Abstract
It has been hypothesized that hypovitaminosis D is associated with depression but epidemiological evidence is limited. We investigated the association between depressive disorders and related clinical characteristics with blood concentrations of 25-hydroxyvitamin D [25(OH)D] in a large cohort. The sample consisted of participants (aged 18–65 years) from the Netherlands Study of Depression and Anxiety (NESDA) with a current (N=1102) or remitted (N=790) depressive disorder (major depressive disorder, dysthymia) defined according to DSM-IV criteria, and healthy controls (N=494). Serum levels of 25(OH)D measured and analyzed in multivariate analyses adjusting for sociodemographics, sunlight, urbanization, lifestyle and health. Of the sample, 33.6% had deficient or insufficient serum 25(OH)D (<50 nmol l−1). As compared with controls, lower 25(OH)D levels were found in participants with current depression (P=0.001, Cohen’s d=0.21), particularly in those with the most severe symptoms (P=0.001, Cohen’s d=0.44). In currently depressed persons, 25(OH)D was inversely associated with symptom severity (β=−0.19, s.e.=0.07, P=0.003) suggesting a dose-response gradient, and with risk (relative risk=0.90, 95% confidence interval=0.82–0.99, P=0.03) of having a depressive disorders at 2-year follow-up. This large cohort study indicates that low levels of 25(OH)D were associated to the presence and severity of depressive disorder suggesting that hypovitaminosis D may represent an underlying biological vulnerability for depression. Future studies should elucidate whether—the highly prevalent—hypovitaminosis D could be cost-effectively treated as part of preventive or treatment interventions for depression.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Murray CJ, Lopez AD . Alternative projections of mortality and disability by cause 1990 2020: Global Burden of Disease Study. Lancet 1997; 349: 1498–1504.
Cuijpers P, Beekman AT, Reynolds CF . III. Preventing depression: a global priority. JAMA 2012; 307: 1033–1034.
Annweiler C, Allali G, Allain P, Bridenbaugh S, Schott AM, Kressig RW et al. Vitamin D and cognitive performance in adults: a systematic review. Eur J Neurol 2009; 16: 1083–1089.
Cherniack EP, Troen BR, Florez HJ, Roos BA, Levis S . Some new food for thought: the role of vitamin D in the mental health of older adults. Curr Psychiatry Rep 2009; 11: 12–19.
Eyles DW, Smith S, Kinobe R, Hewison M, McGrath JJ . Distribution of the vitamin D receptor and 1 alpha-hydroxylase in human brain. J Chem Neuroanat 2005; 29: 21–30.
Zehnder D, Bland R, Williams MC, McNinch RW, Howie AJ, Stewart PM et al. Extrarenal expression of 25-hydroxyvitamin d(3)-1 alpha-hydroxylase. J Clin Endocrinol Metab 2001; 86: 888–894.
Neveu I, Naveilhan P, Jehan F, Baudet C, Wion D, De Luca HF et al. 1,25-dihydroxyvitamin D3 regulates the synthesis of nerve growth factor in primary cultures of glial cells. Brain Res Mol Brain Res 1994; 24: 70–76.
Neveu I, Naveilhan P, Baudet C, Brachet P, Metsis M . 1,25-dihydroxyvitamin D3 regulates NT-3, NT-4 but not BDNF mRNA in astrocytes. Neuroreport 1994; 30: 124–126.
McCann JC, Ames BN . Is there convincing biological or behavioral evidence linking vitamin D deficiency to brain dysfunction? FASEB J 2008; 22: 982–1001.
Alroy I, Towers TL, Freedman LP . Transcriptional repression of the interleukin-2 gene by vitamin D3: direct inhibition of NFATp/AP-1 complex formation by a nuclear hormone receptor. Mol Cell Biol 1995; 15: 5789–5799.
Sun J, Kong J, Duan Y, Szeto FL, Liao A, Madara JL et al. Increased NF-kappaB activity in fibroblasts lacking the vitamin D receptor. Am J Physiol Endocrinol Metab 2006; 291: E315–E322.
Howren MB, Lamkin DM, Suls J . Associations of depression with C-reactive protein, IL-1, and IL-6: a meta-analysis. Psychosom Med 2009; 71: 171–186.
Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK et al. A meta-analysis of cytokines in major depression. Biol Psychiatry 2010; 67: 446–457.
Parker G, Brotchie H . 'D' for depression: any role for vitamin D? 'Food for Thought' II. Acta Psychiatr Scand 2011; 124: 243–249.
Bertone-Johnson ER . Vitamin D and the occurrence of depression: causal association or circumstantial evidence? Nutr Rev 2009; 67: 481–492.
Hoogendijk WJ, Lips P, Dik MG, Deeg DJ, Beekman AT, Penninx BW . Depression is associated with decreased 25-hydroxyvitamin D and increased parathyroid hormone levels in older adults. Arch Gen Psychiatry 2008; 65: 508–512.
Milaneschi Y, Shardell M, Corsi AM, Vazzana R, Bandinelli S, Guralnik JM et al. Serum 25-hydroxyvitamin D and depressive symptoms in older women and men. J Clin Endocrinol Metab 2010; 95: 3225–3233.
Bertone-Johnson ER, Powers SI, Spangler L, Brunner RL, Michael YL, Larson JC et al. Vitamin D intake from foods and supplements and depressive symptoms in a diverse population of older women. Am J Clin Nutr 2011; 94: 1104–1112.
Ganji V, Milone C, Cody MM, McCarty F, Wang YT . Serum vitamin D concentrations are related to depression in young adult US population: the Third National Health and Nutrition Examination Survey. Int Arch Med 2010; 3: 29–36.
May HT, Bair TL, Lappé DL . Association of vitamin D levels with incident depression among a general cardiovascular population. Am Heart J 2010; 159: 1037–1043.
Penninx BW, Beekman AT, Smit JH, Zitman FG, Nolen WA, Spinhoven P et al. The Netherlands Study of Depression and Anxiety (NESDA): rationale, objectives and methods. Int J Methods Psychiatr Res 2008; 17: 121–140.
Lamers F, Hoogendoorn AW, Smit JH, Van DR, Zitman FG, Nolen WA et al2012 Sociodemographic and psychiatric determinants of attrition in the Netherlands Study of Depression and Anxiety (NESDA). Compr Psychiatry 53: 63–70.
American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders 4th edn American Psychiatric Association: Washington, DC, USA, 2001.
World Health Organization. The Composite Interview Diagnostic Instrument (CIDI). WHO: Geneva, Switzerland, 1997.
Rush AJ, Gullion CM, Basco MR, Jarrett RB, Trivedi MH . The Inventory of Depressive Symptomatology (IDS): psychometric properties. Psychol Med 1996; 26: 477–486.
Heijboer AC, Blankenstein MA, Kema IP, Buijs MM . Accuracy of 6 routine 25-hydroxyvitamin D assays: influence of vitamin D binding protein concentration. Clin Chem 2012; 58: 543–548.
Carter GD . 25-hydroxyvitamin D: a difficult analyte. Clin Chem 2012; 58: 486–488.
Ross AC, Manson JE, Abrams SA et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. J Clin Endocrinol Metab 2011; 96: 53–58.
Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP et al. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 2011; 96: 1911–1930.
Lyketsos CG, Nestadt G, Cwi J, Heithoff K, Eaton WW . The life chart interview: a standardized method to describe the course of psychopathology. Int J Methods Psychiatr Res 2012; 4: 143–155.
WHO. Collaborating Centre for Drug Statistics Methodology. Anatomical Therapeutic Chemical Classification. WHO: Geneva, Switzerland, 2007.
Babor TF, Fuente JRD, Saunders J, Grant M . The alcohol use disorders identification test: guidelines for use in primary health care. WHO: Geneva, Switzerland, 1992.
Craig CL, Marshall AL, Sjostrom M, Bauman AE, Booth ML, Ainsworth BE et al. International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc 2003; 35: 1381–1395.
Cockcroft DW, Gault MH . Prediction of creatinine clearance from serum creatinine. Nephron 1976; 16: 31–41.
Snijder MB, van Dam RM, Visser M, Deeg DJ, Dekker JM, Bouter LM et al. Adiposity in relation to vitamin D status and parathyroid hormone levels: a population-based study in older men and women. J Clin Endocrinol Metab 2005; 90: 4119–4123.
Cohen J . Statistical Power Analysis for the Behavioral Sciences. Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1988.
Zou G . A Modified Poisson Regression Approach to Prospective Studies with Binary Data. Am J Epidemiol 2004; 159: 702–706.
McNutt LA, Wu C, Xue X, Hafner P . Estimating the Relative Risk in Cohort Studies and Clinical Trials of Common Outcomes. Am J Epidemiol 2003; 157: 940–943.
Cohen AC . Truncated and Censored Samples: Theory and Applications. Marcel Dekker: New York, NY, USA, 1991.
Molendijk ML, Bus BA, Spinhoven P, BWJH Penninx, Kenis G, Prickaerts J et al. Serum levels of brain-derived neurotrophic factor in major depressive disorder: state-trait issues, clinical features and pharmacological treatment. Mol Psychiatry 2011; 16: 1088–1095.
Vreeburg SA, Hoogendijk WJ, van Pelt J, DeRijk RH, Verhagen JCM et al. Major depressive disorder and hypothalamic-pituitary-adrenal axis activity: results from a large cohort study. Arch Gen Psychiatry 2009; 66: 617–626.
Lips P . Vitamin D deficiency and secondary hyperparathyroidism in the elderly: consequences for bone loss and fractures and therapeutic implications. Endocr Rev 2001; 22: 477–501.
Lips P . Vitamin D physiology. Prog Biophys Mol Biol 2006; 92: 4–8.
Petronijevic M, Petronijevic N, Ivkovic M, Stefanovic D, Radonjic D, Glisic B et al. Low bone mineral density and high bone metabolism turnover in premenopausal women with unipolar depression. Bone 2008; 42: 582–590.
Saunders BD, Saunders EF, Gauger PG . Lithium therapy and hyperparathyroidism: an evidence-based assessment. World J Surg 2009; 33: 2314–2323.
Haney EM, Chan BKS, Diem SJ, Ensrud KE, Cauley JA et al. Association of low bone mineral density with selective serotonin reuptake inhibitor use by older men. Arch Intern Med 2007; 167: 1246–1251.
Richards JB, Papaioannou A, Adachi JD, Joseph L, Whitson HE, Prior JC et al. Effect of selective serotonin reuptake inhibitors on the risk of fracture. Arch Intern Med 2007; 167: 188–194.
Ziere G, Dieleman JP, van der Cammen TJ, Hofman A, Pols HA, Stricker BH . Selective serotonin reuptake inhibiting antidepressants are associated with an increased risk of nonvertebral fractures. J Clin Psychopharmacol 2008; 28: 411–417.
Millen AE, Wactawski-Wende J, Pettinger M, Melamed ML, Tylavsky FA, Liu S . Predictors of serum 25-hydroxyvitamin D concentrations among postmenopausal women: the Women's Health Initiative Calcium plus Vitamin D clinical trial. Am J Clin Nutr 2010; 91: 1324–1335.
van Dam RM, Snijder MB, Dekker JM, Stehouwer CD, Bouter LM, Heine RJ et al. Potentially modifiable determinants of vitamin D status in an older population in the Netherlands: the Hoorn Study. Am J Clin Nutr 2007; 85: 755–761.
van Gool CH, Kempen GI, Penninx BW, Deeg DJ, Beekman AT, van Eijk JT . Relationship between changes in depressive symptoms and unhealthy lifestyles in late middle aged and older persons: results from the Longitudinal Aging Study Amsterdam. Age Ageing 2003; 32: 81–87.
Luppino FS, de Wit LM, Bouvy PF, Stijnen T, Cuijpers P, Penninx BW et al. Overweight, obesity, and depression: a systematic review and meta-analysis of longitudinal studies. Arch Gen Psychiatry 2010; 67: 220–229.
Holick MF . Sunlight and vitamin D for bone health and prevention of autoimmune diseases, cancers, and cardiovascular disease. Am J Clin Nutr 2004; 80: 1678S–1688SS.
Yetley EA . Assessing the vitamin D status of the US population. Am J Clin Nutr 2008; 88: 558S–564S.
Jorde R, Sneve M, Figenschau Y, Svartberg J, Waterloo K . Effects of vitamin D supplementation on symptoms of depression in overweight and obese subjects: randomized double blind trial. J Intern Med 2008; 264: 599–609.
Bertone-Johnson ER, Powers SI, Spangler L, Larson J, Michael YL, Millen AE et al. Vitamin D supplementation and depression in the women's health initiative calcium and vitamin D trial. Am J Epidemiol 2012; 176: 1–13.
Kjaergaard M, Waterloo K, Wang CE, Almas B, Figenschau Y, Hutchinson MS et al. Effect of vitamin D supplement on depression scores in people with low levels of serum 25-hydroxyvitamin D: nested case-control study and randomised clinical trial. Br J Psychiatry 2012; 201: 360–368.
Acknowledgements
The infrastructure for the NESDA study (www.nesda.nl) is funded through the Geestkracht program of the Netherlands Organization for Health Research and Development (Zon-Mw, grant number 10-000-1002) and is supported by participating universities and mental health care organizations (VU University Medical Center, GGZ inGeest, Arkin, Leiden University Medical Center, GGZ Rivierduinen, University Medical Center Groningen, Lentis, GGZ Friesland, GGZ Drenthe, Institute for Quality of Health Care (IQ Healthcare), Netherlands Institute for Health Services Research (NIVEL) and Netherlands Institute of Mental Health and Addiction (Trimbos). Assaying of vitamin D and PTH was supported by the Neuroscience Campus Amsterdam and the Dutch Brain Foundation.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no conflict of interest.
Additional information
Supplementary Information accompanies the paper on the Molecular Psychiatry website
Supplementary information
PowerPoint slides
Rights and permissions
About this article
Cite this article
Milaneschi, Y., Hoogendijk, W., Lips, P. et al. The association between low vitamin D and depressive disorders. Mol Psychiatry 19, 444–451 (2014). https://doi.org/10.1038/mp.2013.36
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/mp.2013.36