Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Genetic background of extreme violent behavior

Abstract

In developed countries, the majority of all violent crime is committed by a small group of antisocial recidivistic offenders, but no genes have been shown to contribute to recidivistic violent offending or severe violent behavior, such as homicide. Our results, from two independent cohorts of Finnish prisoners, revealed that a monoamine oxidase A (MAOA) low-activity genotype (contributing to low dopamine turnover rate) as well as the CDH13 gene (coding for neuronal membrane adhesion protein) are associated with extremely violent behavior (at least 10 committed homicides, attempted homicides or batteries). No substantial signal was observed for either MAOA or CDH13 among non-violent offenders, indicating that findings were specific for violent offending, and not largely attributable to substance abuse or antisocial personality disorder. These results indicate both low monoamine metabolism and neuronal membrane dysfunction as plausible factors in the etiology of extreme criminal violent behavior, and imply that at least about 5–10% of all severe violent crime in Finland is attributable to the aforementioned MAOA and CDH13 genotypes.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1
Figure 2
Figure 3

References

  1. Hamparin DM, Schuster R, Dinstz S, Conrad JP . The Violent Few: A Study of Violent Offenders. Lexington Books: Lexington, MA, 1978.

    Google Scholar 

  2. Tracy PE, Wolfgang ME, Figlio RM . Delinquency in Two Birth Cohorts. Plenum Press: New York, 1990.

    Book  Google Scholar 

  3. Ferguson CJ . Genetic contributions to antisocial personality and behavior: a meta-analytic review from an evolutionary perspective. J Soc Psychol 2010; 150: 160–180.

    Article  Google Scholar 

  4. Mednick SA, Gabrielli WH, Hutchings B . Genetic influences in crime convictions: evidence from and adoption cohort. Science 1984; 224: 891–894.

    CAS  Article  Google Scholar 

  5. Hjalmarsson R, Lindquist MJ . The origins of intergenerational associations in crime: Lessons from Swedish adoption data. Labour Econom 2013; 20: 68–81.

    Article  Google Scholar 

  6. Brunner HG, Nelen M, Breakefield XO, Ropers HH, van Oost BA . Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase A. Science 1993; 262: 578–580.

    CAS  Article  Google Scholar 

  7. Caspi A, McClay J, Moffitt TE, Mill J, Martin J, Craig IW et al. Role of genotype in the cycle of violence in maltreated children. Science 2002; 297: 851–854.

    CAS  Article  Google Scholar 

  8. Bevilacqua L, Doly S, Kaprio J, Yuan Q, Tikkanen R, Paunio T et al. A population-specific HTR2B stop codon predisposes to severe impulsivity. Nature 2010; 468: 1061–1066.

    CAS  Article  Google Scholar 

  9. Aspinwall LG, Brown TR, Tabery J . The double-edged sword: does biomechanism increase or decrease judges' sentencing of psychopaths? Science 2012; 337: 846–849.

    CAS  Article  Google Scholar 

  10. Byrd AL, Manuck SB . MAOA, childhood maltreatment, and antisocial behavior: meta-analysis of a gene-environment interaction. Biol Psychiatry 2014; 75: 9–17.

    CAS  Article  Google Scholar 

  11. Haberstick BC, Lessema JM, Hewitta JK, Smolena A, Hopferb CJ, Halpernc CT et al. MAOA genotype, childhood maltreatment, and their interaction in the etiology of adult antisocial behaviors. Biol Psychiatry 2014; 75: 25–30.

    CAS  Article  Google Scholar 

  12. Kristiansson K, Perola M, Tikkanen E, Kettunen J, Surakka I, Havulinna AS et al. Genome-wide screen for metabolic syndrome susceptibility Loci reveals strong lipid gene contribution but no evidence for common genetic basis for clustering of metabolic syndrome traits. Circ Cardiovasc Genet 2012; 5: 242–249.

    Article  Google Scholar 

  13. Vaara S, Nieminen MS, Lokki ML, Perola M, Pussinen PJ, Allonen J et al. Cohort Profile: The Corogene study. Int J Epidemiol 2012; 41: 1265–1271.

    Article  Google Scholar 

  14. Lehti M . Henkirikoskatsaus 2013. OPTL Verkkokatsauksia 29/2013. Helsinki: Oikeuspoliittinen tutkimuslaitos, 2013. (in Finnish).

  15. Dorfman HM, Meyer-Lindenberg A, Buckholtz JW . Neurobiological mechanisms for impulsive-aggression: The role of MAOA. Curr Top Behav Neurosci 2014, 17: 297–313.

    Article  Google Scholar 

  16. Godar SC, Bortolato M, Castelli MP, Casti A, Casu A, Chen K et al. The aggression and behavioral abnormalities associated with monoamine oxidase A deficiency are rescued by acute inhibition of serotonin reuptake. J Psychiatr Res 2014; 56: 1–9.

    Article  Google Scholar 

  17. Vartiainen H, Tiihonen J, Putkonen A, Koponen H, Virkkunen M, Hakola P, Lehto H . Citalopram, a selective serotonin reuptake inhibitor, in the treatment of aggression in schizophrenia. Acta Psychiatr Scand 1995; 91: 348–351.

    CAS  Article  Google Scholar 

  18. Darke S . The toxicology of homicide offenders and victims: a review. Drug Alcohol Rev 2010; 29: 202–215.

    Article  Google Scholar 

  19. Yanowitch R, Coccaro EF . The neurochemistry of human aggression. Adv Genet 2011; 75: 151–169.

    CAS  Article  Google Scholar 

  20. Laaksonen E, Koski-Jännes A, Salaspuro M, Ahtinen H, Alho H . A randomized, multicentre, open-label, comparative trial of disulfiram, naltrexone and acamprosate in the treatment of alcohol dependence. Alcohol Alcohol 2008; 43: 53–61.

    CAS  Article  Google Scholar 

  21. Tiihonen J, Krupitsky E, Verbitskaya E, Blokhina E, Mamontova O, Föhr J et al. Naltrexone implant for the treatment of polydrug dependence: a randomized controlled trial. Am J Psychiatry 2012; 169: 531–536.

    Article  Google Scholar 

  22. Neale BM, Medland S, Ripke S, Anney RJL, Asherson P, Buitelaar J et al. Case-control genome-wide association study of attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 2010; 49: 906–920.

    Article  Google Scholar 

  23. Sizoo B, van den Brink W, Franke B, Vasquez AA, van Wijngaarden-Cremers P, van der Gaag RJ . Do candidate genes discriminate patients with an autism spectrum disorder from those with attention deficit/hyperactivity disorder and is there an effect of lifetime substance use disorders? World J Biol Psychiatry 2010; 11: 699–708.

    Article  Google Scholar 

  24. Arias-Vásquez A, Altink ME, Rommelse NN, Slaats-Willemse DI, Buschgens CJ, Fliers EA et al. CDH13 is associated with working memory performance in attention deficit/hyperactivity disorder. Genes Brain Behav 2011; 10: 844–851.

    Article  Google Scholar 

  25. Edwards AC, Aliev F, Bierut LJ, Bucholz KK, Edenberg H, Hesselbrock V et al. Genome-wide association study of comorbid depressive syndrome and alcohol dependence. Psychiatr Genet 2012; 22: 31–41.

    CAS  Article  Google Scholar 

  26. Kohannim O, Hibar DP, Stein JL, Jahanshad N, Hua X, Rajagopalan P et al. Discovery and replication of gene influences on brain structure using LASSO regression. Front Neurosci 2012; 6: 115.

    CAS  Article  Google Scholar 

  27. Hart AB, Engelhardt BE, Wardle MC, Sokoloff G, Stephens M, Harriet de Wit et al. Genome-wide association study of d-amphetamine response in healthy volunteers identifies putative associations, including cadherin 13 (CDH13). PLoS One 2012; 7: e42646.

    CAS  Article  Google Scholar 

  28. Lesca G, Rudolf G, Labalme A, Hirsch E, Arzimanoglou A, Genton P et al. Epileptic encephalopathies of the Landau-Kleffner and continuous spike and waves during slow-wave sleep types: genomic dissection makes the link with autism. Epilepsia 2012; 53: 1526–1538.

    CAS  Article  Google Scholar 

  29. Mavroconstanti T, Johansson S, Winge I, Knappskog PM, Haavik J . Functional properties of rare missense variants of human CDH13 found in adult attention deficit/hyperactivity disorder (ADHD) patients. PLoS One 2013; 8: e71445.

    CAS  Article  Google Scholar 

  30. Rivero O, Sich S, Popp S, Schmitt A, Franke B, Lesch KP . Impact of the ADHD-susceptibility gene CDH13 on development and function of brain networks. Eur Neuropsychopharmacol 2013; 23: 492–507.

    CAS  Article  Google Scholar 

  31. GROUP investigators Børglum AD, GROUP investigators Demontis D, GROUP investigators Grove J, GROUP investigators Pallesen J, GROUP investigators Hollegaard MV, GROUP investigators Pedersen CB et al. GROUP investigators Genome-wide study of association and interaction with maternal cytomegalovirus infection suggests new schizophrenia loci. Mol Psychiatry 2014; 19: 325–333.

    Article  Google Scholar 

  32. Mavroconstanti T, Halmøy A, Haavik J . Decreased serum levels of adiponectin in adult attention deficit hyperactivity disorder. Psychiatry Res 2014; 216: 123–130.

    CAS  Article  Google Scholar 

  33. Xu W, Cohen-Woods S, Chen Q, Noor A, Knight J, Hosang G et al. Genome-wide association study of bipolar disorder in Canadian and UK populations corroborates disease loci including SYNE1 and CSMD1. BMC Med Genet 2014; 15: 2.

    Article  Google Scholar 

  34. Lundström S, Forsman M, Larsson H, Kerekes N, Serlachius E, Långström N et al. Childhood neurodevelopmental disorders and violent criminality: A sibling control study. J Autism Dev Disord advance online publication, 27 June 2013 (e-pub ahead of print).

  35. Satterfield JH, Faller KJ, Crinella FM, Schell AM, Swanson JM, Homer LD . A 30-year prospective follow-up study of hyperactive boys with conduct problems: adult criminality. J Am Acad Child Adolesc Psychiatry 2007; 46: 601–610.

    Article  Google Scholar 

  36. GTEx. Genotype-Tissue Expression Portalhttp://www.gtexportal.org/home/searchEqtlsaccessed May 27, 2014.

  37. Doyle AE, Faraone SV, McGrath L, Thermenos H, Juelich R, Chaponis J et al. Multivariate association of CDH13 variants and cortical thickness in ADHD. Society of Biological Psychiatry 2014 Annual Meeting, New York, 2014. Biol Psychiatry 2014; 75: 347S.

    Google Scholar 

  38. Young S, Moss D, Sedgwick O, Fridman M, Hodgkins P . A meta-analysis of the prevalence of attention deficit hyperactivity disorder in incarcerated populations. Psychol Med 2014; 7: 1–12.

    Google Scholar 

  39. Paradis S, Harrar DB, Lin Y, Koon AC, Hauser JL, Griffith EC et al. An RNAi-based approach identifies molecules required for glutamatergic and GABAergic synapse development. Neuron 2007; 53: 217–232.

    CAS  Article  Google Scholar 

  40. Cloninger CR, Christiansen KO, Reich T, Gottesman II . Implications of sex differences in the prevalences of antisocial personality, alcoholism, and criminality for familial transmission. Arch Gen Psychiatry 1978; 35: 941–951.

    CAS  Article  Google Scholar 

  41. Carey G, Gottesman II . Genes and antisocial behavior: perceived versus real threats to jurisprudence. J Law Med Ethics 2006; 34: 342–351.

    Article  Google Scholar 

  42. Tiihonen J, Hakola P . Psychiatric disorders and homicide recidivism. Am J Psychiatry 1994; 151: 436–438.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank Auli Toivola for her contribution in the Sequenom Mass Array and MAOA VNTR genotyping and Aija Räsänen for secretarial assistance. The study was funded by the Finnish Ministry of Health and Social Affairs through the development fund for Niuvanniemi Hospital, Finland. Hanna M Ollila has received funds from Instrumentarium Science Foundation and Orion-Farmos Research Foundation. Kati Kristiansson has received grant from Orion-Farmos Research Foundation and Academy of Finland (grant number 250207).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Paunio.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tiihonen, J., Rautiainen, MR., Ollila, H. et al. Genetic background of extreme violent behavior. Mol Psychiatry 20, 786–792 (2015). https://doi.org/10.1038/mp.2014.130

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2014.130

Further reading

Search

Quick links