Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Liver X receptor β is essential for the differentiation of radial glial cells to oligodendrocytes in the dorsal cortex

Subjects

Abstract

Several psychiatric disorders are associated with aberrant white matter development, suggesting oligodendrocyte and myelin dysfunction in these diseases. There are indications that radial glial cells (RGCs) are involved in initiating myelination, and may contribute to the production of oligodendrocyte progenitor cells (OPCs) in the dorsal cortex. Liver X receptors (LXRs) are involved in maintaining normal myelin in the central nervous system (CNS), however, their function in oligodendrogenesis and myelination is not well understood. Here, we demonstrate that loss of LXRβ function leads to abnormality in locomotor activity and exploratory behavior, signs of anxiety and hypomyelination in the corpus callosum and optic nerve, providing in vivo evidence that LXRβ deletion delays both oligodendrocyte differentiation and maturation. Remarkably, along the germinal ventricular zone-subventricular zone and corpus callosum there is reduced OPC production from RGCs in LXRβ−/− mice. Conversely, in cultured RGC an LXR agonist led to increased differentiation into OPCs. Collectively, these results suggest that LXRβ, by driving RGCs to become OPCs in the dorsal cortex, is critical for white matter development and CNS myelination, and point to the involvement of LXRβ in psychiatric disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Tkachev D, Mimmack ML, Ryan MM, Wayland M, Freeman T, Jones PB et al. Oligodendrocyte dysfunction in schizophrenia and bipolar disorder. Lancet 2003; 362: 798–805.

    Article  CAS  PubMed  Google Scholar 

  2. Walterfang M, Velakoulis D, Whitford TJ, Pantelis C . Understanding aberrant white matter development in schizophrenia: an avenue for therapy? Expert Rev Neurother 2011; 11: 971–987.

    Article  PubMed  Google Scholar 

  3. Emery B . Regulation of oligodendrocyte differentiation and myelination. Science 2010; 330: 779–782.

    Article  CAS  PubMed  Google Scholar 

  4. Nava Ka . Myelination and support of axonal integrity by glia. Nature 2010; 468: 244–252.

    Article  Google Scholar 

  5. Rakic S, Zecevic N . Early oligodendrocyte progenitor cells in the human fetal telencephalon. Glia 2003; 41: 117–127.

    Article  PubMed  Google Scholar 

  6. Parras CM, Hunt C, Sugimori M, Nakafuku M, Rowitch D, Guillemot F . The proneural gene Mash1 specifies an early population of telencephalic oligodendrocytes. J Neurosci 2007; 27: 4233–4242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kessaris N, Fogarty M, Iannarelli P, Grist M, Wegner M, Richardson WD . Competing waves of oligodendrocytes in the forebrain and postnatal elimination of an embryonic lineage. Nat Neurosci 2006; 9: 173–179.

    Article  CAS  PubMed  Google Scholar 

  8. Azim K, Raineteau O, Butt AM . Intraventricular injection of FGF-2 promotes generation of oligodendrocyte-lineage cells in the postnatal and adult forebrain. Glia 2012; 60: 1977–1990.

    Article  PubMed  Google Scholar 

  9. Franco SJ, Gil-Sanz C, Martinez-Garay I, Espinosa A, Harkins-Perry SR, Ramos C et al. Fate-restricted neural progenitors in the mammalian cerebral cortex. Science 2012; 337: 746–749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Malatesta P, Götz M . Radial glia—from boring cables to stem cell stars. Development 2013; 140: 483–486.

    Article  CAS  PubMed  Google Scholar 

  11. Noctor SC, Flint AC, Weissman TA, Wong WS, Clinton BK, Kriegstein AR . Dividing precursor cells of the embryonic cortical ventricular zone have morphological and molecular characteristics of radial glia. J Neurosci 2002; 22: 3161–3173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kriegstein A, Alvarez-Buylla A . The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci 2009; 32: 149–184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Apfel R, Benbrook D, Lernhardt E, Ortiz MA, Salbert G, Pfahl M . A novel orphan receptor specific for a subset of thyroid hormone-responsive elements and its interaction with the retinoid/thyroid hormone receptor subfamily. Mol Cell Biol 1994; 14: 7025–7035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jakobsson T, Treuter E, Gustafsson JÅ, Steffensen KR . Liver X receptor biology and pharmacology: new pathways, challenges and opportunities. Trends Pharmacol Sci 2012; 33: 394–404.

    Article  CAS  PubMed  Google Scholar 

  15. Annicotte JS, Schoonjans K, Auwerx J . Expression of the liver X receptor α and β in embryonic and adult mice. Anat Rec A Discov Mole Cell Evol Biol 2004; 277: 312–316.

    Article  Google Scholar 

  16. Fan X, Kim HJ, Bouton D, Warner M, Gustafsson JÅ . Expression of liver X receptor β is essential for formation of superficial cortical layers and migration of later-born neurons. Proc Natl Acad Sci USA 2008; 105: 13445–13450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xing Y, Fan X, Ying D . Liver X receptor agonist treatment promotes the migration of granule neurons during cerebellar development. J Neurochem 2010; 115: 1486–1494.

    Article  CAS  PubMed  Google Scholar 

  18. Andersson S, Gustafsson N, Warner M, Gustafsson JÅ . Inactivation of liver X receptor β leads to adult-onset motor neuron degeneration in male mice. Proc Natl Acad Sci USA 2005; 102: 3857–3862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bigini P, Steffensen KR, Ferrario A, Diomede L, Ferrara G, Barbera S et al. Neuropathologic and biochemical changes during disease progression in liver X receptor beta-/-mice, a model of adult neuron disease. J Neuropathol Exp Neurol 2010; 69: 593–605.

    Article  CAS  PubMed  Google Scholar 

  20. Wang L, Schuster GU, Hultenby K, Zhang Q, Andersson S, Gustafsson JÅ . Liver X receptors in the central nervous system: from lipid homeostasis to neuronal degeneration. Proc Natl Acad Sci USA 2002; 99: 13878–13883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cui G, Qin X, Wu L, Zhang Y, Sheng X, Yu Q et al. Liver X receptor (LXR) mediates negative regulation of mouse and human Th17 differentiation. J Clin Invest. 2011; 121: 658–670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Alberti S, Schuster G, Parini P, Feltkamp D, Diczfalusy U, Rudling M et al. Hepatic cholesterol metabolism and resistance to dietary cholesterol in LXRβ-deficient mice. J Clin Invest 2001; 107: 565–573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li H, Babiarz J, Woodbury J, Kane-Goldsmith N, Grumet M . Spatiotemporal heterogeneity of CNS radial glial cells and their transition to restricted precursors. Dev Biol 2004; 271: 225–238.

    Article  CAS  PubMed  Google Scholar 

  24. Markó K, Kohidi T, Hádinger N, Jelitai M, Mezo G, Madarász E . Isolation of radial glia-like neural stem cells from fetal and adult mouse forebrain via selective adhesion to a novel adhesive peptide-conjugate. PLoS One 2011; 6: e28538.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Chen BY, Wang X, Wang ZY, Wang YZ, Chen LW, Luo ZJ . Brain-derived neurotrophic factor stimulates proliferation and differentiation of neural stem cells, possibly by triggering the Wnt/β-catenin signaling pathway. J Neurosci Res 2013; 91: 30–41.

    CAS  PubMed  Google Scholar 

  26. Li Y, Lau WM, So KF, Tong Y, Shen J . Caveolin-1 inhibits oligodendroglial differentiation of neural stem/progenitor cells through modulating β-catenin expression. Neurochem Int 2011; 59: 114–121.

    Article  CAS  PubMed  Google Scholar 

  27. Jakovcevski I, Zecevic N . Olig transcription factors are expressed in oligodendrocyte and neuronal cells in human fetal CNS. J Neurosci. 2005; 25: 10064–10073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhou Q, Wang S, Anderson DJ . Identification of a novel family of oligodendrocyte lineage-specific basic helix-loop-helix transcription factors. Neuron 2000; 25: 331–343.

    Article  CAS  PubMed  Google Scholar 

  29. Saher G, Brügger B, Lappe-Siefke C, Möbius W, Tozawa R, Wehr MC et al. High cholesterol level is essential for myelin membrane growth. Nat Neurosci. 2005; 8: 468–475.

    Article  CAS  PubMed  Google Scholar 

  30. Björkhem I, Meaney S . Brain cholesterol: long secret life behind a barrier. Arterioscler Thromb Vasc Biol 2004; 24: 806–815.

    Article  PubMed  Google Scholar 

  31. Trousson A, Bernard S, Petit PX, Liere P, Pianos A, El Hadri K et al. 25-hydroxycholesterol provokes oligodendrocyte cell line apoptosis and stimulates the secreted phospholipase A2 type IIA via LXR beta and PXR. J Neurochem 2009; 109: 945–958.

    Article  CAS  PubMed  Google Scholar 

  32. Nelissen K, Mulder M, Smets I, Timmermans S, Smeets K, Ameloot M et al. Liver X receptors regulate cholesterol homeostasis in oligodendrocytes. J Neurosci Res 2012; 90: 60–71.

    Article  CAS  PubMed  Google Scholar 

  33. Lu QR, Sun T, Zhu Z, Ma N, Garcia M, Stiles CD et al. Common developmental requirement for olig function indicates a motor neuron/oligodendrocyte connection. Cell 2002; 109: 75–86.

    Article  CAS  PubMed  Google Scholar 

  34. Yue T, Xian K, Hurlock E, Xin M, Kernie SG, Parada LF et al. A critical role for dorsal progenitors in cortical myelination. J Neurosci 2006; 26: 1275–1280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ventura RE, Goldman JE . Dorsal radial glia generate olfactory bulb interneurons in the postnatal murine brain. J Neurosci 2007; 27: 4297–4302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Guo C, Eckler MJ, McKenna WL, McKinsey GL, Rubenstein JL, Chen B . Fezf2 expression identifies a multipotent progenitor for neocortical projection neurons, astrocytes, and oligodendrocytes. Neuron 2013; 80: 1167–1174.

    Article  CAS  PubMed  Google Scholar 

  37. Relucio J, Menezes MJ, Miyagoe-Suzuki Y, Takeda S, Colognato H . Laminin regulates postnatal oligodendrocyte production by promoting oligodendrocyte progenitor survival in the subventricular zone. Glia 2012; 60: 1451–1467.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Tekki-Kessaris N, Woodruff R, Hall AC, Gaffield W, Kimura S, Stiles CD et al. Hedgehog-dependent oligodendrocyte lineage specification in the telencephalon. Development 2001; 128: 2545–2554.

    CAS  PubMed  Google Scholar 

  39. Mo Z, Zecevic N . Human fetal radial glia cells generate oligodendrocytes in vitro. Glia 2009; 57: 490–498.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Yang Y, Tang Y, Xing Y, Zhao M, Bao X, Sun D et al. Activation of liver X receptor is protective against ethanol-induced developmental impairment of Bergmann glia and Purkinje neurons in the mouse cerebellum. Mol Neurobiol 2014; 49: 176–186.

    Article  CAS  PubMed  Google Scholar 

  41. Fancy SP, Harrington EP, Yuen TJ, Silbereis JC, Zhao C, Baranzini SE et al. Axin2 as regulatory and therapeutic target in newborn brain injury and remyelination. Nat Neurosci 2011; 14: 1009–1016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ye F, Chen Y, Hoang T, Montgomery RL, Zhao XH, Bu H et al. HDAC1 and HDAC2 regulate oligodendrocyte differentiation by disrupting the beta-catenin-TCF interaction. Nat Neurosci 2009; 12: 829–838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tan XJ, Dai YB, Wu WF, Warner M, Gustafsson JÅ . Anxiety in liver X receptor β knockout female mice with loss of glutamic acid decarboxylase in ventromedial prefrontal cortex. Proc Natl Acad Sci USA 2012; 109: 7493–7498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Nature Science Foundation of China (No. 31271051 and 81371197), Natural Science Foundation Project of CQ CSTC 2013jjB10028, the Swedish Research Council and a grant from the Robert A Welch Foundation (E-0004, J-ÅG).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J-A Gustafsson or X Fan.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, P., Xu, H., Tang, X. et al. Liver X receptor β is essential for the differentiation of radial glial cells to oligodendrocytes in the dorsal cortex. Mol Psychiatry 19, 947–957 (2014). https://doi.org/10.1038/mp.2014.60

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2014.60

This article is cited by

Search

Quick links