Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Amount of lifetime video gaming is positively associated with entorhinal, hippocampal and occipital volume

Subjects

Abstract

Playing video games is a popular leisure activity among children and adults, and may therefore potentially influence brain structure. We have previously shown a positive association between probability of gray matter (GM) volume in the ventral striatum and frequent video gaming in adolescence. Here we set out to investigate structural correlates of video gaming in adulthood, as the effects observed in adolescents may reflect only a fraction of the potential neural long-term effects seen in adults. On magnetic resonance imaging (MRI) scans of 62 male adults, we computed voxel-based morphometry to explore the correlation of GM with the lifetime amount of video gaming (termed joystick years). We found a significant positive association between GM in bilateral parahippocamal region (entorhinal cortex) and left occipital cortex/inferior parietal lobe and joystick years (P<0.001, corrected for multiple comparisons). An exploratory analysis showed that the entorhinal GM volume can be predicted by the video game genres played, such as logic/puzzle games and platform games contributing positively, and action-based role-playing games contributing negatively. Furthermore, joystick years were positively correlated with hippocampus volume. The association of lifetime amount of video game playing with bilateral entorhinal cortex, hippocampal and occipital GM volume could reflect adaptive neural plasticity related to navigation and visual attention.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1

References

  1. Zimbardo P, Duncan N The Demise of Guys: Why Boys Are Struggling and What We Can Do About It 2012 http://www.demiseofguys.com/.

  2. McGonigal J . Reality Is Broken. The Penguin Press: New York, 2011 p 1.

    Google Scholar 

  3. Bavelier D, Green CS, Han DH, Renshaw PF, Merzenich MM, Gentile DA . Brains on video games. Nat Rev Neurosci 2011; 12: 763–768.

    Article  CAS  Google Scholar 

  4. Boot WR, Blakely DP, Simons DJ . Do action video games improve perception and cognition? Front Psychol 2011; 2: 226.

    Article  Google Scholar 

  5. Green CS, Bavelier D . Learning, attentional control, and action video games. Curr Biol 2012; 22: R197–R206.

    Article  CAS  Google Scholar 

  6. Browne KD, Hamilton-Giachritsis C . The influence of violent media on children and adolescents:a public-health approach. Lancet 2005; 365: 702–710.

    Article  Google Scholar 

  7. Green CS, Pouget A, Bavelier D . Improved probabilistic inference as a general learning mechanism with action video games. Curr Biol 2010; 20: 1573.

    Article  CAS  Google Scholar 

  8. Green CS, Bavelier D . Action video game modifies visual selective attention. Nature 2003; 423: 534–537.

    Article  CAS  Google Scholar 

  9. Green CS, Bavelier D . Enumeration versus multiple object tracking: The case of action video game players. Cognition 2006; 101: 217.

    Article  CAS  Google Scholar 

  10. Green CS, Bavelier D . Action-video-game experience alters the spatial resolution of vision. Psychol Sci 2007; 18: 88–94.

    Article  CAS  Google Scholar 

  11. Li R, Polat U, Makous W, Bavelier D . Enhancing the contrast sensitivity function through action video game training. Nat Neurosci 2009; 12: 549–551.

    Article  Google Scholar 

  12. Strobach T, Frensch PA, Schubert T . Video game practice optimizes executive control skills in dual-task and task switching situations. Acta Psychol 2012; 140: 13–24.

    Article  Google Scholar 

  13. Basak C, Boot WR, Voss MW, Kramer AF . Can training in a real-time strategy video game attenuate cognitive decline in older adults? Psychol Aging 2008; 23: 765–777.

    Article  Google Scholar 

  14. Spence I, Yu JJ, Feng J, Marshman J . Women match men when learning a spatial skill. J Exp Psychol Learn Mem Cogn 2009; 35: 1097–1103.

    Article  Google Scholar 

  15. Lynch J, Aughwane P, Hammond TM . Video games and surgical ability: a literature review. J Surg Educ 2010; 67: 184–189.

    Article  Google Scholar 

  16. Schlickum MK, Hedman L, Enochsson L, Kjellin A, Felländer-Tsai L . Systematic video game training in surgical novices improves performance in virtual reality endoscopic surgical simulators: a prospective randomized study. World J Surg 2009; 33: 2360–2367.

    Article  Google Scholar 

  17. Anderson CA, Shibuya A, Ihori N, Swing EL, Bushman BJ, Sakamoto A et al. Violent video game effects on aggression, empathy, and prosocial behavior in Eastern and Western countries: A meta-analytic review. Psychol Bull 2010; 136: 151–173.

    Article  Google Scholar 

  18. Kühn S, Romanowski A, Schilling C, Lorenz R, Mörsen C, Seiferth N et al. The neural basis of video gaming. Transl Psychiatry 2011; 1: e53.

    Article  Google Scholar 

  19. Wölfling K, Müller KW, Beutel M . Reliability and validity of the scale for the assessment of pathological computer-gaming (CSV-S)]. Psychotherapie 2011; 61: 216–224.

    Google Scholar 

  20. Babor TF, Higgins-Biddle JC, Saunders JB, Monteiro MG . The alcohol use disorders identification test. World Health Organization, 2001.

    Google Scholar 

  21. Frecker RC, Fagerström KO . The Fagerström test for nicotine dependence: a revision of the Fagerstrom Tolerance Questionnaire. J Addict 1991; 86: 1119–1127.

    Article  Google Scholar 

  22. Young KS . Caught in the Net. John Wiley & Sons, 1998 p 1.

    Google Scholar 

  23. Beck AT, Steer RA, Ball R, Ranieri W . Comparison of Beck Depression Inventories -IA and -II in psychiatric outpatients. J Pers Assess 1996; 67: 588–597.

    Article  CAS  Google Scholar 

  24. Ashburner J . A fast diffeomorphic image registration algorithm. NeuroImage 2007; 38: 95–113.

    Article  Google Scholar 

  25. Hayasaka S, Nichols TE . Combining voxel intensity and cluster extent with permutation test framework. NeuroImage 2004; 23: 54–63.

    Article  Google Scholar 

  26. Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 2002; 33: 341–355.

    Article  CAS  Google Scholar 

  27. van Strien NM, Cappaert NLM, WM. P . The anatomy of memory: an interactive overview of the parahippocampal–hippocampal network. Nat Rev Neurosci 2009; 10: 272–282.

    Article  CAS  Google Scholar 

  28. Wenzel HG, Bakken IJ, Johansson A, Götestam KG, Øren A . Excessive computer game playing among Norwegian adults: self-reported consequences of playing and association with mental health problems. Psychol Rep 2009; 105: 1237–1247.

    Article  CAS  Google Scholar 

  29. Coutureau E, Di Scala G . Entorhinal cortex and cognition. Prog Neuro-Psychopharmacol Biol Psychiatry 2009; 33: 753–761.

    Article  Google Scholar 

  30. Eichenbaum H, Yonelinas AR . The medial temporal lobe and recognition memory. Ann Rev Neurosci 2007; 30: 123–152.

    Article  CAS  Google Scholar 

  31. Howard MW, Fotedar MS, Datey AV, Hasselmo ME . The temporal context model in spatial navigation and relational learning: toward a common explanation of medial temporal lobe function across domains. Psychol Rev 2005; 112: 75–116.

    Article  Google Scholar 

  32. Derdikman D, Moser EI . A manifold of spatial maps in the brain. Trends Cogn Sci 2010; 14: 561–569.

    Article  Google Scholar 

  33. Fyhn M, Molden S, Witter MP, Moser EI, Moser MB . Spatial representation in the entorhinal cortex. Science 2004; 305: 1258–1264.

    Article  CAS  Google Scholar 

  34. Jacobs J, Kahana MJ, Ekstrom AD, Mollison MV, Fried I . A sense of direction in human entorhinal cortex. Proc Natl Acad Sci USA 2010; 107: 6487–6492.

    Article  CAS  Google Scholar 

  35. Dorval M, Pepin M . Effect of playing a video game on a measure of spatial visualization. Percept Mot Skills 1986; 62: 159–162.

    Article  CAS  Google Scholar 

  36. Sims VK, Mayer RE . Domain specificity of spatial expertise: The case of video game players. Applied Cognitive Psychology 2001; 16: 97–115.

    Article  Google Scholar 

  37. Richardson AE, Powers ME, Bousquet LG . Video game experience predicts virtual, but not real navigation performance. Comput Hum Behav 2011; 27: 552–560.

    Article  Google Scholar 

  38. Sanchez CA . Enhancing visuospatial performance through video game training to increase learning in visuospatial science domains. Psychon Bull Rev 2012; 19: 58–65.

    Article  Google Scholar 

  39. West GL, Stevens SA, Pun C, Pratt J . Visuospatial experience modulates attentional capture: evidence from action video game players. J Vis 2008; 8: 1–9.

    Article  Google Scholar 

  40. Castel AD, Pratt J, Drummond E . The effects of action video game experience on the time course of inhibition of return and the efficiency of visual search. Acta Psychol 2005; 119: 217–230.

    Article  Google Scholar 

  41. Greenfield PM, DeWinstanley P, Kilpatrick H . Action video games and informal education: Effects on strategies for dividing visual attention. J Appl Dev Psychol 1994; 15: 105–123.

    Article  Google Scholar 

  42. Sungur H, Boduroglu A . Action video game players form more detailed representation of objects. Acta Psychol 2012; 139: 327–334.

    Article  Google Scholar 

  43. Corbetta M, Shulman GL . Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 2002; 3: 201–215.

    Article  CAS  Google Scholar 

  44. Wojciulik E, Kanwisher N . The generality of parietal involvement in visual attention. Neuron 1999; 23: 747–764.

    Article  CAS  Google Scholar 

  45. Leonards U, Sunaert S, Van Hecke P, Orban GA . Attention mechanisms in visual search — an fMRI study. J Cognitive Neurosci 2000; 12 (Suppl 2): 61–75.

    Article  Google Scholar 

  46. Haier RJ, Karama S, Leyba L, Jung RE . MRI assessment of cortical thickness and functional activity changes in adolescent girls following three months of practice on a visual-spatial task. BMC Res Notes 2009; 2: 174.

    Article  Google Scholar 

  47. Kühn S, Gallinat J . Segregating cognitive functions within hippocampal formation. A quantitative meta-analysis on spatial navigation and episodic memory. Human Brain Mapping 2013 (in press).

  48. Morey RA, Petty CM, Xu Y, Hayes JP, Wagner HR, Lewis DV et al. A comparison of automated segmentation and manual tracing for quantifying hippocampal and amygdala volumes. NeuroImage 2009; 45: 855–866.

    Article  Google Scholar 

  49. Burgess N . The hippocampus, space, and viewpoints in episodic memory. Q J Exp Psychol A 2002; 55: 1057–1080.

    Article  Google Scholar 

  50. Postma A, Kessels R, van Asselen M . How the brain remembers and forgets where things are: The neurocognition of object–location memory. Neurosci Biobehav Rev 2008; 32: 1339–1345.

    Article  Google Scholar 

  51. Delgado M . Reward-related responses in the human striatum. Ann N Y Acad Sci 2007; 1104: 70–88.

    Article  Google Scholar 

  52. Apicella P, Ljungberg T, Scarnati E, Schultz W . Responses to reward in monkey dorsal and ventral striatum. Exp Brain Res 1991; 85: 491–500.

    Article  CAS  Google Scholar 

  53. Apicella P, Scarnati E, Ljungberg T, Schultz W . Neuronal activity in monkey striatum related to the expectation of predictable environmental events. J Neurophysiol 1992; 68: 945–960.

    Article  CAS  Google Scholar 

  54. Kühn S, Gallinat J . Common biology of craving across legal and illegal drugs–a quantitative meta‐analysis of cue‐reactivity brain response. Eur J Neurosci 2011; 33: 1318–1326.

    Article  Google Scholar 

  55. Chase HW, Eickhoff SB, Laird AR, Hogarth L . The neural basis of drug stimulus processing and craving: an activation likelihood estimation meta-analysis. Biol Psychiatry 2011; 70: 785–793.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Kühn.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kühn, S., Gallinat, J. Amount of lifetime video gaming is positively associated with entorhinal, hippocampal and occipital volume. Mol Psychiatry 19, 842–847 (2014). https://doi.org/10.1038/mp.2013.100

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2013.100

Keywords

  • entorhinal cortex
  • hippocampus
  • MRI
  • video gaming
  • voxel-based morphometry

This article is cited by

Search

Quick links