Abstract
Schizophrenia (SZ) and autism spectrum disorders (ASDs) are complex neurodevelopmental disorders that may share an underlying pathology suggested by shared genetic risk variants. We sequenced the exonic regions of 215 genes in 147 ASD cases, 273 SZ cases and 287 controls, to identify rare risk mutations. Genes were primarily selected for their function in the synapse and were categorized as: (1) Neurexin and Neuroligin Interacting Proteins, (2) Post-synaptic Glutamate Receptor Complexes, (3) Neural Cell Adhesion Molecules, (4) DISC1 and Interactors and (5) Functional and Positional Candidates. Thirty-one novel loss-of-function (LoF) variants that are predicted to severely disrupt protein-coding sequence were detected among 2 861 rare variants. We found an excess of LoF variants in the combined cases compared with controls (P=0.02). This effect was stronger when analysis was limited to singleton LoF variants (P=0.0007) and the excess was present in both SZ (P=0.002) and ASD (P=0.001). As an individual gene category, Neurexin and Neuroligin Interacting Proteins carried an excess of LoF variants in cases compared with controls (P=0.05). A de novo nonsense variant in GRIN2B was identified in an ASD case adding to the growing evidence that this is an important risk gene for the disorder. These data support synapse formation and maintenance as key molecular mechanisms for SZ and ASD.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Whole exome sequencing in dense families suggests genetic pleiotropy amongst Mendelian and complex neuropsychiatric syndromes
Scientific Reports Open Access 07 December 2022
-
Imbalance of flight–freeze responses and their cellular correlates in the Nlgn3−/y rat model of autism
Molecular Autism Open Access 18 July 2022
-
Environmental exposures associated with elevated risk for autism spectrum disorder may augment the burden of deleterious de novo mutations among probands
Molecular Psychiatry Open Access 17 May 2021
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout


References
Cardno AG, Gottesman II . Twin studies of schizophrenia: from bow-and-arrow concordances to star wars Mx and functional genomics. Am J Med Genet 2000; 97: 12–17.
Freitag CM . The genetics of autistic disorders and its clinical relevance: a review of the literature. Mol Psychiatry 2007; 12: 2–22.
Tiihonen J, Lonnqvist J, Wahlbeck K, Klaukka T, Niskanen L, Tanskanen A et al. 11-year follow-up of mortality in patients with schizophrenia: a population-based cohort study (FIN11 study). Lancet 2009; 374: 620–627.
Lord C, Rutter M, Le Couteur A . Autism Diagnostic Interview-Revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J Autism Dev Disord 1994; 24: 659–685.
Lord C, Risi S, Lambrecht L, Cook EH Jr., Leventhal BL, DiLavore PC et al. The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism. J Autism Dev Disord 2000; 30: 205–223.
Fombonne E . Epidemiology of pervasive developmental disorders. Pediatric Res 2009; 65: 591–598.
Baron-Cohen S, Scott FJ, Allison C, Williams J, Bolton P, Matthews FE et al. Prevalence of autism-spectrum conditions: UK school-based population study. Br J Psychiatry 2009; 194: 500–509.
Fernell E, Gillberg C . Autism spectrum disorder diagnoses in Stockholm preschoolers. Res Dev Disabil 2010; 31: 680–685.
Craddock N, Owen MJ . Data and clinical utility should be the drivers of changes to psychiatric classification. Br J Psychiatry 2010; 197: 158–159.
Sullivan PF, Magnusson C, Reichenberg A, Boman M, Dalman C, Davidson M et al. Family history of schizophrenia and bipolar disorder as risk factors for autism family history of psychosis as risk factor for ASD. Arch Gen Psychiatry 2012; 69: 1099–1103.
King BH, Lord C . Is schizophrenia on the autism spectrum? Brain Res 2011; 1380: 34–41.
International Schizophrenia Consortium. Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature 2008; 455: 237–241.
Mefford HC, Sharp AJ, Baker C, Itsara A, Jiang Z, Buysse K et al. Recurrent rearrangements of chromosome 1q21.1 and variable pediatric phenotypes. New Engl J Med 2008; 359: 1685–1699.
Ballif BC, Theisen A, Coppinger J, Gowans GC, Hersh JH, Madan-Khetarpal S et al. Expanding the clinical phenotype of the 3q29 microdeletion syndrome and characterization of the reciprocal microduplication. Mol Cytogenet 2008; 1: 8.
Levinson DF, Duan J, Oh S, Wang K, Sanders AR, Shi J et al. Copy number variants in schizophrenia: confirmation of five previous findings and new evidence for 3q29 microdeletions and VIPR2 duplications. Am J Psychiatry 2011; 168: 302–316.
Stefansson H, Rujescu D, Cichon S, Pietilainen OP, Ingason A, Steinberg S et al. Large recurrent microdeletions associated with schizophrenia. Nature 2008; 455: 232–236.
Hogart A, Wu D, LaSalle JM, Schanen NC . The comorbidity of autism with the genomic disorders of chromosome 15q11.2-q13. Neurobiol Dis 2010; 38: 181–191.
Miller DT, Shen Y, Weiss LA, Korn J, Anselm I, Bridgemohan C et al. Microdeletion/duplication at 15q13.2q13.3 among individuals with features of autism and other neuropsychiatric disorders. J Med Genet 2009; 46: 242–248.
Weiss LA, Shen Y, Korn JM, Arking DE, Miller DT, Fossdal R et al. Association between microdeletion and microduplication at 16p11.2 and autism. N Engl J Med 2008; 358: 667–675.
McCarthy SE, Makarov V, Kirov G, Addington AM, McClellan J, Yoon S et al. Microduplications of 16p11.2 are associated with schizophrenia. Nat Genet 2009; 41: 1223–1227.
Pinto D, Pagnamenta AT, Klei L, Anney R, Merico D, Regan R et al. Functional impact of global rare copy number variation in autism spectrum disorders. Nature 2010; 466: 368–372.
Ingason A, Rujescu D, Cichon S, Sigurdsson E, Sigmundsson T, Pietilainen OP et al. Copy number variations of chromosome 16p13.1 region associated with schizophrenia. Mol Psychiatry 2011; 16: 17–25.
Kirov G, Grozeva D, Norton N, Ivanov D, Mantripragada KK, Holmans P et al. Support for the involvement of large copy number variants in the pathogenesis of schizophrenia. Hum Mol Genet 2009; 18: 1497–1503.
Moreno-De-Luca D, Mulle JG, Kaminsky EB, Sanders SJ, Myers SM, Adam MP et al. Deletion 17q12 is a recurrent copy number variant that confers high risk of autism and schizophrenia. Am J Hum Genet 2010; 87: 618–630.
Cooper GM, Coe BP, Girirajan S, Rosenfeld JA, Vu TH, Baker C et al. A copy number variation morbidity map of developmental delay. Nat Genet 2011; 43: 838–846.
Malhotra D, Sebat J . CNVs: harbingers of a rare variant revolution in psychiatric genetics. Cell 2012; 148: 1223–1241.
Szatmari P, Paterson AD, Zwaigenbaum L, Roberts W, Brian J, Liu XQ et al. Mapping autism risk loci using genetic linkage and chromosomal rearrangements. Nat Genet 2007; 39: 319–328.
Kirov G, Gumus D, Chen W, Norton N, Georgieva L, Sari M et al. Comparative genome hybridization suggests a role for NRXN1 and APBA2 in schizophrenia. Hum Mol Genet 2008; 17: 458–465.
Kim HG, Kishikawa S, Higgins AW, Seong IS, Donovan DJ, Shen Y et al. Disruption of neurexin 1 associated with autism spectrum disorder. Am J Hum Genet 2008; 82: 199–207.
Marshall CR, Noor A, Vincent JB, Lionel AC, Feuk L, Skaug J et al. Structural variation of chromosomes in autism spectrum disorder. Am J Hum Genet 2008; 82: 477–488.
Vrijenhoek T, Buizer-Voskamp JE, van der Stelt I, Strengman E, Sabatti C, Geurts van Kessel A et al. Recurrent CNVs disrupt three candidate genes in schizophrenia patients. Am J Hum Genet 2008; 83: 504–510.
Walsh T, McClellan JM, McCarthy SE, Addington AM, Pierce SB, Cooper GM et al. Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science 2008; 320: 539–543.
Glessner JT, Wang K, Cai G, Korvatska O, Kim CE, Wood S et al. Autism genome-wide copy number variation reveals ubiquitin and neuronal genes. Nature 2009; 459: 569–573.
Rujescu D, Ingason A, Cichon S, Pietilainen OP, Barnes MR, Toulopoulou T et al. Disruption of the neurexin 1 gene is associated with schizophrenia. Hum Mol Genet 2009; 18: 988–996.
Reichelt AC, Rodgers RJ, Clapcote SJ . The role of neurexins in schizophrenia and autistic spectrum disorder. Neuropharmacology 2012; 62: 1519–1526.
Malhotra D, McCarthy S, Michaelson JJ, Vacic V, Burdick KE, Yoon S et al. High frequencies of de novo CNVs in bipolar disorder and schizophrenia. Neuron 2011; 72: 951–963.
Kirov G, Pocklington AJ, Holmans P, Ivanov D, Ikeda M, Ruderfer D et al. De novo CNV analysis implicates specific abnormalities of postsynaptic signalling complexes in the pathogenesis of schizophrenia. Mol Psychiatry 2012; 17: 142–153.
Gilman SR, Iossifov I, Levy D, Ronemus M, Wigler M, Vitkup D . Rare de novo variants associated with autism implicate a large functional network of genes involved in formation and function of synapses. Neuron 2011; 70: 898–907.
Lips ES, Cornelisse LN, Toonen RF, Min JL, Hultman CM, Holmans PA et al. Functional gene group analysis identifies synaptic gene groups as risk factor for schizophrenia. Mol Psychiatry 2012; 17: 996–1006.
O'Dushlaine C, Kenny E, Heron E, Donohoe G, Gill M, Morris D et al. Molecular pathways involved in neuronal cell adhesion and membrane scaffolding contribute to schizophrenia and bipolar disorder susceptibility. Mol Psychiatry 2011; 16: 286–292.
Mudge J, Miller NA, Khrebtukova I, Lindquist IE, May GD, Huntley JJ et al. Genomic convergence analysis of schizophrenia: mRNA sequencing reveals altered synaptic vesicular transport in post-mortem cerebellum. PLoS ONE 2008; 3: e3625.
Voineagu I, Wang X, Johnston P, Lowe JK, Tian Y, Horvath S et al. Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature 2011; 474: 380–384.
Sakai Y, Shaw CA, Dawson BC, Dugas DV, Al-Mohtaseb Z, Hill DE et al. Protein interactome reveals converging molecular pathways among autism disorders. Science translational medicine. 2011; 3: 86ra49.
Guilmatre A, Dubourg C, Mosca AL, Legallic S, Goldenberg A, Drouin-Garraud V et al. Recurrent rearrangements in synaptic and neurodevelopmental genes and shared biologic pathways in schizophrenia, autism, and mental retardation. Arch Gen Psychiatry 2009; 66: 947–956.
Myers RA, Casals F, Gauthier J, Hamdan FF, Keebler J, Boyko AR et al. A population genetic approach to mapping neurological disorder genes using deep resequencing. PLoS Genet 2011; 7: e1001318.
Girard SL, Gauthier J, Noreau A, Xiong L, Zhou S, Jouan L et al. Increased exonic de novo mutation rate in individuals with schizophrenia. Nat Genet 2011; 43: 860–863.
O'Roak BJ, Deriziotis P, Lee C, Vives L, Schwartz JJ, Girirajan S et al. Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nat Genet 2011; 43: 585–589.
Xu B, Roos JL, Dexheimer P, Boone B, Plummer B, Levy S et al. Exome sequencing supports a de novo mutational paradigm for schizophrenia. Nat Genet 2011; 43: 864–868.
Chahrour MH, Yu TW, Lim ET, Ataman B, Coulter ME, Hill RS et al. Whole-exome sequencing and homozygosity analysis implicate depolarization-regulated neuronal genes in autism. PLoS Genet 2012; 8: e1002635.
Moens LN, De Rijk P, Reumers J, Van den Bossche MJ, Glassee W, De Zutter S et al. Sequencing of DISC1 pathway genes reveals increased burden of rare missense variants in schizophrenia patients from a northern Swedish population. PLoS ONE 2011; 6: e23450.
O'Roak BJ, Vives L, Girirajan S, Karakoc E, Krumm N, Coe BP et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 2012; 485: 246–250.
Neale BM, Kou Y, Liu L, Ma'ayan A, Samocha KE, Sabo A et al. Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature 2012; 485: 242–245.
Sanders SJ, Murtha MT, Gupta AR, Murdoch JD, Raubeson MJ, Willsey AJ et al. De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature 2012; 485: 237–241.
Xu B, Ionita-Laza I, Roos JL, Boone B, Woodrick S, Sun Y et al. De novo gene mutations highlight patterns of genetic and neural complexity in schizophrenia. Nat Genet 2012; 44: 1365–1369.
Kenny EM, Cormican P, Gilks WP, Gates AS, O'Dushlaine CT, Pinto C et al. Multiplex target enrichment using DNA indexing for ultra-high throughput SNP detection. DNA Res 2011; 18: 31–38.
Irish Schizophrenia Genomics Consortium and the Wellcome Trust Case Control Consortium 2. Genome-wide association study implicates HLA-C*01:02 as a risk factor at the major histocompatibility complex locus in schizophrenia. Biol Psychiatry 2012; 72: 620–628.
Donohoe G, Walters J, Morris DW, Quinn EM, Judge R, Norton N et al. Influence of NOS1 on verbal intelligence and working memory in both patients with schizophrenia and healthy control subjects. Arch Gen Psychiatry 2009; 66: 1045–1054.
Cochrane LE, Tansey KE, Gill M, Gallagher L, Anney RJ . Lack of association between markers in the ITGA3, ITGAV, ITGA6 and ITGB3 and autism in an Irish sample. Autism Res 2010; 3: 342–344.
Husi H, Ward MA, Choudhary JS, Blackstock WP, Grant SG . Proteomic analysis of NMDA receptor-adhesion protein signaling complexes. Nat Neurosci 2000; 3: 661–669.
Laumonnier F, Cuthbert PC, Grant SG . The role of neuronal complexes in human X-linked brain diseases. Am J Hum Genet 2007; 80: 205–220.
Camargo LM, Collura V, Rain JC, Mizuguchi K, Hermjakob H, Kerrien S et al. Disrupted in Schizophrenia 1 Interactome: evidence for the close connectivity of risk genes and a potential synaptic basis for schizophrenia. Mol Psychiatry 2007; 12: 74–86.
DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 2011; 43: 491–498.
Lemire M . Defining rare variants by their frequencies in controls may increase type I error. Nature genetics 2011; 43: 391–392.
Pearson RD . Bias due to selection of rare variants using frequency in controls. Nat Genet 2011; 43: 391–392.
MacArthur DG, Balasubramanian S, Frankish A, Huang N, Morris J, Walter K et al. A systematic survey of loss-of-function variants in human protein-coding genes. Science 2012; 335: 823–828.
Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P et al. A method and server for predicting damaging missense mutations. Nat Methods 2010; 7: 248–249.
Kumar P, Henikoff S, Ng PC . Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc 2009; 4: 1073–1081.
Jamain S, Quach H, Betancur C, Rastam M, Colineaux C, Gillberg IC et al. Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat Genet 2003; 34: 27–29.
Kurschner C, Mermelstein PG, Holden WT, Surmeier DJ . CIPP a novel multivalent PDZ domain protein, selectively interacts with Kir4.0 family members, NMDA receptor subunits, neurexins, and neuroligins. Mol Cell Neurosci 1998; 11: 161–172.
Barilari M, Dente L . The neuronal proteins CIPP, Cypin and IRSp53 form a tripartite complex mediated by PDZ and SH3 domains. Biol Chem 2010; 391: 1169–1174.
Trepanier CH, Jackson MF, MacDonald JF . Regulation of NMDA receptors by the tyrosine kinase Fyn. FEBS J 2012; 279: 12–19.
Grant SG, O'Dell TJ, Karl KA, Stein PL, Soriano P, Kandel ER . Impaired long-term potentiation, spatial learning, and hippocampal development in fyn mutant mice. Science 1992; 258: 1903–1910.
Beggs HE, Soriano P, Maness PF . NCAM-dependent neurite outgrowth is inhibited in neurons from Fyn-minus mice. J Cell Biol 1994; 127: 825–833.
Cain DP, Grant SG, Saucier D, Hargreaves EL, Kandel ER . Fyn tyrosine kinase is required for normal amygdala kindling. Epilepsy Res 1995; 22: 107–114.
Endele S, Rosenberger G, Geider K, Popp B, Tamer C, Stefanova I et al. Mutations in GRIN2A and GRIN2B encoding regulatory subunits of NMDA receptors cause variable neurodevelopmental phenotypes. Nat Genet 2010; 42: 1021–1026.
Talkowski ME, Rosenfeld JA, Blumenthal I, Pillalamarri V, Chiang C, Heilbut A et al. Sequencing chromosomal abnormalities reveals neurodevelopmental loci that confer risk across diagnostic boundaries. Cell 2012; 149: 525–537.
Akashi K, Kakizaki T, Kamiya H, Fukaya M, Yamasaki M, Abe M et al. NMDA receptor GluN2B (GluR epsilon 2/NR2B) subunit is crucial for channel function, postsynaptic macromolecular organization, and actin cytoskeleton at hippocampal CA3 synapses. J Neurosci 2009; 29: 10869–10882.
Tang YP, Shimizu E, Dube GR, Rampon C, Kerchner GA, Zhuo M et al. Genetic enhancement of learning and memory in mice. Nature 1999; 401: 63–69.
Wang D, Cui Z, Zeng Q, Kuang H, Wang LP, Tsien JZ et al. Genetic enhancement of memory and long-term potentiation but not CA1 long-term depression in NR2B transgenic rats. PLoS ONE 2009; 4: e7486.
Mohrluder J, Schwarten M, Willbold D . Structure and potential function of gamma-aminobutyrate type A receptor-associated protein. FEBS J 2009; 276: 4989–5005.
Mejias R, Adamczyk A, Anggono V, Niranjan T, Thomas GM, Sharma K et al. Gain-of-function glutamate receptor interacting protein 1 variants alter GluA2 recycling and surface distribution in patients with autism. Proc Natl Acad Sci USA 2011; 108: 4920–4925.
Guo L, Degenstein L, Dowling J, Yu QC, Wollmann R, Perman B et al. Gene targeting of BPAG1: abnormalities in mechanical strength and cell migration in stratified epithelia and neurologic degeneration. Cell 1995; 81: 233–243.
Sonnenberg A, Liem RK . Plakins in development and disease. Exp Cell Res 2007; 313: 2189–2203.
Edvardson S, Cinnamon Y, Jalas C, Shaag A, Maayan C, Axelrod FB et al. Hereditary sensory autonomic neuropathy caused by a mutation in dystonin. Ann Neurol 2012; 71: 569–572.
O'Donovan MC, Craddock N, Norton N, Williams H, Peirce T, Moskvina V et al. Identification of loci associated with schizophrenia by genome-wide association and follow-up. Nat Genet 2008; 40: 1053–1055.
Hill MJ, Jeffries AR, Dobson RJ, Price J, Bray NJ . Knockdown of the psychosis susceptibility gene ZNF804A alters expression of genes involved in cell adhesion. Hum Mol Genet 2012; 21: 1018–1024.
Acknowledgements
We sincerely thank all patients who contributed to this study and all staff who facilitated their involvement. Funding for this study was provided by the Health Research Board (HRB Ireland; HRA/2009/45) and Science Foundation Ireland (SFI; 08/IN.1/B1916). Next-generation sequencing was performed in TrinSeq (Trinity Genome Sequencing Laboratory; http://www.medicine.tcd.ie/sequencing), a core facility funded by SFI under Grant No. [07/RFP/GEN/F327/EC07] to Dr Morris. Ms Furlong’s PhD studentship is funded by the HRB 4-Year PhD Programme in Molecular Medicine at TCD. We acknowledge use of the Trinity Biobank control sample and support from the Trinity Centre for High Performance Computing. This work was supported by grant funding from the Health Research Board (Ireland).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no conflict of interest.
Additional information
Supplementary Information accompanies the paper on the Molecular Psychiatry website
Supplementary information
PowerPoint slides
Rights and permissions
About this article
Cite this article
Kenny, E., Cormican, P., Furlong, S. et al. Excess of rare novel loss-of-function variants in synaptic genes in schizophrenia and autism spectrum disorders. Mol Psychiatry 19, 872–879 (2014). https://doi.org/10.1038/mp.2013.127
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/mp.2013.127
Keywords
- autism
- loss-of-function
- mutation
- schizophrenia
- sequencing
- synapse
This article is cited by
-
Environmental exposures associated with elevated risk for autism spectrum disorder may augment the burden of deleterious de novo mutations among probands
Molecular Psychiatry (2022)
-
The GluN2B-Trp373 NMDA Receptor Variant is Associated with Autism-, Epilepsy-Related Phenotypes and Reduces NMDA Receptor Currents in Rats
Neurochemical Research (2022)
-
Imbalance of flight–freeze responses and their cellular correlates in the Nlgn3−/y rat model of autism
Molecular Autism (2022)
-
Whole exome sequencing in dense families suggests genetic pleiotropy amongst Mendelian and complex neuropsychiatric syndromes
Scientific Reports (2022)
-
Hippocampal Lnx1–NMDAR multiprotein complex mediates initial social memory
Molecular Psychiatry (2021)