Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Neural mechanisms underlying stress resilience in Ahi1 knockout mice: relevance to neuropsychiatric disorders

Abstract

The Abelson helper integration site 1 (AHI1) gene has a pivotal role in brain development. Studies by our group and others have demonstrated association of AHI1 with schizophrenia and autism. To elucidate the mechanism whereby alteration in AHI1 expression may be implicated in the pathogenesis of neuropsychiatric disorders, we studied Ahi1 heterozygous knockout (Ahi1+/−) mice. Although their performance was not different from wild-type mice on tests that model classical schizophrenia-related endophenotypes, Ahi1+/− mice displayed an anxiolytic-like phenotype across different converging modalities. Using behavioral paradigms that involve exposure to environmental and social stress, significantly decreased anxiety was evident in the open field, elevated plus maze and dark–light box, as well as during social interaction in pairs. Assessment of core temperature and corticosterone secretion revealed a significantly blunted response of the autonomic nervous system and the hypothalamic–pituitary–adrenal axis in Ahi1+/− mice exposed to environmental and visceral stress. However, response to centrally acting anxiogenic compounds was intact. On resting-state functional MRI, connectivity of the amygdala with other brain regions involved in processing of anxiogenic stimuli and inhibitory avoidance learning, such as the lateral entorhinal cortex, ventral hippocampus and ventral tegmental area, was significantly reduced in the mutant mice. Taken together, our data link Ahi1 under-expression with a defect in the process of threat detection. Alternatively, the results could be interpreted as representing an anxiety-related endophenotype, possibly granting the Ahi1+/− mouse relative resilience to various types of stress. The current knockout model highlights the contribution of translational approaches to understanding the genetic basis of emotional regulation and its associated neurocircuitry, with possible relevance to neuropsychiatric disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Geschwind DH . Autism: many genes, common pathways? Cell 2008; 135: 391–395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rapoport JL, Addington AM, Frangou S, Psych MR . The neurodevelopmental model of schizophrenia: update 2005. Mol Psychiatry 2005; 10: 434–449.

    Article  CAS  PubMed  Google Scholar 

  3. Karlsgodt KH, Sun D, Jimenez AM, Lutkenhoff ES, Willhite R, van Erp TG et al. Developmental disruptions in neural connectivity in the pathophysiology of schizophrenia. Dev Psychopathol 2008; 20: 1297–1327.

    Article  PubMed  Google Scholar 

  4. Minshew NJ, Williams DL . The new neurobiology of autism: cortex, connectivity, and neuronal organization. Arch Neurol 2007; 64: 945–950.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kas MJ, Fernandes C, Schalkwyk LC, Collier DA . Genetics of behavioural domains across the neuropsychiatric spectrum; of mice and men. Mol Psychiatry 2007; 12: 324–330.

    Article  CAS  PubMed  Google Scholar 

  6. Mitchell KJ . The genetics of neurodevelopmental disease. Curr Opin Neurobiol 2011; 21: 197–203.

    Article  CAS  PubMed  Google Scholar 

  7. Sebat J, Levy DL, McCarthy SE . Rare structural variants in schizophrenia: one disorder, multiple mutations; one mutation, multiple disorders. Trends Genet 2009; 25: 528–535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dixon-Salazar T, Silhavy J, Marsh S, Louie C, Scott L, Gururaj A et al. Mutations in the AHI1 gene, encoding jouberin, cause Joubert syndrome with cortical polymicrogyria. Am J Hum Genet 2004; 75: 979–987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ferland R, Eyaid W, Collura R, Tully L, Hill R, Al-Nouri D et al. Abnormal cerebellar development and axonal decussation due to mutations in AHI1 in Joubert syndrome. Nat Genet 2004; 36: 1008–1013.

    Article  CAS  PubMed  Google Scholar 

  10. Jiang X, Hanna Z, Kaouass M, Girard L, Jolicoeur P . Ahi-1, a novel gene encoding a modular protein with WD40-repeat and SH3 domains, is targeted by the Ahi-1 and Mis-2 provirus integrations. J Virol 2002; 76: 9046–9059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yu F, Keinan A, Chen H, Ferland R, Hill R, Mignault A et al. Detecting natural selection by empirical comparison to random regions of the genome. Hum Mol Genet 2009; 18: 4853–4867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Doering J, Kane K, Hsiao Y, Yao C, Shi B, Slowik A et al. Species differences in the expression of Ahi1, a protein implicated in the neurodevelopmental disorder Joubert syndrome, with preferential accumulation to stigmoid bodies. J Comp Neurol 2008; 511: 238–256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cheng YZ, Eley L, Hynes AM, Overman LM, Simms RJ, Barker A et al. Investigating embryonic expression patterns and evolution of AHI1 and CEP290 genes, implicated in Joubert syndrome. PLoS ONE 2012; 7: e44975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Doherty D . Joubert syndrome: insights into brain development, cilium biology, and complex disease. Semin Pediatr Neurol 2009; 16: 143–154.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lancaster M, Louie C, Silhavy J, Sintasath L, Decambre M, Nigam S et al. Impaired Wnt-beta-catenin signaling disrupts adult renal homeostasis and leads to cystic kidney ciliopathy. Nat Med 2009; 15: 1046–1054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sheng G, Xu X, Lin Y, Wang C, Rong J, Cheng D et al. Huntingtin-associated protein 1 interacts with Ahi1 to regulate cerebellar and brainstem development in mice. J Clin Invest 2008; 118: 2785–2795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lancaster MA, Gopal DJ, Kim J, Saleem SN, Silhavy JL, Louie CM et al. Defective Wnt-dependent cerebellar midline fusion in a mouse model of Joubert syndrome. Nat Med 2011; 17: 726–731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Westfall JE, Hoyt C, Liu Q, Hsiao YC, Pierce EA, Page-McCaw PS et al. Retinal degeneration and failure of photoreceptor outer segment formation in mice with targeted deletion of the Joubert syndrome gene, Ahi1. J Neurosci 2010; 30: 8759–8768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Louie C, Caridi G, Lopes V, Brancati F, Kispert A, Lancaster M et al. AHI1 is required for photoreceptor outer segment development and is a modifier for retinal degeneration in nephronophthisis. Nat Genet 2010; 42: 175–180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lerer B, Segman R, Hamdan A, Kanyas K, Karni O, Kohn Y et al. Genome scan of Arab Israeli families maps a schizophrenia susceptibility gene to chromosome 6q23 and supports a locus at chromosome 10q24. Mol Psychiatry 2003; 8: 488–498.

    Article  CAS  PubMed  Google Scholar 

  21. Amann-Zalcenstein D, Avidan N, Kanyas K, Ebstein R, Kohn Y, Hamdan A et al. AHI1, a pivotal neurodevelopmental gene, and C6orf217 are associated with susceptibility to schizophrenia. Eur J Hum Genet 2006; 14: 1111–1119.

    Article  CAS  PubMed  Google Scholar 

  22. Ingason A, Sigmundsson T, Steinberg S, Sigurdsson E, Haraldsson M, Magnusdottir B et al. Support for involvement of the AHI1 locus in schizophrenia. Eur J Hum Genet 2007; 15: 988–991.

    Article  CAS  PubMed  Google Scholar 

  23. Ingason A, Giegling I, Cichon S, Hansen T, Rasmussen H, Nielsen J et al. A large replication study and meta-analysis in European samples provides further support for association of AHI1 markers with schizophrenia. Hum Mol Genet 2010; 19: 1379–1386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rivero O, Reif A, Sanjuán J, Moltó M, Kittel-Schneider S, Nájera C et al. Impact of the AHI1 gene on the vulnerability to schizophrenia: a case-control association study. PLoS ONE 2010; 5: e12254.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Alvarez Retuerto A, Cantor R, Gleeson J, Ustaszewska A, Schackwitz W, Pennacchio L et al. Association of common variants in the Joubert syndrome gene (AHI1) with autism. Hum Mol Genet 2008; 17: 3887–3896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Allen N, Bagade S, McQueen M, Ioannidis J, Kavvoura F, Khoury M et al. Systematic meta-analyses and field synopsis of genetic association studies in schizophrenia: the SzGene database. Nat Genet 2008; 40: 827–834.

    Article  CAS  PubMed  Google Scholar 

  27. Xu X, Yang H, Lin YF, Li X, Cape A, Ressler KJ et al. Neuronal Abelson helper integration site-1 (Ahi1) deficiency in mice alters TrkB signaling with a depressive phenotype. Proc Natl Acad Sci USA 2010; 107: 19126–19131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Weickert CS, Sheedy D, Rothmond DA, Dedova I, Fung S, Garrick T et al. Selection of reference gene expression in a schizophrenia brain cohort. Aust N Z J Psychiatry 2010; 44: 59–70.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Voineagu I, Wang X, Johnston P, Lowe JK, Tian Y, Horvath S et al. Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature 2011; 474: 380–384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Slonimsky A, Levy I, Kohn Y, Rigbi A, Ben-Asher E, Lancet D et al. Lymphoblast and brain expression of AHI1 and the novel primate-specific gene, C6orf217, in schizophrenia and bipolar disorder. Schizophr Res 2010; 120: 159–166.

    Article  PubMed  Google Scholar 

  31. Skarnes WC, von Melchner H, Wurst W, Hicks G, Nord AS, Cox T et al. A public gene trap resource for mouse functional genomics. Nat Genet 2004; 36: 543–544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cohen H, Kozlovsky N, Alona C, Matar MA, Joseph Z . Animal model for PTSD: from clinical concept to translational research. Neuropharmacology 2012; 62: 715–724.

    Article  CAS  PubMed  Google Scholar 

  33. Lipina TV, Palomo V, Gil C, Martinez A, Roder JC . Dual inhibitor of PDE7 and GSK-3 - VP1.15 acts as antipsychotic and cognitive enhancer in C57BL/6J mice. Neuropharmacology 2012; 64: 205–214.

    Article  PubMed  CAS  Google Scholar 

  34. Moy SS, Nadler JJ, Perez A, Barbaro RP, Johns JM, Magnuson TR et al. Sociability and preference for social novelty in five inbred strains: an approach to assess autistic-like behavior in mice. Genes Brain Behav 2004; 3: 287–302.

    Article  CAS  PubMed  Google Scholar 

  35. Griebel G, Belzung C, Misslin R, Vogel E . The free-exploratory paradigm: an effective method for measuring neophobic behaviour in mice and testing potential neophobia-reducing drugs. Behav Pharmacol 1993; 4: 637–644.

    Article  CAS  PubMed  Google Scholar 

  36. Lifschytz T, Broner EC, Zozulinsky P, Slonimsky A, Eitan R, Greenbaum L et al. Relationship between Rgs2 gene expression level and anxiety and depression-like behaviour in a mutant mouse model: serotonergic involvement. Int J Neuropsychopharmacol 2012; 15: 1307–1318.

    Article  CAS  PubMed  Google Scholar 

  37. Adriaan Bouwknecht J, Olivier B, Paylor RE . The stress-induced hyperthermia paradigm as a physiological animal model for anxiety: a review of pharmacological and genetic studies in the mouse. Neurosci Biobehav Rev 2007; 31: 41–59.

    Article  CAS  PubMed  Google Scholar 

  38. Tybout A, Sternthal B, Keppel G, Verducci J, Meyers-Levy J, Barnes J et al. Analysis of variance. J Consumer Psychol 2001; 10: 5–35.

    Article  Google Scholar 

  39. Paxinos G . Atlas of the Developing Mouse Brain at E17.5, P0 and P6 1st (edn) Elsevier: Amsterdam; Boston, 2007.

    Google Scholar 

  40. van den Buuse M . Modeling the positive symptoms of schizophrenia in genetically modified mice: pharmacology and methodology aspects. Schizophr Bull 2010; 36: 246–270.

    Article  PubMed  Google Scholar 

  41. Powell SB, Weber M, Geyer MA . Genetic models of sensorimotor gating: relevance to neuropsychiatric disorders. Curr Top Behav Neurosci 2012; 12: 251–318.

    Article  PubMed  PubMed Central  Google Scholar 

  42. O'Tuathaigh CM, Kirby BP, Moran PM, Waddington JL . Mutant mouse models: genotype-phenotype relationships to negative symptoms in schizophrenia. Schizophr Bull 2010; 36: 271–288.

    Article  PubMed  Google Scholar 

  43. Porsolt RD, Bertin A, Jalfre M . Behavioral despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther 1977; 229: 327–336.

    CAS  PubMed  Google Scholar 

  44. Cryan JF, Sweeney FF . The age of anxiety: role of animal models of anxiolytic action in drug discovery. Br J Pharmacol 2011; 164: 1129–1161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zohar J, Juven-Wetzler A, Sonnino R, Cwikel-Hamzany S, Balaban E, Cohen H . New insights into secondary prevention in post-traumatic stress disorder. Dialogues Clin Neurosci 2011; 13: 301–309.

    PubMed  PubMed Central  Google Scholar 

  46. Holmes A, Kinney JW, Wrenn CC, Li Q, Yang RJ, Ma L et al. Galanin GAL-R1 receptor null mutant mice display increased anxiety-like behavior specific to the elevated plus-maze. Neuropsychopharmacology 2003; 28: 1031–1044.

    Article  CAS  PubMed  Google Scholar 

  47. File SE . The use of social interaction as a method for detecting anxiolytic activity of chlordiazepoxide-like drugs. J Neurosci Methods 1980; 2: 219–238.

    Article  CAS  PubMed  Google Scholar 

  48. Sanders SK, Shekhar A . Anxiolytic effects of chlordiazepoxide blocked by injection of GABAA and benzodiazepine receptor antagonists in the region of the anterior basolateral amygdala of rats. Biol Psychiatry 1995; 37: 473–476.

    Article  CAS  PubMed  Google Scholar 

  49. Vilarim MM, Rocha Araujo DM, Nardi AE . Caffeine challenge test and panic disorder: a systematic literature review. Expert Rev Neurother 2011; 11: 1185–1195.

    Article  PubMed  Google Scholar 

  50. Palit G, Kumar R, Chowdhury SR, Gupta MB, Saxena RC, Srimal RC et al. A primate model of anxiety. Eur Neuropsychopharmacol 1998; 8: 195–201.

    Article  CAS  PubMed  Google Scholar 

  51. Kayir H, Uzbay IT . Nicotine antagonizes caffeine- but not pentylenetetrazole-induced anxiogenic effect in mice. Psychopharmacology (Berl) 2006; 184: 464–469.

    Article  CAS  Google Scholar 

  52. Lovallo WR, Al'Absi M, Blick K, Whitsett TL, Wilson MF . Stress-like adrenocorticotropin responses to caffeine in young healthy men. Pharmacol Biochem Behav 1996; 55: 365–369.

    Article  CAS  PubMed  Google Scholar 

  53. Hale MW, Johnson PL, Westerman AM, Abrams JK, Shekhar A, Lowry CA . Multiple anxiogenic drugs recruit a parvalbumin-containing subpopulation of GABAergic interneurons in the basolateral amygdala. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34: 1285–1293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lu L, Mamiya T, Koseki T, Mouri A, Nabeshima T . Genetic animal models of schizophrenia related with the hypothesis of abnormal neurodevelopment. Biol Pharm Bull 2011; 34: 1358–1363.

    Article  CAS  PubMed  Google Scholar 

  55. Knight JC . Regulatory polymorphisms underlying complex disease traits. J Mol Med 2005; 83: 97–109.

    Article  CAS  PubMed  Google Scholar 

  56. Lesch KP . Gene-environment interaction and the genetics of depression. J Psychiatry Neurosci 2004; 29: 174–184.

    PubMed  PubMed Central  Google Scholar 

  57. Malan-Muller S, Hemmings SM, Seedat S . Big effects of small RNAs: a review of microRNAs in anxiety. Mol Neurobiol 2013; 47: 726–739.

    Article  PubMed  CAS  Google Scholar 

  58. McIlvain V, McCasland JS . GAP-43 heterozygous mice show delayed barrel patterning, differentiation of radial glia, and downregulation of GAP-43. Anat Rec A Discov Mol Cell Evol Biol 2006; 288A: 143–157.

    Article  CAS  Google Scholar 

  59. Gross C, Zhuang X, Stark K, Ramboz S, Oosting R, Kirby L et al. Serotonin1A receptor acts during development to establish normal anxiety-like behaviour in the adult. Nature 2002; 416: 396–400.

    Article  CAS  PubMed  Google Scholar 

  60. Lenze EJ, Wetherell JL . A lifespan view of anxiety disorders. Dialogues Clin Neurosci 2011; 13: 381–399.

    PubMed  PubMed Central  Google Scholar 

  61. Kas MJ, Krishnan V, Gould TD, Collier DA, Olivier B, Lesch KP et al. Advances in multidisciplinary and cross-species approaches to examine the neurobiology of psychiatric disorders. Eur Neuropsychopharmacol 2011; 21: 532–544.

    Article  CAS  PubMed  Google Scholar 

  62. Cryan JF, Holmes A . The ascent of mouse: advances in modelling human depression and anxiety. Nat Rev Drug Discov 2005; 4: 775–790.

    Article  CAS  PubMed  Google Scholar 

  63. Szekely M . The vagus nerve in thermoregulation and energy metabolism. Autonomic Neurosci 2000; 85: 26–38.

    Article  CAS  Google Scholar 

  64. van Veen T, Goeman JJ, Monajemi R, Wardenaar KJ, Hartman CA, Snieder H et al. Different gene sets contribute to different symptom dimensions of depression and anxiety. Am J Med Genet B Neuropsychiatr Genet 2012; 159B: 519–528.

    Article  PubMed  Google Scholar 

  65. Luciano M, Huffman JE, Arias-Vásquez A, Vinkhuyzen AAE, Middeldorp CM, Giegling I et al. Genome-wide association uncovers shared genetic effects among personality traits and mood states. Am J Med Genet B Neuropsychiatric Genet 2012; 159B: 684–695.

    Article  CAS  Google Scholar 

  66. Morris SE, Cuthbert BN . Research Domain Criteria: cognitive systems, neural circuits, and dimensions of behavior. Dialogues Clin Neurosci 2012; 14: 29–37.

    PubMed  PubMed Central  Google Scholar 

  67. Kas MJ, Kahn RS, Collier DA, Waddington JL, Ekelund J, Porteous DJ et al. Translational neuroscience of Schizophrenia: seeking a meeting of minds between mouse and man. Sci Transl Med 2011; 3: 102mr103.

    Article  Google Scholar 

  68. Bar-Haim Y, Lamy D, Pergamin L, Bakermans-Kranenburg MJ, van Ijzendoorn MH . Threat-related attentional bias in anxious and nonanxious individuals: A meta-analytic study. Psychol Bull 2007; 133: 1–24.

    Article  PubMed  Google Scholar 

  69. Lowry CA, Johnson PL, Hay-Schmidt A, Mikkelsen J, Shekhar A . Modulation of anxiety circuits by serotonergic systems. Stress 2005; 8: 233–246.

    Article  CAS  PubMed  Google Scholar 

  70. Duncan GE, Knapp DJ, Breese GR . Neuroanatomical characterization of Fos induction in rat behavioral models of anxiety. Brain Res 1996; 713: 79–91.

    Article  CAS  PubMed  Google Scholar 

  71. Hale MW, Bouwknecht JA, Spiga F, Shekhar A, Lowry CA . Exposure to high- and low-light conditions in an open-field test of anxiety increases c-Fos expression in specific subdivisions of the rat basolateral amygdaloid complex. Brain Res Bull 2006; 71: 174–182.

    Article  PubMed  Google Scholar 

  72. Hale MW, Hay-Schmidt A, Mikkelsen JD, Poulsen B, Shekhar A, Lowry CA . Exposure to an open-field arena increases c-Fos expression in a distributed anxiety-related system projecting to the basolateral amygdaloid complex. Neuroscience 2008; 155: 659–672.

    Article  CAS  PubMed  Google Scholar 

  73. Hafting T, Fyhn M, Molden S, Moser MB, Moser EI . Microstructure of a spatial map in the entorhinal cortex. Nature 2005; 436: 801–806.

    Article  CAS  PubMed  Google Scholar 

  74. Witter MP, Naber PA, van Haeften T, Machielsen WCM, SARB Rombouts, Barkhof F et al. Cortico-hippocampal communication by way of parallel parahippocampal-subicular pathways. Hippocampus 2000; 10: 398–410.

    Article  CAS  PubMed  Google Scholar 

  75. Bertoglio LJ, Joca SRL, Guimarães FS . Further evidence that anxiety and memory are regionally dissociated within the hippocampus. Behav Brain Res 2006; 175: 183–188.

    Article  PubMed  Google Scholar 

  76. Refojo D, Holsboer F . CRH signaling. Molecular specificity for drug targeting in the CNS. Ann N Y Acad Sci 2009; 1179: 106–119.

    Article  CAS  PubMed  Google Scholar 

  77. Nazari-Serenjeh F, Rezayof A . Cooperative interaction between the basolateral amygdala and ventral tegmental area modulates the consolidation of inhibitory avoidance memory. Prog Neuropsychopharmacol Biol Psychiatry 2013; 40: 54–61.

    Article  CAS  PubMed  Google Scholar 

  78. Carobrez AP, Bertoglio LJ . Ethological and temporal analyses of anxiety-like behavior: the elevated plus-maze model 20 years on. Neurosci Biobehav Rev 2005; 29: 1193–1205.

    Article  CAS  PubMed  Google Scholar 

  79. Prediger RDS, Matheus FC, Schwarzbold ML, Lima MMS, Vital MABF . Anxiety in Parkinson’s disease: a critical review of experimental and clinical studies. Neuropharmacology 2012; 62: 115–124.

    Article  CAS  PubMed  Google Scholar 

  80. Skelly LR, Decety J . Passive and motivated perception of emotional faces: qualitative and quantitative changes in the face processing network. PLoS ONE 2012; 7: e40371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Weathington JM, Strahan JA, Cooke BM . Social experience induces sex-specific fos expression in the amygdala of the juvenile rat. Horm Behav 2012; 62: 154–161.

    Article  CAS  PubMed  Google Scholar 

  82. Kim MJ, Loucks RA, Palmer AL, Brown AC, Solomon KM, Marchante AN et al. The structural and functional connectivity of the amygdala: from normal emotion to pathological anxiety. Behav Brain Res 2011; 223: 403–410.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Markett S, Weber B, Voigt G, Montag C, Felten A, Elger C et al. Intrinsic connectivity networks and personality: the temperament dimension harm avoidance moderates functional connectivity in the resting brain. Neuroscience 2013; 240C: 98–105.

    Article  CAS  Google Scholar 

  84. Franklin Tamara B, Saab Bechara J, Mansuy Isabelle M . Neural mechanisms of stress resilience and vulnerability. Neuron 2012; 75: 747–761.

    Article  CAS  PubMed  Google Scholar 

  85. Kofink D, Boks MP, Timmers HT, Kas MJ . Epigenetic dynamics in psychiatric disorders: environmental programming of neurodevelopmental processes. Neurosci Biobehav Rev 2013; 37: 831–845.

    Article  PubMed  Google Scholar 

  86. Kalkman HO . A review of the evidence for the canonical Wnt pathway in autism spectrum disorders. Mol Autism 2012; 3: 10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a grant from the Israel Science Foundation (to BL). We thank Dr A Rigbi for his assistance in the statistical analysis of the data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Lerer.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lotan, A., Lifschytz, T., Slonimsky, A. et al. Neural mechanisms underlying stress resilience in Ahi1 knockout mice: relevance to neuropsychiatric disorders. Mol Psychiatry 19, 243–252 (2014). https://doi.org/10.1038/mp.2013.123

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2013.123

Keywords

This article is cited by

Search

Quick links