Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Developmental endothelial locus-1 is a homeostatic factor in the central nervous system limiting neuroinflammation and demyelination

Subjects

Abstract

Inflammation in the central nervous system (CNS) and disruption of its immune privilege are major contributors to the pathogenesis of multiple sclerosis (MS) and of its rodent counterpart, experimental autoimmune encephalomyelitis (EAE). We have previously identified developmental endothelial locus-1 (Del-1) as an endogenous anti-inflammatory factor, which inhibits integrin-dependent leukocyte adhesion. Here we show that Del-1 contributes to the immune privilege status of the CNS. Intriguingly, Del-1 expression decreased in chronic-active MS lesions and in the inflamed CNS in the course of EAE. Del-1-deficiency was associated with increased EAE severity, accompanied by increased demyelination and axonal loss. As compared with control mice, Del-1−/− mice displayed enhanced disruption of the blood–brain barrier and increased infiltration of neutrophil granulocytes in the spinal cord in the course of EAE, accompanied by elevated levels of inflammatory cytokines, including interleukin-17 (IL-17). The augmented levels of IL-17 in Del-1-deficiency derived predominantly from infiltrated CD8+ T cells. Increased EAE severity and neutrophil infiltration because of Del-1-deficiency was reversed in mice lacking both Del-1 and IL-17 receptor, indicating a crucial role for the IL-17/neutrophil inflammatory axis in EAE pathogenesis in Del-1−/− mice. Strikingly, systemic administration of Del-1-Fc ameliorated clinical relapse in relapsing–remitting EAE. Therefore, Del-1 is an endogenous homeostatic factor in the CNS protecting from neuroinflammation and demyelination. Our findings provide mechanistic underpinnings for the previous implication of Del-1 as a candidate MS susceptibility gene and suggest that Del-1-centered therapeutic approaches may be beneficial in neuroinflammatory and demyelinating disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Rebenko-Moll NM, Liu L, Cardona A, Ransohoff RM . Chemokines mononuclear cells and the nervous system: heaven (or hell) is in the details. Curr Opin Immunol 2006; 18: 683–689.

    Article  CAS  Google Scholar 

  2. Korn T . Pathophysiology of multiple sclerosis. J Neurol 2008; 255 (Suppl 6): 2–6.

    Article  CAS  Google Scholar 

  3. Ransohoff RM . Natalizumab for multiple sclerosis. N Engl J Med 2007; 356: 2622–2629.

    Article  CAS  Google Scholar 

  4. Xie C, Alcaide P, Geisbrecht BV, Schneider D, Herrmann M, Preissner KT, et al. Suppression of experimental autoimmune encephalomyelitis by extracellular adherence protein of Staphylococcus aureus. J Exp Med 2006; 203: 985–994.

    Article  CAS  Google Scholar 

  5. Rothhammer V, Heink S, Petermann F, Srivastava R, Claussen MC, Hemmer B, et al. Th17 lymphocytes traffic to the central nervous system independently of alpha4 integrin expression during EAE. J Exp Med 2011; 208: 2465–2476.

    Article  CAS  Google Scholar 

  6. Rudick R, Polman C, Clifford D, Miller D, Steinman L . Natalizumab: bench to bedside and beyond. JAMA Neurol 2013; 70: 172–182.

    Article  Google Scholar 

  7. Steinman L . A molecular trio in relapse and remission in multiple sclerosis. Nat Rev Immunol 2009; 9: 440–447.

    Article  CAS  Google Scholar 

  8. Bullard DC, Hu X, Schoeb TR, Collins RG, Beaudet AL, Barnum SR . Intercellular adhesion molecule-1 expression is required on multiple cell types for the development of experimental autoimmune encephalomyelitis. J Immunol 2007; 178: 851–857.

    Article  CAS  Google Scholar 

  9. Dugger KJ, Zinn KR, Weaver C, Bullard DC, Barnum SR . Effector and suppressor roles for LFA-1 during the development of experimental autoimmune encephalomyelitis. J Neuroimmunol 2009; 206: 22–27.

    Article  CAS  Google Scholar 

  10. Chavakis E, Choi EY, Chavakis T . Novel aspects in the regulation of the leukocyte adhesion cascade. Thromb Haemost 2009; 102: 191–197.

    Article  CAS  Google Scholar 

  11. Hajishengallis G, Chavakis T . Endogenous modulators of inflammatory cell recruitment. Trends Immunol 2013; 34: 1–6.

    Article  CAS  Google Scholar 

  12. Choi EY, Chavakis E, Czabanka MA, Langer HF, Fraemohs L, Economopoulou M, et al. Del-1, an endogenous leukocyte–endothelial adhesion inhibitor, limits inflammatory cell recruitment. Science 2008; 322: 1101–1104.

    Article  CAS  Google Scholar 

  13. Chavakis T . Leucocyte recruitment in inflammation and novel endogenous negative regulators thereof. Eur J Clin Invest 2012; 42: 686–691.

    Article  CAS  Google Scholar 

  14. Mitroulis I, Kang YY, Gahmberg CG, Siegert G, Hajishengallis G, Chavakis T, et al. Developmental endothelial locus-1 attenuates complement-dependent phagocytosis through inhibition of Mac-1-integrin. Thromb Haemost 2014; 111: 1004–1006.

    Article  CAS  Google Scholar 

  15. Eskan MA, Jotwani R, Abe T, Chmelar J, Lim JH, Liang S, et al. The leukocyte integrin antagonist Del-1 inhibits IL-17-mediated inflammatory bone loss. Nat Immunol 2012; 13: 465–473.

    Article  CAS  Google Scholar 

  16. Goris A, Sawcer S, Vandenbroeck K, Carton H, Billiau A, Setakis E, et al. New candidate loci for multiple sclerosis susceptibility revealed by a whole genome association screen in a Belgian population. J Neuroimmunol 2003; 143: 65–69.

    Article  CAS  Google Scholar 

  17. Shin J, Hosur KB, Pyaram K, Jotwani R, Liang S, Chavakis T, et al. Expression and function of the homeostatic molecule Del-1 in endothelial cells and the periodontal tissue. Clin Dev Immunol 2013; 2013: 617–809.

    Article  Google Scholar 

  18. Langer HF, Choi EY, Zhou H, Schleicher R, Chung KJ, Tang Z, et al. Platelets contribute to the pathogenesis of experimental autoimmune encephalomyelitis. Circ Res 2012; 110: 1202–1210.

    Article  CAS  Google Scholar 

  19. Dasgupta SK, Le A, Chavakis T, Rumbaut RE, Thiagarajan P . Developmental endothelial locus-1 (Del-1) mediates clearance of platelet microparticles by the endothelium. Circulation 2012; 125: 1664–1672.

    Article  CAS  Google Scholar 

  20. Kanczkowski W, Chatzigeorgiou A, Grossklaus S, Sprott D, Bornstein SR, Chavakis T . Role of the endothelial-derived endogenous anti-inflammatory factor Del-1 in inflammation-mediated adrenal gland dysfunction. Endocrinology 2013; 154: 1181–1189.

    Article  CAS  Google Scholar 

  21. Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH . Mechanisms underlying inflammation in neurodegeneration. Cell 2010; 140: 918–934.

    Article  CAS  Google Scholar 

  22. Ajami B, Bennett JL, Krieger C, McNagny KM, Rossi FM . Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat Neurosci 2011; 14: 1142–1149.

    Article  CAS  Google Scholar 

  23. McCandless EE, Budde M, Lees JR, Dorsey D, Lyng E, Klein RS . IL-1R signaling within the central nervous system regulates CXCL12 expression at the blood–brain barrier and disease severity during experimental autoimmune encephalomyelitis. J Immunol 2009; 183: 613–620.

    Article  CAS  Google Scholar 

  24. Chang RA, Miller SD, Longnecker R . Epstein–Barr virus latent membrane protein 2A exacerbates experimental autoimmune encephalomyelitis and enhances antigen presentation function. Sci Rep 2012; 2: 353.

    Article  Google Scholar 

  25. Ford AL, Goodsall AL, Hickey WF, Sedgwick JD . Normal adult ramified microglia separated from other central nervous system macrophages by flow cytometric sorting. Phenotypic differences defined and direct ex vivo antigen presentation to myelin basic protein-reactive CD4+ T cells compared. J Immunol 1995; 154: 4309–4321.

    CAS  PubMed  Google Scholar 

  26. Becher B, Durell BG, Noelle RJ . IL-23 produced by CNS-resident cells controls T cell encephalitogenicity during the effector phase of experimental autoimmune encephalomyelitis. J Clin Invest 2003; 112: 1186–1191.

    Article  CAS  Google Scholar 

  27. Lin AM, Rubin CJ, Khandpur R, Wang JY, Riblett M, Yalavarthi S, et al. Mast cells and neutrophils release IL-17 through extracellular trap formation in psoriasis. J Immunol 187: 490–500.

  28. Carlson T, Kroenke M, Rao P, Lane TE, Segal B . The Th17-ELR+ CXC chemokine pathway is essential for the development of central nervous system autoimmune disease. J Exp Med 2008; 205: 811–823.

    Article  CAS  Google Scholar 

  29. Komiyama Y, Nakae S, Matsuki T, Nambu A, Ishigame H, Kakuta S, et al. IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. J Immunol 2006; 177: 566–573.

    Article  CAS  Google Scholar 

  30. Hirota K, Duarte JH, Veldhoen M, Hornsby E, Li Y, Cua DJ, et al. Fate mapping of IL-17-producing T cells in inflammatory responses. Nat Immunol 2011; 12: 255–263.

    Article  CAS  Google Scholar 

  31. Huber M, Heink S, Pagenstecher A, Reinhard K, Ritter J, Visekruna A, et al. IL-17A secretion by CD8+ T cells supports Th17-mediated autoimmune encephalomyelitis. J Clin Invest 2013; 123: 247–260.

    Article  CAS  Google Scholar 

  32. t Hart BA, Gran B, Weissert R . EAE: imperfect but useful models of multiple sclerosis. Trends Mol Med 2011; 17: 119–125.

    Article  CAS  Google Scholar 

  33. Cua DJ, Tato CM . Innate IL-17-producing cells: the sentinels of the immune system. Nat Rev Immunol 2010; 10: 479–489.

    Article  CAS  Google Scholar 

  34. Kebir H, Kreymborg K, Ifergan I, Dodelet-Devillers A, Cayrol R, Bernard M, et al. Human TH17 lymphocytes promote blood–brain barrier disruption and central nervous system inflammation. Nat Med 2007; 13: 1173–1175.

    Article  CAS  Google Scholar 

  35. Berard JL, Wolak K, Fournier S, David S . Characterization of relapsing-remitting and chronic forms of experimental autoimmune encephalomyelitis in C57BL/6 mice. Glia 2010; 58: 434–445.

    Article  Google Scholar 

  36. Kroenke MA, Carlson TJ, Andjelkovic AV, Segal BM . IL-12- and IL-23-modulated T cells induce distinct types of EAE based on histology, CNS chemokine profile, and response to cytokine inhibition. J Exp Med 2008; 205: 1535–1541.

    Article  CAS  Google Scholar 

  37. Stromnes IM, Cerretti LM, Liggitt D, Harris RA, Goverman JM . Differential regulation of central nervous system autoimmunity by T(H)1 and T(H)17 cells. Nat Med 2008; 14: 337–342.

    Article  CAS  Google Scholar 

  38. Domingues HS, Mues M, Lassmann H, Wekerle H, Krishnamoorthy G . Functional and pathogenic differences of Th1 and Th17 cells in experimental autoimmune encephalomyelitis. PLoS One 2010; 5: e15531.

    Article  CAS  Google Scholar 

  39. Berghmans N, Nuyts A, Uyttenhove C, Van Snick J, Opdenakker G, Heremans H . Interferon-gamma orchestrates the number and function of Th17 cells in experimental autoimmune encephalomyelitis. J Interferon Cytokine Res 2011; 31: 575–587.

    Article  CAS  Google Scholar 

  40. Xiao BG, Ma CG, Xu LY, Link H, Lu CZ . IL-12/IFN-gamma/NO axis plays critical role in development of Th1-mediated experimental autoimmune encephalomyelitis. Mol Immunol 2008; 45: 1191–1196.

    Article  CAS  Google Scholar 

  41. Ferber IA, Brocke S, Taylor-Edwards C, Ridgway W, Dinisco C, Steinman L, et al. Mice with a disrupted IFN-gamma gene are susceptible to the induction of experimental autoimmune encephalomyelitis (EAE). J Immunol 1996; 156: 5–7.

    CAS  PubMed  Google Scholar 

  42. Huppert J, Closhen D, Croxford A, White R, Kulig P, Pietrowski E, et al. Cellular mechanisms of IL-17-induced blood–brain barrier disruption. FASEB J 24: 1023–1034.

  43. Bettelli E, Oukka M, Kuchroo VK . T(H)-17 cells in the circle of immunity and autoimmunity. Nat Immunol 2007; 8: 345–350.

    Article  CAS  Google Scholar 

  44. Haak S, Croxford AL, Kreymborg K, Heppner FL, Pouly S, Becher B, et al. IL-17A and IL-17F do not contribute vitally to autoimmune neuro-inflammation in mice. J Clin Invest 2009; 119: 61–69.

    CAS  PubMed  Google Scholar 

  45. Steinman L . A rush to judgment on Th17. J Exp Med 2008; 205: 1517–1522.

    Article  CAS  Google Scholar 

  46. Hu Y, Ota N, Peng I, Refino CJ, Danilenko DM, Caplazi P, et al. IL-17RC is required for IL-17A- and IL-17F-dependent signaling and the pathogenesis of experimental autoimmune encephalomyelitis. J Immunol 184: 4307–4316.

  47. Gonzalez-Garcia I, Zhao Y, Ju S, Gu Q, Liu L, Kolls JK, et al. IL-17 signaling-independent central nervous system autoimmunity is negatively regulated by TGF-beta. J Immunol 2009; 182: 2665–2671.

    Article  CAS  Google Scholar 

  48. Das Sarma J, Ciric B, Marek R, Sadhukhan S, Caruso ML, Shafagh J, et al. Functional interleukin-17 receptor A is expressed in central nervous system glia and upregulated in experimental autoimmune encephalomyelitis. J Neuroinflamm 2009; 6: 14.

    Article  Google Scholar 

  49. Tzartos JS, Friese MA, Craner MJ, Palace J, Newcombe J, Esiri MM, et al. Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis. Am J Pathol 2008; 172: 146–155.

    Article  CAS  Google Scholar 

  50. Ramanan VK, Risacher SL, Nho K, Kim S, Swaminathan S, Shen L, et al. APOE and BCHE as modulators of cerebral amyloid deposition: a florbetapir PET genome-wide association study. Mol Psychiatry 2013; 19: 351–357.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology of Korea (2011-0014447 and 2008-0062286 to EYC), from the Novartis Foundation for Therapeutical Research (to TC and EYC), from the US NIH Extramural Program (DE021685 and DE017138 to GH), the NIH Intramural Research Program, National Cancer Institute (to TC), the Deutsche Forschungsgemeinschaft (CH279/5-1 to TC), by a European Commission International Reintegration Grant (2010-268108, ANTIINFLDEL to TC) and the European Research Council (ENDHOMRET to TC). EC was supported by the Else Kröner-Fresenius-Stiftung, the Excellence Cluster Cardiopulmonary System (DFG; Exc147-1), the German Centre for Cardiovascular Research (BMBF) and the LOEWE Center for Gene and Cell Therapy (Hessen, Germany). We thank S Grossklaus and M Schuster for technical assistance, T Quertermous and R Kundu (Department of Medicine, Stanford University, Stanford, CA, USA) for providing Del-1−/− mice, Amgen for the IL-17RA−/− mice, the imaging core facility of the MTZ-Technische Universität Dresden for help with imaging and Yongqing Zhang, Elin Lehrmann and Kevin G Becker (National Institute of Aging, NIH, Baltimore, MD, USA) for assistance with gene expression analysis.

Author Contributions

EYC designed and performed experiments, analyzed data and wrote the manuscript; JHL designed and performed experiments, analyzed data and wrote the manuscript; AN, ME, SHL, SB, HL, MS, HK and GSC performed experiments; AC, KJC, TZ, KB, EC, JYK, SRB and SGM analyzed data; LB and KH provided important reagents; GH analyzed data and coedited the manuscript; and TC conceived the project, designed some experiments and wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E Y Choi.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, E., Lim, JH., Neuwirth, A. et al. Developmental endothelial locus-1 is a homeostatic factor in the central nervous system limiting neuroinflammation and demyelination. Mol Psychiatry 20, 880–888 (2015). https://doi.org/10.1038/mp.2014.146

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2014.146

This article is cited by

Search

Quick links