Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Functional implications of a psychiatric risk variant within CACNA1C in induced human neurons

Subjects

A Corrigendum to this article was published on 27 January 2015

Abstract

Psychiatric disorders have clear heritable risk. Several large-scale genome-wide association studies have revealed a strong association between susceptibility for psychiatric disorders, including bipolar disease, schizophrenia and major depression, and a haplotype located in an intronic region of the L-type voltage-gated calcium channel (VGCC) subunit gene CACNA1C (peak associated SNP rs1006737), making it one of the most replicable and consistent associations in psychiatric genetics. In the current study, we used induced human neurons to reveal a functional phenotype associated with this psychiatric risk variant. We generated induced human neurons, or iN cells, from more than 20 individuals harboring homozygous risk genotypes, heterozygous or homozygous non-risk genotypes at the rs1006737 locus. Using these iNs, we performed electrophysiology and quantitative PCR experiments that demonstrated increased L-type VGCC current density as well as increased mRNA expression of CACNA1C in iNs homozygous for the risk genotype, compared with non-risk genotypes. These studies demonstrate that the risk genotype at rs1006737 is associated with significant functional alterations in human iNs, and may direct future efforts at developing novel therapeutics for the treatment of psychiatric disease.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1
Figure 2
Figure 3

References

  1. Visscher PM, Goddard ME, Derks EM, Wray NR . Evidence-based psychiatric genetics, AKA the false dichotomy between common and rare variant hypotheses. Mol Psychiatry 2012; 17: 474–485.

    Article  CAS  PubMed  Google Scholar 

  2. McCarroll SA, Hyman SE . Progress in the genetics of polygenic brain disorders: significant new challenges for neurobiology. Neuron 2013; 80: 578–587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gershon ES, Grennan K, Busnello J, Badner JA, Ovsiew F, Memon S et al. A rare mutation of CACNA1C in a patient with bipolar disorder, and decreased gene expression associated with a bipolar-associated common SNP of CACNA1C in brain. Mol Psychiatry 2013; 19: 890–894.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ferreira MA, O'Donovan MC, Meng YA, Jones IR, Ruderfer DM, Jones L et al. Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. Nat Genet 2008; 40: 1056–1058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Green EK, Grozeva D, Jones I, Jones L, Kirov G, Caesar S et al. The bipolar disorder risk allele at CACNA1C also confers risk of recurrent major depression and of schizophrenia. Mol Psychiatry 2010; 15: 1016–1022.

    Article  CAS  PubMed  Google Scholar 

  6. Nyegaard M, Demontis D, Foldager L, Hedemand A, Flint TJ, Sorensen KM et al. CACNA1C (rs1006737) is associated with schizophrenia. Mol Psychiatry 2010; 15: 119–121.

    Article  CAS  PubMed  Google Scholar 

  7. Moskvina V, Craddock N, Holmans P, Nikolov I, Pahwa JS, Green E et al. Gene-wide analyses of genome-wide association data sets: evidence for multiple common risk alleles for schizophrenia and bipolar disorder and for overlap in genetic risk. Mol Psychiatry 2009; 14: 252–260.

    Article  CAS  PubMed  Google Scholar 

  8. Catterall WA, Perez-Reyes E, Snutch TP, Striessnig J . International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol Rev 2005; 57: 411–425.

    Article  CAS  PubMed  Google Scholar 

  9. Greer PL, Greenberg ME . From synapse to nucleus: calcium-dependent gene transcription in the control of synapse development and function. Neuron 2008; 59: 846–860.

    Article  CAS  PubMed  Google Scholar 

  10. Bigos KL, Mattay VS, Callicott JH, Straub RE, Vakkalanka R, Kolachana B et al. Genetic variation in CACNA1C affects brain circuitries related to mental illness. Arch Gen Psychiatry 2010; 67: 939–945.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Franke B, Vasquez AA, Veltman JA, Brunner HG, Rijpkema M, Fernandez G . Genetic variation in CACNA1C, a gene associated with bipolar disorder, influences brainstem rather than gray matter volume in healthy individuals. Biol Psychiatry 2010; 68: 586–588.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang Q, Shen Q, Xu Z, Chen M, Cheng L, Zhai J et al. The effects of CACNA1C gene polymorphism on spatial working memory in both healthy controls and patients with schizophrenia or bipolar disorder. Neuropsychopharmacology 2012; 37: 677–684.

    Article  CAS  PubMed  Google Scholar 

  13. Tesli M, Skatun KC, Ousdal OT, Brown AA, Thoresen C, Agartz I et al. CACNA1C risk variant and amygdala activity in bipolar disorder, schizophrenia and healthy controls. PLoS One 2013; 8: e56970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Paşca SP, Portmann T, Voineagu I, Yazawa M, Shcheglovitov A, Paşca AM et al. Using iPSC-derived neurons to uncover cellular phenotypes associated with Timothy syndrome. Nat Med 2011; 17: 1657–1662.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Pang ZP, Yang N, Vierbuchen T, Ostermeier A, Fuentes DR, Yang TQ et al. Induction of human neuronal cells by defined transcription factors. Nature 2011; 476: 220–223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Sudhof TC, Wernig M . Direct conversion of fibroblasts to functional neurons by defined factors. Nature 2010; 463: 1035–1041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Soda T, Frank C, Ishizuka K, Baccarella A, Park YU, Flood Z et al. DISC1-ATF4 transcriptional repression complex: dual regulation of the cAMP-PDE4 cascade by DISC1. Mol Psychiatry 2013; 18: 898–908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pfisterer U, Kirkeby A, Torper O, Wood J, Nelander J, Dufour A et al. Direct conversion of human fibroblasts to dopaminergic neurons. Proc Natl Acad Sci U S A 2011; 108: 10343–10348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Purcell SM, Wray NR, Stone JL, Visscher PM, O'Donovan MC, Sullivan PF et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 2009; 460: 748–752.

    Article  CAS  PubMed  Google Scholar 

  20. Brunet S, Scheuer T, Catterall WA . Cooperative regulation of Ca(v)1.2 channels by intracellular Mg(2+), the proximal C-terminal EF-hand, and the distal C-terminal domain. J Gen Physiol 2009; 134: 81–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim JI, Takahashi M, Martin-Moutot N, Seagar MJ, Ohtake A, Sato K . Tyr13 is essential for the binding of omega-conotoxin MVIIC to the P/Q-type calcium channel. Biochem Biophys Res Commun 1995; 214: 305–309.

    Article  CAS  PubMed  Google Scholar 

  22. Boland LM, Morrill JA, Bean BP . omega-Conotoxin block of N-type calcium channels in frog and rat sympathetic neurons. J Neurosci 1994; 14: 5011–5027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Handrock R, Rao-Schymanski R, Klugbauer N, Hofmann F, Herzig S . Dihydropyridine enantiomers block recombinant L-type Ca2+ channels by two different mechanisms. J Physiol 1999; 521((Pt 1)) 31–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ostacher MJ, Iosifescu DV, Hay A, Blumenthal SR, Sklar P, Perlis RH . Pilot investigation of isradipine in the treatment of bipolar depression motivated by genome-wide association. Bipolar Disord 2013; 16: 199–203.

    Article  PubMed  Google Scholar 

  25. Latour I, Hamid J, Beedle AM, Zamponi GW, Macvicar BA . Expression of voltage-gated Ca2+ channel subtypes in cultured astrocytes. Glia 2003; 41: 347–353.

    Article  PubMed  Google Scholar 

  26. D'Ascenzo M, Vairano M, Andreassi C, Navarra P, Azzena GB, Grassi C . Electrophysiological and molecular evidence of L-(Cav1), N- (Cav2.2), and R- (Cav2.3) type Ca2+ channels in rat cortical astrocytes. Glia 2004; 45: 354–363.

    Article  PubMed  Google Scholar 

  27. Blalock EM, Porter NM, Landfield PW . Decreased G-protein-mediated regulation and shift in calcium channel types with age in hippocampal cultures. J Neurosci 1999; 19: 8674–8684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang Y, Pak C, Han Y, Ahlenius H, Zhang Z, Chanda S et al. Rapid single-step induction of functional neurons from human pluripotent stem cells. Neuron 2013; 78: 785–798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA . RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotech 2013; 31: 233–239.

    Article  CAS  Google Scholar 

  30. Wang H, Yang H, Shivalila Chikdu S, Dawlaty Meelad M, Cheng Albert W, Zhang F et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 2013; 153: 910–918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cong L, Ran FA, Cox D, Lin SL, Barretto R, Habib N et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013; 339: 819–823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hockemeyer D, Wang H, Kiani S, Lai CS, Gao Q, Cassady JP et al. Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotech 2011; 29: 731–734.

    Article  CAS  Google Scholar 

  33. Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF et al. A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 2010; 29: 143–148.

    Article  PubMed  Google Scholar 

  34. Levy NA, Janicak PG . Calcium channel antagonists for the treatment of bipolar disorder. Bipolar Disord 2000; 2: 108–119.

    Article  CAS  PubMed  Google Scholar 

  35. Keers R, Farmer AE, Aitchison KJ . Extracting a needle from a haystack: reanalysis of whole genome data reveals a readily translatable finding. Psychol Med 2009; 39: 1231–1235.

    Article  CAS  PubMed  Google Scholar 

  36. Dunn RT, Frye MS, Kimbrell TA, Denicoff KD, Leverich GS, Post RM . The efficacy and use of anticonvulsants in mood disorders. Clin Neuropharmacol 1998; 21: 215–235.

    CAS  PubMed  Google Scholar 

  37. Wang F, McIntosh AM, He Y, Gelernter J, Blumberg HP . The association of genetic variation in CACNA1C with structure and function of a frontotemporal system. Bipolar Disord 2011; 13: 696–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Roussos P, Giakoumaki SG, Georgakopoulos A, Robakis NK, Bitsios P . The CACNA1C and ANK3 risk alleles impact on affective personality traits and startle reactivity but not on cognition or gating in healthy males. Bipolar Disord 2011; 13: 250–259.

    Article  PubMed  Google Scholar 

  39. Perrier E, Pompei F, Ruberto G, Vassos E, Collier D, Frangou S . Initial evidence for the role of CACNA1C on subcortical brain morphology in patients with bipolar disorder. Eur Psychiatry 2011; 26: 135–137.

    Article  CAS  PubMed  Google Scholar 

  40. Thimm M, Kircher T, Kellermann T, Markov V, Krach S, Jansen A et al. Effects of a CACNA1C genotype on attention networks in healthy individuals. Psychol Med 2011; 41: 1551–1561.

    Article  CAS  PubMed  Google Scholar 

  41. Erk S, Meyer-Lindenberg A, Schnell K, Opitz von Boberfeld C, Esslinger C, Kirsch P et al. Brain function in carriers of a genome-wide supported bipolar disorder variant. Arch Gen Psychiatry 2010; 67: 803–811.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health (R01-MH091115, RF1-AG042978, R01-NS051874 and R01-NS078839 to LHT; MH09395 and MH10028 to RP; R21MH099448-01 to JQP), and the Stanley Medical Research Institute (to LHT, JQP and JMM).

Author Contributions

TY, JQP, JMM and LHT conceived and designed the study; TY, JQP, JMM, AEM and LHT wrote the manuscript; TY and JMM developed the iN protocol. TY conducted immunocytochemistry and qPCR; JQP and SS conducted electrophysiology; AEM conducted qPCR; TY, AEM and JK created lentivirus and cultured iN cells; OD, DM and JMM facilitated the collection of human fibroblasts; JMM confirmed the genotypes. RP and BC provided patient fibroblasts.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J Q Pan or L-H Tsai.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yoshimizu, T., Pan, J., Mungenast, A. et al. Functional implications of a psychiatric risk variant within CACNA1C in induced human neurons. Mol Psychiatry 20, 162–169 (2015). https://doi.org/10.1038/mp.2014.143

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2014.143

This article is cited by

Search

Quick links