Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Dietary triglycerides act on mesolimbic structures to regulate the rewarding and motivational aspects of feeding

Abstract

Circulating triglycerides (TGs) normally increase after a meal but are altered in pathophysiological conditions, such as obesity. Although TG metabolism in the brain remains poorly understood, several brain structures express enzymes that process TG-enriched particles, including mesolimbic structures. For this reason, and because consumption of high-fat diet alters dopamine signaling, we tested the hypothesis that TG might directly target mesolimbic reward circuits to control reward-seeking behaviors. We found that the delivery of small amounts of TG to the brain through the carotid artery rapidly reduced both spontaneous and amphetamine-induced locomotion, abolished preference for palatable food and reduced the motivation to engage in food-seeking behavior. Conversely, targeted disruption of the TG-hydrolyzing enzyme lipoprotein lipase specifically in the nucleus accumbens increased palatable food preference and food-seeking behavior. Finally, prolonged TG perfusion resulted in a return to normal palatable food preference despite continued locomotor suppression, suggesting that adaptive mechanisms occur. These findings reveal new mechanisms by which dietary fat may alter mesolimbic circuit function and reward seeking.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Schwartz MW, Woods SC, Porte D Jr, Seeley RJ, Baskin DG . Central nervous system control of food intake. Nature 2000; 404: 661–671.

    Article  CAS  PubMed  Google Scholar 

  2. Morton GJ, Cummings DE, Baskin DG, Barsh GS, Schwartz MW . Central nervous system control of food intake and body weight. Nature 2006; 443: 289–295.

    Article  CAS  PubMed  Google Scholar 

  3. Berthoud HR . Mind versus metabolism in the control of food intake and energy balance. Physiol Behav 2004; 81: 781–793.

    Article  CAS  PubMed  Google Scholar 

  4. Dallman MF, Pecoraro N, Akana SF, La Fleur SE, Gomez F, Houshyar H et al. Chronic stress and obesity: a new view of ‘comfort food’. Proc Natl Acad Sci USA 2003; 100: 11696–11701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kelley AE, Baldo BA, Pratt WE, Will MJ . Corticostriatal-hypothalamic circuitry and food motivation: integration of energy, action and reward. Physiol Behav 2005; 86: 773–795.

    Article  CAS  PubMed  Google Scholar 

  6. Kelley AE, Baldo BA, Pratt WE . A proposed hypothalamic-thalamic-striatal axis for the integration of energy balance, arousal, and food reward. J Comp Neurol 2005; 493: 72–85.

    Article  CAS  PubMed  Google Scholar 

  7. DiLeone RJ, Taylor JR, Picciotto MR . The drive to eat: comparisons and distinctions between mechanisms of food reward and drug addiction. Nat Neurosci 2012; 15: 1330–1335.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Volkow ND, Wang GJ, Fowler JS, Tomasi D, Baler R . Food and drug reward: overlapping circuits in human obesity and addiction. Curr Top Behav Neurosci 2012; 11: 1–24.

    CAS  PubMed  Google Scholar 

  9. Mela DJ . Eating for pleasure or just wanting to eat? Reconsidering sensory hedonic responses as a driver of obesity. Appetite 2006; 47: 10–17.

    Article  PubMed  Google Scholar 

  10. Gunstad J, Paul RH, Cohen RA, Tate DF, Spitznagel MB, Gordon E . Elevated body mass index is associated with executive dysfunction in otherwise healthy adults. Compr Psychiatry 2007; 48: 57–61.

    Article  PubMed  Google Scholar 

  11. Stice E, Spoor S, Bohon C, Veldhuizen MG, Small DM . Relation of reward from food intake and anticipated food intake to obesity: a functional magnetic resonance imaging study. J Abnorm Psychol 2008; 117: 924–935.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Vucetic Z, Reyes TM . Central dopaminergic circuitry controlling food intake and reward: implications for the regulation of obesity. Wiley Interdiscip Rev Syst Biol Med 2010; 2: 577–593.

    Article  CAS  PubMed  Google Scholar 

  13. Wang GJ, Volkow ND, Logan J, Pappas NR, Wong CT, Zhu W et al. Brain dopamine and obesity. Lancet 2001; 357: 354–357.

    Article  CAS  PubMed  Google Scholar 

  14. Johnson PM, Kenny PJ . Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats. Nat Neurosci 2010; 13: 635–641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Michaelides M, Thanos PK, Volkow ND, Wang GJ . Dopamine-related frontostriatal abnormalities in obesity and binge-eating disorder: emerging evidence for developmental psychopathology. Int Rev Psychiatry 2012; 24: 211–218.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Stice E, Spoor S, Bohon C, Small DM . Relation between obesity and blunted striatal response to food is moderated by TaqIA A1 allele. Science 2008; 322: 449–452.

    Article  CAS  PubMed  Google Scholar 

  17. Geiger BM, Behr GG, Frank LE, Caldera-Siu AD, Beinfeld MC, Kokkotou EG et al. Evidence for defective mesolimbic dopamine exocytosis in obesity-prone rats. FASEB J 2008; 22: 2740–2746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Davis JF, Tracy AL, Schurdak JD, Tschop MH, Lipton JW, Clegg DJ et al. Exposure to elevated levels of dietary fat attenuates psychostimulant reward and mesolimbic dopamine turnover in the rat. Behav Neurosci 2008; 122: 1257–1263.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Martin LE, Holsen LM, Chambers RJ, Bruce AS, Brooks WM, Zarcone JR et al. Neural mechanisms associated with food motivation in obese and healthy weight adults. Obesity (Silver Spring) 2010; 18: 254–260.

    Article  Google Scholar 

  20. Rothemund Y, Preuschhof C, Bohner G, Bauknecht HC, Klingebiel R, Flor H et al. Differential activation of the dorsal striatum by high-calorie visual food stimuli in obese individuals. Neuroimage 2007; 37: 410–421.

    Article  PubMed  Google Scholar 

  21. Stoeckel LE, Weller RE, Cook EW 3rd, Twieg DB, Knowlton RC, Cox JE . Widespread reward-system activation in obese women in response to pictures of high-calorie foods. Neuroimage 2008; 41: 636–647.

    Article  PubMed  Google Scholar 

  22. Farr SA, Yamada KA, Butterfield DA, Abdul HM, Xu L, Miller NE et al. Obesity and hypertriglyceridemia produce cognitive impairment. Endocrinology 2008; 149: 2628–2636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ruge T, Hodson L, Cheeseman J, Dennis AL, Fielding BA, Humphreys SM et al. Fasted to fed trafficking of fatty acids in human adipose tissue reveals a novel regulatory step for enhanced fat storage. J Clin Endocrinol Metab 2009; 94: 1781–1788.

    Article  CAS  PubMed  Google Scholar 

  24. Obici S, Feng Z, Morgan K, Stein D, Karkanias G, Rossetti L . Central administration of oleic acid inhibits glucose production and food intake. Diabetes 2002; 51: 271–275.

    Article  CAS  PubMed  Google Scholar 

  25. Lam TK, Pocai A, Gutierrez-Juarez R, Obici S, Bryan J, Aguilar-Bryan L et al. Hypothalamic sensing of circulating fatty acids is required for glucose homeostasis. Nat Med 2005; 11: 320–327.

    Article  CAS  PubMed  Google Scholar 

  26. Lam TK, Schwartz GJ, Rossetti L . Hypothalamic sensing of fatty acids. Nat Neurosci 2005; 8: 579–584.

    Article  CAS  PubMed  Google Scholar 

  27. Lopez M, Tovar S, Vazquez MJ, Nogueiras R, Senaris R, Dieguez C . Sensing the fat: fatty acid metabolism in the hypothalamus and the melanocortin system. Peptides 2005; 26: 1753–1758.

    Article  CAS  PubMed  Google Scholar 

  28. Migrenne S, Cruciani-Guglielmacci C, Kang L, Wang R, Rouch C, Lefevre AL et al. Fatty acid signaling in the hypothalamus and the neural control of insulin secretion. Diabetes 2006; 55: S139–S144.

    Article  CAS  Google Scholar 

  29. Blouet C, Schwartz GJ . Hypothalamic nutrient sensing in the control of energy homeostasis. Behav Brain Res 2010; 209: 1–12.

    Article  CAS  PubMed  Google Scholar 

  30. Wang H, Eckel RH . Lipoprotein lipase in the brain and nervous system. Annu Rev Nutr 2012; 32: 147–160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang H, Eckel RH . Lipoprotein lipase: from gene to obesity. Am J Physiol Endocrinol Metab 2009; 297: E271–E288.

    Article  CAS  PubMed  Google Scholar 

  32. Ronnett GV, Kleman AM, Kim EK, Landree LE, Tu Y . Fatty acid metabolism, the central nervous system, and feeding. Obesity (Silver Spring) 2006; 14(Suppl 5): 201S–207S.

    Article  CAS  Google Scholar 

  33. Ronnett GV, Kim EK, Landree LE, Tu Y . Fatty acid metabolism as a target for obesity treatment. Physiol Behav 2005; 85: 25–35.

    Article  CAS  PubMed  Google Scholar 

  34. Paradis E, Clavel S, Julien P, Murthy MR, de Bilbao F, Arsenijevic D et al. Lipoprotein lipase and endothelial lipase expression in mouse brain: regional distribution and selective induction following kainic acid-induced lesion and focal cerebral ischemia. Neurobiol Dis 2004; 15: 312–325.

    Article  CAS  PubMed  Google Scholar 

  35. Kim EK, Miller I, Landree LE, Borisy-Rudin FF, Brown P, Tihan T et al. Expression of FAS within hypothalamic neurons: a model for decreased food intake after C75 treatment. Am J Physiol Endocrinol Metab 2002; 283: E867–E879.

    Article  CAS  PubMed  Google Scholar 

  36. Rapoport SI . In vivo fatty acid incorporation into brain phosholipids in relation to plasma availability, signal transduction and membrane remodeling. J Mol Neurosci 2001; 16: 243–261, discussion 279–284.

    Article  CAS  PubMed  Google Scholar 

  37. Eckel RH, Robbins RJ . Lipoprotein lipase is produced, regulated, and functional in rat brain. Proc Natl Acad Sci USA 1984; 81: 7604–7607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ben-Zeev O, Doolittle MH, Singh N, Chang CH, Schotz MC . Synthesis and regulation of lipoprotein lipase in the hippocampus. J Lipid Res 1990; 31: 1307–1313.

    CAS  PubMed  Google Scholar 

  39. Wang H, Astarita G, Taussig MD, Bharadwaj KG, DiPatrizio NV, Nave KA et al. Deficiency of lipoprotein lipase in neurons modifies the regulation of energy balance and leads to obesity. Cell Metab 2011; 13: 105–113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Karatayev O, Gaysinskaya V, Chang GQ, Leibowitz SF . Circulating triglycerides after a high-fat meal: predictor of increased caloric intake, orexigenic peptide expression, and dietary obesity. Brain Res 2009; 1298: 111–122.

    Article  CAS  PubMed  Google Scholar 

  41. Cruciani-Guglielmacci C, Hervalet A, Douared L, Sanders NM, Levin BE, Ktorza A et al. Beta oxidation in the brain is required for the effects of non-esterified fatty acids on glucose-induced insulin secretion in rats. Diabetologia 2004; 47: 2032–2038.

    Article  CAS  PubMed  Google Scholar 

  42. Wu Q, Palmiter RD . GABAergic signaling by AgRP neurons prevents anorexia via a melanocortin-independent mechanism. Eur J Pharmacol 2011; 660: 21–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Palmiter RD . Is dopamine a physiologically relevant mediator of feeding behavior? Trends Neurosci 2007; 30: 375–381.

    Article  CAS  PubMed  Google Scholar 

  44. Palmiter RD . Dopamine signaling in the dorsal striatum is essential for motivated behaviors: lessons from dopamine-deficient mice. Ann NY Acad Sci 2008; 1129: 35–46.

    Article  CAS  PubMed  Google Scholar 

  45. Geiger BM, Haburcak M, Avena NM, Moyer MC, Hoebel BG, Pothos EN . Deficits of mesolimbic dopamine neurotransmission in rat dietary obesity. Neuroscience 2009; 159: 1193–1199.

    Article  CAS  PubMed  Google Scholar 

  46. Eilam D, Szechtman H . Biphasic effect of D-2 agonist quinpirole on locomotion and movements. Eur J Pharmacol 1989; 161: 151–157.

    Article  CAS  PubMed  Google Scholar 

  47. Kelley AE, Bakshi VP, Haber SN, Steininger TL, Will MJ, Zhang M . Opioid modulation of taste hedonics within the ventral striatum. Physiol Behav 2002; 76: 365–377.

    Article  CAS  PubMed  Google Scholar 

  48. Wise RA . Role of brain dopamine in food reward and reinforcement. Philos Trans R Soc Lond B Biol Sci 2006; 361: 1149–1158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Oliveira-Maia AJ, Roberts CD, Simon SA, Nicolelis MA . Gustatory and reward brain circuits in the control of food intake. Adv Tech Stand Neurosurg 2011; 36: 31–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bjursell M, Gerdin AK, Lelliott CJ, Egecioglu E, Elmgren A, Tornell J et al. Acutely reduced locomotor activity is a major contributor to Western diet-induced obesity in mice. Am J Physiol Endocrinol Metab 2008; 294: E251–E260.

    Article  CAS  PubMed  Google Scholar 

  51. Augustus A, Yagyu H, Haemmerle G, Bensadoun A, Vikramadithyan RK, Park SY et al. Cardiac-specific knock-out of lipoprotein lipase alters plasma lipoprotein triglyceride metabolism and cardiac gene expression. J Biol Chem 2004; 279: 25050–25057.

    Article  CAS  PubMed  Google Scholar 

  52. Eckel RH, Grundy SM, Zimmet PZ . The metabolic syndrome. Lancet 2005; 365: 1415–1428.

    Article  CAS  PubMed  Google Scholar 

  53. Reaven GM . The metabolic syndrome: is this diagnosis necessary? Am J Clin Nutr 2006; 83: 1237–1247.

    Article  CAS  PubMed  Google Scholar 

  54. Lopez M, Saha AK, Dieguez C, Vidal-Puig A . The AMPK-malonyl-CoA-CPT1 axis in the control of hypothalamic neuronal function—reply. Cell Metab 2008; 8: 176.

    Article  CAS  Google Scholar 

  55. Yue JT, Lam TK . Lipid sensing and insulin resistance in the brain. Cell Metab 2012; 15: 646–655.

    Article  CAS  PubMed  Google Scholar 

  56. Cintra DE, Ropelle ER, Moraes JC, Pauli JR, Morari J, Souza CT et al. Unsaturated fatty acids revert diet-induced hypothalamic inflammation in obesity. PloS One 2012; 7: e30571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Abumrad NA, Ajmal M, Pothakos K, Robinson JK . CD36 expression and brain function: does CD36 deficiency impact learning ability? Prostaglandins Other Lipid Mediat 2005; 77: 77–83.

    Article  CAS  PubMed  Google Scholar 

  58. Zhang X, Zhang G, Zhang H, Karin M, Bai H, Cai D . Hypothalamic IKKbeta/NF-kappaB and ER stress link overnutrition to energy imbalance and obesity. Cell 2008; 135: 61–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rapoport SI, Chang MC, Spector AA . Delivery and turnover of plasma-derived essential PUFAs in mammalian brain. J Lipid Res 2001; 42: 678–685.

    CAS  PubMed  Google Scholar 

  60. Lafourcade M, Larrieu T, Mato S, Duffaud A, Sepers M, Matias I et al. Nutritional omega-3 deficiency abolishes endocannabinoid-mediated neuronal functions. Nat Neurosci 2011; 14: 345–350.

    Article  CAS  PubMed  Google Scholar 

  61. Solinas M, Goldberg SR, Piomelli D . The endocannabinoid system in brain reward processes. Br J Pharmacol 2008; 154: 369–383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Aleshin S, Strokin M, Sergeeva M, Reiser G . Peroxisome proliferator-activated receptor (PPAR)beta/delta, a possible nexus of PPARalpha- and PPARgamma-dependent molecular pathways in neurodegenerative diseases: review and novel hypotheses. Neurochem Int 2013; 63: 322–330.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by young investigator ATIP grant from the Centre National la Recherche Scientifique (CNRS), a grant from the Région Île-de-France, from the University Paris Diderot-Paris 7, from the ‘Agence Nationale de la Recherche’ ANR-09-BLAN-0267-02 and ANR 11 BSV1 021 01. CC received a PhD fellowship from the CNRS and a research grant from the Société Francophone du Diabète-Roche (SFD). TSH was supported by an NIH Grant DA026504 and a scientist exchange award from the University of Paris Diderot-Paris VII. We express our gratitude to Aundrea Rainwater for help in establishing the infusion technique and operant schedule and to Dr Susanna Hofmann for critical review of the manuscript. We acknowledge the technical platform Functional and Physiological Exploration Platform (FPE) and the platform ‘Bioprofiler’ of the Unit ‘Biologie Fonctionnelle et Adaptative’, (University Paris Diderot, Sorbonne Paris Cité, BFA, UMR 8251 CNRS, F-75205 Paris, France) for metabolic and behavioral analysis and for the provision of high-performance liquid chromatography data. We also acknowledge the animal core facility ‘Buffon’ of the University Paris Diderot Paris 7/Institut Jacques Monod, Paris for animal husbandry and breeding, together with Dr Serban Morosan, for its precious help with regard to DIO mice. We thank Mrs Olja Kacanski for administrative support, Mr Karim Sahabi for engineering support, Mrs Gaëlle Charlon, Mrs Sandrine Olivré and Mr Ludovic Maingault for care of animals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Luquet.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cansell, C., Castel, J., Denis, R. et al. Dietary triglycerides act on mesolimbic structures to regulate the rewarding and motivational aspects of feeding. Mol Psychiatry 19, 1095–1105 (2014). https://doi.org/10.1038/mp.2014.31

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2014.31

This article is cited by

Search

Quick links