Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Pathogenic disruption of DISC1-serine racemase binding elicits schizophrenia-like behavior via D-serine depletion

Abstract

Perturbation of Disrupted-In-Schizophrenia-1 (DISC1) and D-serine/NMDA receptor hypofunction have both been implicated in the pathophysiology of schizophrenia and other psychiatric disorders. In the present study, we demonstrate that these two pathways intersect with behavioral consequences. DISC1 binds to and stabilizes serine racemase (SR), the enzyme that generates D-serine, an endogenous co-agonist of the NMDA receptor. Mutant DISC1 fails to bind to SR, facilitating ubiquitination and degradation of SR and a decrease in D-serine production. To elucidate DISC1–SR interactions in vivo, we generated a mouse model of selective and inducible expression of mutant DISC1 in astrocytes, the main source of D-serine in the brain. Expression of mutant DISC1 downregulates endogenous DISC1 and decreases protein but not mRNA levels of SR, resulting in diminished production of D-serine. In contrast, mutant DISC1 does not alter levels of ALDH1L1, connexins, GLT-1 or binding partners of DISC1 and SR, LIS1 or PICK1. Adult male and female mice with lifelong expression of mutant DISC1 exhibit behavioral abnormalities consistent with hypofunction of NMDA neurotransmission. Specifically, mutant mice display greater responses to an NMDA antagonist, MK-801, in open field and pre-pulse inhibition of the acoustic startle tests and are significantly more sensitive to the ameliorative effects of D-serine. These findings support a model wherein mutant DISC1 leads to SR degradation via dominant negative effects, resulting in D-serine deficiency that diminishes NMDA neurotransmission thus linking DISC1 and NMDA pathophysiological mechanisms in mental illness.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Goff DC, Coyle JT . The emerging role of glutamate in the pathophysiology and treatment of schizophrenia. Am J Psychiatry 2001; 158: 1367–1377.

    Article  CAS  PubMed  Google Scholar 

  2. Javitt DC, Zukin SR . Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 1991; 148: 1301–1308.

    Article  CAS  PubMed  Google Scholar 

  3. Mothet JP, Parent AT, Wolosker H, Brady Jr RO, Linden DJ, Ferris CD et al. D-serine is an endogenous ligand for the glycine site of the N-methyl-D-aspartate receptor. Proc Natl Acad Sci U S A 2000; 97: 4926–4931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shleper M, Kartvelishvily E, Wolosker H . D-serine is the dominant endogenous coagonist for NMDA receptor neurotoxicity in organotypic hippocampal slices. 2005; 25: 9413–9417.

  5. Panatier A, Theodosis DT, Mothet JP, Touquet B, Pollegioni L, Poulain DA et al. Glia-derived D-serine controls NMDA receptor activity and synaptic memory. Cell 2006; 125: 775–784.

    Article  CAS  PubMed  Google Scholar 

  6. Gustafson EC, Stevens ER, Wolosker H, Miller RF . Endogenous D-serine contributes to NMDA-receptor-mediated light-evoked responses in the vertebrate retina. J Neurophysiol 2007; 98: 122–130.

    Article  CAS  PubMed  Google Scholar 

  7. Basu AC, Tsai GE, Ma CL, Ehmsen JT, Mustafa AK, Han L et al. Targeted disruption of serine racemase affects glutamatergic neurotransmission and behavior. Mol Psychiatry 2009; 14: 719–727.

    Article  CAS  PubMed  Google Scholar 

  8. Mori H, Inoue R . Serine racemase knockout mice. Chemistry & Biodiversity 2010; 7: 1573–1578.

    Article  CAS  Google Scholar 

  9. DeVito LM, Balu DT, Kanter BR, Lykken C, Basu AC, Coyle JT et al. Serine racemase deletion disrupts memory for order and alters cortical dendritic morphology. Genes, Brain, Behav 2011; 10: 210–222.

    Article  CAS  Google Scholar 

  10. Sullivan SJ, Esguerra M, Wickham RJ, Romero GE, Coyle JT, Miller RF . Serine racemase deletion abolishes light-evoked NMDA receptor currents in retinal ganglion cells. J Physiol 2011; 589 (Pt 24): 5997–6006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wolosker H, Blackshaw S, Snyder SH . Serine racemase: a glial enzyme synthesizing D-serine to regulate glutamate-N-methyl-D-aspartate neurotransmission. Proc Natl Acad Sci U S A 1999; 96: 13409–13414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. De Miranda J, Santoro A, Engelender S, Wolosker H . Human serine racemase: moleular cloning, genomic organization and functional analysis. Gene 2000; 256: 183–188.

    Article  CAS  PubMed  Google Scholar 

  13. Puyal J, Martineau M, Mothet JP, Nicolas MT, Raymond J . Changes in D-serine levels and localization during postnatal development of the rat vestibular nuclei. J Comp Neurol 2006; 497: 610–621.

    Article  CAS  PubMed  Google Scholar 

  14. Williams SM, Diaz CM, Macnab LT, Sullivan RK, Pow DV . Immunocytochemical analysis of D-serine distribution in the mammalian brain reveals novel anatomical compartmentalizations in glia and neurons. Glia 2006; 53: 401–411.

    Article  PubMed  Google Scholar 

  15. Schell MJ, Brady Jr RO, Molliver ME, Snyder SH . D-serine as a neuromodulator: regional and developmental localizations in rat brain glia resemble NMDA receptors. 1997; 17: 1604–1615.

  16. Hashimoto K, Fukushima T, Shimizu E, Komatsu N, Watanabe H, Shinoda N et al. Decreased serum levels of D-serine in patients with schizophrenia: evidence in support of the N-methyl-D-aspartate receptor hypofunction hypothesis of schizophrenia. Arch Gen Psychiatry 2003; 60: 572–576.

    Article  CAS  PubMed  Google Scholar 

  17. Yamada K, Ohnishi T, Hashimoto K, Ohba H, Iwayama-Shigeno Y, Toyoshima M et al. Identification of multiple serine racemase (SRR) mRNA isoforms and genetic analyses of SRR and DAO in schizophrenia and D-serine levels. Biol Psychiatry 2005; 57: 1493–1503.

    Article  CAS  PubMed  Google Scholar 

  18. Bendikov I, Nadri C, Amar S, Panizzutti R, De Miranda J, Wolosker H et al. A CSF and postmortem brain study of D-serine metabolic parameters in schizophrenia. Schizophr Res 2007; 90: 41–51.

    Article  PubMed  Google Scholar 

  19. Morita Y, Ujike H, Tanaka Y, Otani K, Kishimoto M, Morio A et al. A genetic variant of the serine racemase gene is associated with schizophrenia. Biol Psychiatry 2007; 61: 1200–1203.

    Article  CAS  PubMed  Google Scholar 

  20. Boks MP, Rietkerk T, van de Beek MH, Sommer IE, de Koning TJ, Kahn RS . Reviewing the role of the genes G72 and DAAO in glutamate neurotransmission in schizophrenia. 2007; 17: 567–572.

  21. Heresco-Levy U, Javitt DC, Ebstein R, Vass A, Lichtenberg P, Bar G et al. D-serine efficacy as add-on pharmacotherapy to risperidone and olanzapine for treatment-refractory schizophrenia. Biol Psychiatry 2005; 57: 577–585.

    Article  CAS  PubMed  Google Scholar 

  22. Tsai G, Yang P, Chung LC, Lange N, Coyle JT . D-serine added to antipsychotics for the treatment of schizophrenia. Biol Psychiatry 1998; 44: 1081–1089.

    Article  CAS  PubMed  Google Scholar 

  23. Kantrowitz JT, Malhotra AK, Cornblatt B, Silipo G, Balla A, Suckow RF et al. High dose D-serine in the treatment of schizophrenia. Schizophr Res 2010; 121: 125–130.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Labrie V, Wong AH, Roder JC . Contributions of the d-serine pathway to schizophrenia. Neuropharmacology 2012; 62: 1484–1503.

    Article  CAS  PubMed  Google Scholar 

  25. Sawa A, Snyder SH . Schizophrenia: neural mechanisms for novel therapies. Mol Med (Cambridge, Mass) 2003; 9: 3–9.

    Article  Google Scholar 

  26. Hamilton SP . Schizophrenia candidate genes: are we really coming up blank? Am J Psychiatry 2008; 165: 420–423.

    Article  PubMed  Google Scholar 

  27. St Clair D, Blackwood D, Muir W, Carothers A, Walker M, Spowart G et al. Association within a family of a balanced autosomal translocation with major mental illness. Lancet 1990; 336: 13–16.

    Article  CAS  PubMed  Google Scholar 

  28. Millar JK, Wilson-Annan JC, Anderson S, Christie S, Taylor MS, Semple CA et al. Disruption of two novel genes by a translocation co-segregating with schizophrenia. Hum Mol Genet 2000; 9: 1415–1423.

    Article  CAS  PubMed  Google Scholar 

  29. Brandon NJ, Sawa A . Linking neurodevelopmental and synaptic theories of mental illness through DISC1. Nat Rev Neurosci 2011; 12: 707–722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kamiya A, Kubo K, Tomoda T, Takaki M, Youn R, Ozeki Y et al. A schizophrenia-associated mutation of DISC1 perturbs cerebral cortex development. Nat Cell Biol 2005; 7: 1167–1178.

    Article  PubMed  Google Scholar 

  31. Shen S, Lang B, Nakamoto C, Zhang F, Pu J, Kuan SL et al. Schizophrenia-related neural and behavioral phenotypes in transgenic mice expressing truncated Disc1. 2008; 28: 10893–10904.

  32. Hikida T, Jaaro-Peled H, Seshadri S, Oishi K, Hookway C, Kong S et al. Dominant-negative DISC1 transgenic mice display schizophrenia-associated phenotypes detected by measures translatable to humans. Proc Natl Acad Sci U S A 2007; 104: 14501–14506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Clapcote SJ, Lipina TV, Millar JK, Mackie S, Christie S, Ogawa F et al. Behavioral phenotypes of Disc1 missense mutations in mice. Neuron 2007; 54: 387–402.

    Article  CAS  PubMed  Google Scholar 

  34. Li W, Zhou Y, Jentsch JD, Brown RA, Tian X, Ehninger D et al. Specific developmental disruption of disrupted-in-schizophrenia-1 function results in schizophrenia-related phenotypes in mice. Proc Natl Acad Sci U S A 2007; 104: 18280–18285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jaaro-Peled H, Hayashi-Takagi A, Seshadri S, Kamiya A, Brandon NJ, Sawa A . Neurodevelopmental mechanisms of schizophrenia: understanding disturbed postnatal brain maturation through neuregulin-1-ErbB4 and DISC1. Trends Neurosci 2009; 32: 485–495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ramsey AJ, Milenkovic M, Oliveira AF, Escobedo-Lozoya Y, Seshadri S, Salahpour A et al. Impaired NMDA receptor transmission alters striatal synapses and DISC1 protein in an age-dependent manner. Proc Natl Acad Sci U S A 2011; 108: 5795–5800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Seshadri S, Kamiya A, Yokota Y, Prikulis I, Kano S, Hayashi-Takagi A et al. Disrupted-in-Schizophrenia-1 expression is regulated by beta-site amyloid precursor protein cleaving enzyme-1-neuregulin cascade. Proc Natl Acad Sci U S A 2010; 107: 5622–5627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kuroda K, Yamada S, Tanaka M, Iizuka M, Yano H, Mori D et al. Behavioral alterations associated with targeted disruption of exons 2 and 3 of the Disc1 gene in the mouse. Hum Mol Genet 2011; 20: 4666–4683.

    Article  CAS  PubMed  Google Scholar 

  39. Eastwood SL, Walker M, Hyde TM, Kleinman JE, Harrison PJ . The DISC1 Ser704Cys substitution affects centrosomal localization of its binding partner PCM1 in glia in human brain. Hum Mol Genet 2010; 19: 2487–2496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sawa A, Pletnikov MV, Kamiya A . Neuron-glia interactions clarify genetic-environmental links in mental illness. Trends Neurosci 2004; 27: 294–297.

    Article  CAS  PubMed  Google Scholar 

  41. Henn FA, Henn SW . The psychopharmacology of astroglial cells. Prog Neurobiol 1980; 15: 1–17.

    Article  CAS  PubMed  Google Scholar 

  42. Stevens B . Neuron-astrocyte signaling in the development and plasticity of neural circuits. Neuro-Signals 2008; 16: 278–288.

    Article  CAS  PubMed  Google Scholar 

  43. Hamidi M, Drevets WC, Price JL . Glial reduction in amygdala in major depressive disorder is due to oligodendrocytes. Biol Psychiatry 2004; 55: 563–569.

    Article  PubMed  Google Scholar 

  44. Schwarcz R, Pellicciari R . Manipulation of brain kynurenines: glial targets, neuronal effects, and clinical opportunities. J Pharmacol Exp Therap 2002; 303: 1–10.

    Article  CAS  Google Scholar 

  45. Pletnikov MV, Ayhan Y, Nikolskaia O, Xu Y, Ovanesov MV, Huang H et al. Inducible expression of mutant human DISC1 in mice is associated with brain and behavioral abnormalities reminiscent of schizophrenia. Mol Psychiatry 2008; 13: 173–186, 115.

    Article  CAS  PubMed  Google Scholar 

  46. Lin TN, Wang Q, Simonyi A, Chen JJ, Cheung WM, He YY et al. Induction of secretory phospholipase A2 in reactive astrocytes in response to transient focal cerebral ischemia in the rat brain. J Neurochem 2004; 90: 637–645.

    Article  CAS  PubMed  Google Scholar 

  47. Ayhan Y, Abazyan B, Nomura J, Kim R, Ladenheim B, Krasnova IN et al. Differential effects of prenatal and postnatal expressions of mutant human DISC1 on neurobehavioral phenotypes in transgenic mice: evidence for neurodevelopmental origin of major psychiatric disorders. Mol Psychiatry 2011; 16: 293–306.

    Article  CAS  PubMed  Google Scholar 

  48. Kang BN, Ahmad AS, Saleem S, Patterson RL, Hester L, Dore S et al. Death-associated protein kinase-mediated cell death modulated by interaction with DANGER. 2010; 30: 93–98.

  49. Miya K, Inoue R, Takata Y, Abe M, Natsume R, Sakimura K et al. Serine racemase is predominantly localized in neurons in mouse brain. J Comp Neurol 2008; 510: 641–654.

    Article  CAS  PubMed  Google Scholar 

  50. Mustafa AK, Kumar M, Selvakumar B, Ho GP, Ehmsen JT, Barrow RK et al. Nitric oxide S-nitrosylates serine racemase, mediating feedback inhibition of D-serine formation. Proc Natl Acad Sci U S A 2007; 104: 2950–2955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hashimoto A, Nishikawa T, Oka T, Takahashi K, Hayashi T . Determination of free amino acid enantiomers in rat brain and serum by high-performance liquid chromatography after derivatization with N-tert.-butyloxycarbonyl-L-cysteine and o-phthaldialdehyde. J Chromatogr 1992; 582: 41–48.

    Article  CAS  PubMed  Google Scholar 

  52. Balan L, Foltyn VN, Zehl M, Dumin E, Dikopoltsev E, Knoh D et al. Feedback inactivation of D-serine synthesis by NMDA receptor-elicited translocation of serine racemase to the membrane. Proc Natl Acad Sci U S A 2009; 106: 7589–7594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pletnikov MV, Xu Y, Ovanesov MV, Kamiya A, Sawa A, Ross CA . PC12 cell model of inducible expression of mutant DISC1: new evidence for a dominant-negative mechanism of abnormal neuronal differentiation. Neurosci Res 2007; 58: 234–244.

    Article  CAS  PubMed  Google Scholar 

  54. Kartvelishvily E, Shleper M, Balan L, Dumin E, Wolosker H . Neuron-derived D-serine release provides a novel means to activate N-methyl-D-aspartate receptors. J Biol Chem 2006; 281: 14151–14162.

    Article  CAS  PubMed  Google Scholar 

  55. Porteous DJ, Millar JK, Brandon NJ, Sawa A . DISC1 at 10: connecting psychiatric genetics and neuroscience. Trends Mol Med 2011; 17: 699–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Austin CP, Ma L, Ky B, Morris JA, Shughrue PJ . DISC1 (Disrupted in Schizophrenia-1) is expressed in limbic regions of the primate brain. Neuroreport 2003; 14: 951–954.

    Article  CAS  PubMed  Google Scholar 

  57. Schurov IL, Handford EJ, Brandon NJ, Whiting PJ . Expression of disrupted in schizophrenia 1 (DISC1) protein in the adult and developing mouse brain indicates its role in neurodevelopment. Mol Psychiatry 2004; 9: 1100–1110.

    Article  CAS  PubMed  Google Scholar 

  58. Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS et al. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. 2008; 28: 264–278.

  59. Fujii K, Maeda K, Hikida T, Mustafa AK, Balkissoon R, Xia J et al. Serine racemase binds to PICK1: potential relevance to schizophrenia. Mol Psychiatry 2006; 11: 150–157.

    Article  CAS  PubMed  Google Scholar 

  60. Dumin E, Bendikov I, Foltyn VN, Misumi Y, Ikehara Y, Kartvelishvily E et al. Modulation of D-serine levels via ubiquitin-dependent proteasomal degradation of serine racemase. J Biol Chem 2006; 281: 20291–20302.

    Article  CAS  PubMed  Google Scholar 

  61. Deutsch SI, Rosse RB, Mastropaolo J . Behavioral approaches to the functional assessment of NMDA-mediated neural transmission in intact mice. Clin Neuropharmacol 1997; 20: 375–384.

    Article  CAS  PubMed  Google Scholar 

  62. Nilsson M, Carlsson A, Carlsson ML . Glycine and D-serine decrease MK-801-induced hyperactivity in mice. J Neural Transm 1997; 104: 1195–1205.

    Article  CAS  PubMed  Google Scholar 

  63. Kanahara N, Shimizu E, Ohgake S, Fujita Y, Kohno M, Hashimoto T et al. Glycine and D: -serine, but not D: -cycloserine, attenuate prepulse inhibition deficits induced by NMDA receptor antagonist MK-801. Psychopharmacology 2008; 198: 363–374.

    Article  CAS  PubMed  Google Scholar 

  64. Hashimoto A, Chiba S . Effect of systemic administration of D-serine on the levels of D- and L-serine in several brain areas and periphery of rat. Eur J Pharmacol 2004; 495: 153–158.

    Article  CAS  PubMed  Google Scholar 

  65. Meyer U, Feldon J . Epidemiology-driven neurodevelopmental animal models of schizophrenia. Prog Neurobiol 2010; 90: 285–326.

    Article  PubMed  Google Scholar 

  66. Rosenberg D, Kartvelishvily E, Shleper M, Klinker CM, Bowser MT, Wolosker H . Neuronal release of D-serine: a physiological pathway controlling extracellular D-serine concentration. FASEB J 2010; 24: 2951–2961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Jeon GS, Choi DH, Lee HN, Kim DW, Chung CK, Cho SS . Expression of L-serine biosynthetic enzyme 3-phosphoglycerate dehydrogenase (Phgdh) and neutral amino acid transporter ASCT1 following an excitotoxic lesion in the mouse hippocampus. Neurochem Res 2009; 34: 827–834.

    Article  CAS  PubMed  Google Scholar 

  68. Wolosker H . Serine racemase and the serine shuttle between neurons and astrocytes. Biochim biophys acta 2011; 1814: 1558–1566.

    Article  CAS  PubMed  Google Scholar 

  69. Yang JH, Wada A, Yoshida K, Miyoshi Y, Sayano T, Esaki K et al. Brain-specific Phgdh deletion reveals a pivotal role for L-serine biosynthesis in controlling the level of D-serine, an N-methyl-D-aspartate receptor co-agonist, in adult brain. J Biol Chem 2010; 285: 41380–41390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Henneberger C, Papouin T, Oliet SH, Rusakov DA . Long-term potentiation depends on release of D-serine from astrocytes. Nature 2010; 463: 232–236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hikida T, Mustafa AK, Maeda K, Fujii K, Barrow RK, Saleh M et al. Modulation of D-serine levels in brains of mice lacking PICK1. Biol Psychiatry 2008; 63: 997–1000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kim PM, Aizawa H, Kim PS, Huang AS, Wickramasinghe SR, Kashani AH et al. Serine racemase: activation by glutamate neurotransmission via glutamate receptor interacting protein and mediation of neuronal migration. Proc Natl Acad Sci U S A 2005; 102: 2105–2110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Breier A, Su TP, Saunders R, Carson RE, Kolachana BS, de Bartolomeis A et al. Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: evidence from a novel positron emission tomography method. Proc Natl Acad Sci USA 1997; 94: 2569–2574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Moncrieff J . A critique of the dopamine hypothesis of schizophrenia and psychosis. Harv Rev Psychiatry 2009; 17: 214–225.

    Article  PubMed  Google Scholar 

  75. Krystal JH, D’Souza DC, Mathalon D, Perry E, Belger A, Hoffman R . NMDA receptor antagonist effects, cortical glutamatergic function, and schizophrenia: toward a paradigm shift in medication development. Psychopharmacology (Berl) 2003; 169: 215–233.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the SHS and MVP laboratories for help and critical comments, J Ehmsen, A Mustafa, B Paul, M Pucak and K Ishizuka for technical support, R Xu and H Wall for scientific discussions and H Wolosker for providing the SR antiserum. This work is supported by ARRA MH083728 (to MVP), The Brain and Behavior Research Foundation Independent Investigator Award (to MVP), US Public Health Service Grant MH18501 (to SHS) and Young Investigator Award (to BA), NIMH P50 Conti Center Grant (to MVP), The Cell Science Research Foundation Japan (to JN), NIH grants of P50 MH094268 (to AS), P20 MH084018 (to AS), R01 MH069853 (to AS), R01 MH092443 (to AS), R21 MH085226 (to AS), RC1 MH088753 (to AS); NARSAD grants (to AS), SR/RUSK foundation (to AS), Stanley foundation (to AS), Maryland Stem Cell Research Fund (to AS) and in part by MH084020.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S H Snyder or M V Pletnikov.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, T., Abazyan, S., Abazyan, B. et al. Pathogenic disruption of DISC1-serine racemase binding elicits schizophrenia-like behavior via D-serine depletion. Mol Psychiatry 18, 557–567 (2013). https://doi.org/10.1038/mp.2012.97

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2012.97

Keywords

This article is cited by

Search

Quick links