synaptosomes from mice. Neurochem Res 2010; 35: 693–701.

    Article  CAS  PubMed  Google Scholar 

  10. Satoh E, Tada Y, Matsuhisa F . Chronic stress enhances calcium mobilization and glutamate exocytosis in cerebrocortical synaptosomes from mice. Neurol Res 2011; 33: 899–907.

    Article  CAS  PubMed  Google Scholar 

  11. de Vasconcellos-Bittencourt AP, Vendite DA, Nassif M, Crema LM, Frozza R, Thomazi AP et al. Chronic stress and lithium treatments alter hippocampal glutamate uptake and release in the rat and potentiate necrotic cellular death after oxygen and glucose deprivation. Neurochem Res 2011; 36: 793–800.

    Article  CAS  PubMed  Google Scholar 

  12. Reznikov LR, Grillo CA, Piroli GG, Pasumarthi RK, Reagan LP, Fadel J . Acute stress-mediated increases in extracellular glutamate levels in the rat amygdala: differential effects of antidepressant treatment. Eur J Neurosci 2007; 25: 3109–3114.

    Article  PubMed  Google Scholar 

  13. Macqueen G, Frodl T . The hippocampus in major depression: evidence for the convergence of the bench and bedside in psychiatric research? Mol Psychiatry 2011; 16: 252–264.

    Article  CAS  PubMed  Google Scholar 

  14. Campbell S, Macqueen G . The role of the hippocampus in the pathophysiology of major depression. J Psychiatry Neurosci 2004; 29: 417–426.

    PubMed  PubMed Central  Google Scholar 

  15. Sapolsky RM . Depression, antidepressants, and the shrinking hippocampus. Proc Natl Acad Sci USA 2001; 98: 12320–12322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sheline YI . Hippocampal atrophy in major depression: a result of depression-induced neurotoxicity? Mol Psychiatry 1996; 1: 298–299.

    CAS  PubMed  Google Scholar 

  17. Frodl T, Meisenzahl EM, Zetzsche T, Born C, Groll C, Jager M et al. Hippocampal changes in patients with a first episode of major depression. Am J Psychiatry 2002; 159: 1112–1118.

    Article  PubMed  Google Scholar 

  18. Mayberg HS, Brannan SK, Tekell JL, Silva JA, Mahurin RK, McGinnis S et al. Regional metabolic effects of fluoxetine in major depression: serial changes and relationship to clinical response. Biol Psychiatry 2000; 48: 830–843.

    Article  CAS  PubMed  Google Scholar 

  19. McEwen BS . Stress and hippocampal plasticity. Annu Rev Neurosci 1999; 22: 105–122.

    Article  CAS  PubMed  Google Scholar 

  20. Adachi M, Barrot M, Autry AE, Theobald D, Monteggia LM . Selective loss of brain-derived neurotrophic factor in the dentate gyrus attenuates antidepressant efficacy. Biol Psychiatry 2008; 63: 642–649.

    Article  CAS  PubMed  Google Scholar 

  21. Guo M, Lu Y, Garza JC, Li Y, Chua SC, Zhang W et al. Forebrain glutamatergic neurons mediate leptin action on depression-like behaviors and synaptic depression. Transl Psychiatry 2012; 2: e83.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lu XY, Kim CS, Frazer A, Zhang W . Leptin: a potential novel antidepressant. Proc Natl Acad Sci USA 2006; 103: 1593–1598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Omata N, Chiu CT, Moya PR, Leng Y, Wang Z, Hunsberger JG et al. Lentivirally mediated GSK-3beta silencing in the hippocampal dentate gyrus induces antidepressant-like effects in stressed mice. Int J Neuropsychopharmacol 2011; 14: 711–717.

    Article  CAS  PubMed  Google Scholar 

  24. Shirayama Y, Chen AC, Nakagawa S, Russell DS, Duman RS . Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J Neurosci 2002; 22: 3251–3261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. McKittrick CR, Magarinos AM, Blanchard DC, Blanchard RJ, McEwen BS, Sakai RR . Chronic social stress reduces dendritic arbors in CA3 of hippocampus and decreases binding to serotonin transporter sites. Synapse 2000; 36: 85–94.

    Article  CAS  PubMed  Google Scholar 

  26. Watanabe Y, Gould E, McEwen BS . Stress induces atrophy of apical dendrites of hippocampal CA3 pyramidal neurons. Brain Res 1992; 588: 341–345.

    Article  CAS  PubMed  Google Scholar 

  27. Christian KM, Miracle AD, Wellman CL, Nakazawa K . Chronic stress-induced hippocampal dendritic retraction requires CA3 NMDA receptors. Neuroscience 2011; (174: 26–36.

    Article  CAS  PubMed  Google Scholar 

  28. Claiborne BJ, Amaral DG, Cowan WM . A light and electron microscopic analysis of the mossy fibers of the rat dentate gyrus. J Comp Neurol 1986; 246: 435–458.

    Article  CAS  PubMed  Google Scholar 

  29. Garza JC, Guo M, Zhang W, Lu XY . Leptin restores adult hippocampal neurogenesis in a chronic unpredictable stress model of depression and reverses glucocorticoid-induced inhibition of GSK-3beta/beta-catenin signaling. Mol Psychiatry 2012; 17: 790–808.

    Article  CAS  PubMed  Google Scholar 

  30. Lu XY . The leptin hypothesis of depression: a potential link between mood disorders and obesity? Curr Opin Pharmacol 2007; 7: 648–652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yamada N, Katsuura G, Ochi Y, Ebihara K, Kusakabe T, Hosoda K et al. Impaired CNS leptin action is implicated in depression associated with obesity. Endocrinology 2011; 152: 2634–2643.

    Article  CAS  PubMed  Google Scholar 

  32. Guo M, Huang TY, Garza JC, Chua SC, Lu XY . Selective deletion of leptin receptors in adult hippocampus induces depression-related behaviours. Int J Neuropsychopharmacol 2013; 16: 857–867.

    Article  CAS  PubMed  Google Scholar 

  33. Sharp FR, Sagar SM, Hicks K, Lowenstein D, Hisanaga K . c-Fos mRNA, Fos, and Fos-related antigen induction by hypertonic saline and stress. J Neurosci 1991; 11: 2321–2331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Katano H, Masago A, Yamada K . Marked alteration of c-fos and c-jun but not hsp70 messenger RNA expression in rat brain after cold-induced trauma: An in situ hybridization study. Restor Neurol Neurosci 1997; 11: 153–160.

    CAS  PubMed  Google Scholar 

  35. Chandramohan Y, Droste SK, Reul JM . Novelty stress induces phospho-acetylation of histone H3 in rat dentate gyrus granule neurons through coincident signalling via the N-methyl-D-aspartate receptor and the glucocorticoid receptor: relevance for c-fos induction. J Neurochem 2007; 101: 815–828.

    Article  CAS  PubMed  Google Scholar 

  36. Chandramohan Y, Droste SK, Arthur JS, Reul JM . The forced swimming-induced behavioural immobility response involves histone H3 phospho-acetylation and c-Fos induction in dentate gyrus granule neurons via activation of the N-methyl-D-aspartate/extracellular signal-regulated kinase/mitogen- and stress-activated kinase signalling pathway. Eur J Neurosci 2008; 27: 2701–2713.

    Article  PubMed  Google Scholar 

  37. Fevurly RD, Spencer RL . Fos expression is selectively and differentially regulated by endogenous glucocorticoids in the paraventricular nucleus of the hypothalamus and the dentate gyrus. J Neuroendocrinol 2004; 16: 970–979.

    Article  CAS  PubMed  Google Scholar 

  38. Schoenfeld TJ, Rada P, Pieruzzini PR, Hsueh B, Gould E . Physical exercise prevents stress-induced activation of granule neurons and enhances local inhibitory mechanisms in the dentate gyrus. J Neurosci 33: 7770–7777.

  39. Porsolt RD, Le Pichon M, Jalfre M . Depression: a new animal model sensitive to antidepressant treatments. Nature 1977; 266: 730–732.

    Article  CAS  PubMed  Google Scholar 

  40. Steru L, Chermat R, Thierry B, Simon P . The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology (Berl) 1985; 85: 367–370.

    Article  CAS  Google Scholar 

  41. DeFalco J, Tomishima M, Liu H, Zhao C, Cai X, Marth JD et al. Virus-assisted mapping of neural inputs to a feeding center in the hypothalamus. Science 2001; 291: 2608–2613.

    Article  CAS  PubMed  Google Scholar 

  42. Liu J, Perez SM, Zhang W, Lodge DJ, Lu XY . Selective deletion of the leptin receptor in dopamine neurons produces anxiogenic-like behavior and increases dopaminergic activity in amygdala. Mol Psychiatry 2011; 16: 1024–1038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu J, Guo M, Zhang D, Cheng SY, Liu M, Ding J et al. Adiponectin is critical in determining susceptibility to depressive behaviors and has antidepressant-like activity. Proc Natl Acad Sci USA 2012; 109: 12248–12253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. George Paxinos KBJF . The Mouse Brain in Stereotaxic Coordinates, 3rd edn. Elsevier: Amsterdam, The Netherlands, 2008; 242pp.

    Google Scholar 

  45. Hardingham GE, Fukunaga Y, Bading H . Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat Neurosci 2002; 5: 405–414.

    Article  CAS  PubMed  Google Scholar 

  46. Marsden WN . Stressor-induced NMDAR dysfunction as a unifying hypothesis for the aetiology, pathogenesis and comorbidity of clinical depression. Med Hypotheses 2011; 77: 508–528.

    Article  CAS  PubMed  Google Scholar 

  47. Shaner NC, Patterson GH, Davidson MW . Advances in fluorescent protein technology. J Cell Sci 2007; 120 (Part 24): 4247–4260.

    Article  CAS  PubMed  Google Scholar 

  48. Madisen L, Zwingman TA, Sunkin SM, Oh SW, Zariwala HA, Gu H et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci 2010; 13: 133–140.

    Article  CAS  PubMed  Google Scholar 

  49. Duman RS, Li N, Liu RJ, Duric V, Aghajanian G . Signaling pathways underlying the rapid antidepressant actions of ketamine. Neuropharmacology 2012; 62: 35–41.

    Article  CAS  PubMed  Google Scholar 

  50. Niswender KD, Morton GJ, Stearns WH, Rhodes CJ, Myers MG Jr., Schwartz MW . Intracellular signalling. Key enzyme in leptin-induced anorexia. Nature 2001; 413: 794–795.

    Article  CAS  PubMed  Google Scholar 

  51. Yamamoto B, Reagan LP . The glutamatergic system in neuronal plasticity and vulnerability in mood disorders. Neuropsych Dis Treat 2006; 2 (Suppl 2): 7–14.

    Google Scholar 

  52. Bonanno G, Giambelli R, Raiteri L, Tiraboschi E, Zappettini S, Musazzi L et al. Chronic antidepressants reduce depolarization-evoked glutamate release and protein interactions favoring formation of SNARE complex in hippocampus. J Neurosci 2005; 25: 3270–3279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Milanese M, Tardito D, Musazzi L, Treccani G, Mallei A, Bonifacino T et al. Chronic treatment with agomelatine or venlafaxine reduces depolarization-evoked glutamate release from hippocampal synaptosomes. BMC Neurosci 2013; 14: 75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Barks JD, Silverstein FS, Sims K, Greenamyre JT, Johnston MV . Glutamate recognition sites in human fetal brain. Neurosci Lett 1988; 84: 131–136.

    Article  CAS  PubMed  Google Scholar 

  55. Vizi ES, Fekete A, Karoly R, Mike A . Non-synaptic receptors and transporters involved in brain functions and targets of drug treatment. Br J Pharmacol 2010; 160: 785–809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hardingham GE, Bading H . Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci 2010; 11: 682–696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS et al. Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 2000; 47: 351–354.

    Article  CAS  PubMed  Google Scholar 

  58. Diazgranados N, Ibrahim L, Brutsche NE, Newberg A, Kronstein P, Khalife S et al. A randomized add-on trial of an N-methyl-D-aspartate antagonist in treatment-resistant bipolar depression. Arch Gen Psychiatry 2010; 67: 793–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Preskorn SH, Baker B, Kolluri S, Menniti FS, Krams M, Landen JW . An innovative design to establish proof of concept of the antidepressant effects of the NR2B subunit selective N-methyl-D-aspartate antagonist, CP-101,606, in patients with treatment-refractory major depressive disorder. J Clin Psychopharmacol 2008; 28: 631–637.

    Article  CAS  PubMed  Google Scholar 

  60. Zarate CA Jr., Singh JB, Carlson PJ, Brutsche NE, Ameli R, Luckenbaugh DA et al. A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry 2006; 63: 856–864.

    Article  CAS  PubMed  Google Scholar 

  61. Skolnick P, Layer RT, Popik P, Nowak G, Paul IA, Trullas R . Adaptation of N-methyl-D-aspartate (NMDA) receptors following antidepressant treatment: implications for the pharmacotherapy of depression. Pharmacopsychiatry 1996; 29: 23–26.

    Article  CAS  PubMed  Google Scholar 

  62. Popoli M, Yan Z, McEwen BS, Sanacora G . The stressed synapse: the impact of stress and glucocorticoids on glutamate transmission. Nat Rev Neurosci 2011; 13: 22–37.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Witter M . Intrinsic and extrinsic wiring of CA3: indications for connectional heterogeneity. Learn Mem 2007; 14: 705–713.

    Article  PubMed  Google Scholar 

  64. van Groen T, Miettinen P, Kadish I . The entorhinal cortex of the mouse: organization of the projection to the hippocampal formation. Hippocampus 2003; 13: 133–149.

    Article  PubMed  Google Scholar 

  65. Blackstad TW, Brink K, Hem J, Jeune B . Distribution of hippocampal mossy fibers in the rat. An experimental study with silver impregnation methods. J Comp Neurol 1970; 138: 433–449.

    Article  CAS  PubMed  Google Scholar 

  66. Swanson LW, Wyss JM, Cowan WM . An autoradiographic study of the organization of intrahippocampal association pathways in the rat. J Comp Neurol 1978; 181: 681–715.

    Article  CAS  PubMed  Google Scholar 

  67. Kobayashi K, Poo MM . Spike train timing-dependent associative modification of hippocampal CA3 recurrent synapses by mossy fibers. Neuron 2004; 41: 445–454.

    Article  CAS  PubMed  Google Scholar 

  68. Henze DA, Wittner L, Buzsaki G . Single granule cells reliably discharge targets in the hippocampal CA3 network in vivo. Nat Neurosci 2002; 5: 790–795.

    Article  CAS  PubMed  Google Scholar 

  69. Schlessinger AR, Cowan WM, Gottlieb DI . An autoradiographic study of the time of origin and the pattern of granule cell migration in the dentate gyrus of the rat. J Comp Neurol 1975; 159: 149–175.

    Article  CAS  PubMed  Google Scholar 

  70. Altman J, Bayer SA . Migration and distribution of two populations of hippocampal granule cell precursors during the perinatal and postnatal periods. J Comp Neurol 1990; 301: 365–381.

    Article  CAS  PubMed  Google Scholar 

  71. Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA et al. Neurogenesis in the adult human hippocampus. Nat Med 1998; 4: 1313–1317.

    CAS  PubMed  Google Scholar 

  72. Gould E, Tanapat P . Stress and hippocampal neurogenesis. Biol Psychiatry 1999; 46: 1472–1479.

    Article  CAS  PubMed  Google Scholar 

  73. Kempermann G, Kronenberg G . Depressed new neurons—adult hippocampal neurogenesis and a cellular plasticity hypothesis of major depression. Biol Psychiatry 2003; 54: 499–503.

    Article  PubMed  Google Scholar 

  74. Warner-Schmidt JL, Duman RS . Hippocampal neurogenesis: opposing effects of stress and antidepressant treatment. Hippocampus 2006; 16: 239–249.

    Article  CAS  PubMed  Google Scholar 

  75. Malberg JE, Eisch AJ, Nestler EJ, Duman RS . Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci 2000; 20: 9104–9110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sahay A, Drew MR, Hen R . Dentate gyrus neurogenesis and depression. Prog Brain Res 2007; 163: 697–722.

    Article  CAS  PubMed  Google Scholar 

  77. David DJ, Samuels BA, Rainer Q, Wang JW, Marsteller D, Mendez I et al. Neurogenesis-dependent and -independent effects of fluoxetine in an animal model of anxiety/depression. Neuron 2009; 62: 479–493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ribeiro LF, Catarino T, Santos SD, Benoist M, van Leeuwen JF, Esteban JA et al. Ghrelin triggers the synaptic incorporation of AMPA receptors in the hippocampus. Proc Natl Acad Sci USA 2014; 111: E149–E158.

    Article  CAS  PubMed  Google Scholar 

  79. Ribak CE . Axon terminals of GABAergic chandelier cells are lost at epileptic foci. Brain Res 1985; 326: 251–260.

    Article  CAS  PubMed  Google Scholar 

  80. Acsady L, Kamondi A, Sik A, Freund T, Buzsaki G . GABAergic cells are the major postsynaptic targets of mossy fibers in the rat hippocampus. J Neurosci 1998; 18: 3386–3403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Scharfman H (eds) The Dentate Gyrus: A Comprehensive Guide to Structure, Function, and Clinical Implications. Elsevier Science, 2007.

  82. Lawrence JJ, McBain CJ . Interneuron diversity series: containing the detonation—feedforward inhibition in the CA3 hippocampus. Trends Neurosci 2003; 26: 631–640.

    Article  CAS  PubMed  Google Scholar 

  83. Pelkey KA, McBain CJ . Target-cell-dependent plasticity within the mossy fibre-CA3 circuit reveals compartmentalized regulation of presynaptic function at divergent release sites. J Physiol 2008; 586: 1495–1502.

    Article  CAS  PubMed  Google Scholar 

  84. Toth K, Suares G, Lawrence JJ, Philips-Tansey E, McBain CJ . Differential mechanisms of transmission at three types of mossy fiber synapse. J Neurosci 2000; 20: 8279–8289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH Grants MH076929 and MH100583 (to XYL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X-Y Lu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Zhang, D. & Lu, XY. Dentate gyrus-CA3 glutamate release/NMDA transmission mediates behavioral despair and antidepressant-like responses to leptin. Mol Psychiatry 20, 509–519 (2015). https://doi.org/10.1038/mp.2014.75

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2014.75

This article is cited by

Search

Quick links