Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Chronic dim light at night provokes reversible depression-like phenotype: possible role for TNF

Abstract

The prevalence of major depression has increased in recent decades and women are twice as likely as men to develop the disorder. Recent environmental changes almost certainly have a role in this phenomenon, but a complete set of contributors remains unspecified. Exposure to artificial light at night (LAN) has surged in prevalence during the past 50 years, coinciding with rising rates of depression. Chronic exposure to LAN is linked to increased risk of breast cancer, obesity and mood disorders, although the relationship to mood is not well characterized. In this study, we investigated the effects of chronic exposure to 5 lux LAN on depression-like behaviors in female hamsters. Using this model, we also characterized hippocampal brain-derived neurotrophic factor expression and hippocampal dendritic morphology, and investigated the reversibility of these changes 1, 2 or 4 weeks following elimination of LAN. Furthermore, we explored the mechanism of action, focusing on hippocampal proinflammatory cytokines given their dual role in synaptic plasticity and the pathogenesis of depression. Using reverse transcription-quantitative PCR, we identified a reversible increase in hippocampal tumor necrosis factor (TNF), but not interleukin-1β, mRNA expression in hamsters exposed to LAN. Direct intracerebroventricular infusion of a dominant-negative inhibitor of soluble TNF, XPro1595, prevented the development of depression-like behavior under LAN, but had no effect on dendritic spine density in the hippocampus. These results indicate a partial role for TNF in the reversible depression-like phenotype observed under chronic dim LAN. Recent environmental changes, such as LAN exposure, may warrant more attention as possible contributors to rising rates of mood disorders.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

References

  1. Compton WM, Conway KP, Stinson FS, Grant BF . Changes in the prevalence of major depression and comorbid substance use disorders in the United States between 1991–1992 and 2001–2002. Am J Psychiatry 2006; 163: 2141–2147.

    Article  PubMed  Google Scholar 

  2. Kessler RC, McGonagle KA, Swartz M, Blazer DG, Nelson CB . Sex and depression in the National Comorbidity Survey. I: lifetime prevalence, chronicity and recurrence. J Affect Disord 1993; 29: 85–96.

    CAS  Article  PubMed  Google Scholar 

  3. Simon GE, VonKorff M . Reevaluation of secular trends in depression rates. Am J Epidemiol 1992; 135: 1411–1422.

    CAS  Article  PubMed  Google Scholar 

  4. Dumont M, Beaulieu C . Light exposure in the natural environment: relevance to mood and sleep disorders. Sleep Med 2007; 8: 557–565.

    Article  PubMed  Google Scholar 

  5. Ha M, Park J . Shiftwork and metabolic risk factors of cardiovascular disease. J Occup Health 2005; 47: 89–95.

    Article  PubMed  Google Scholar 

  6. Kloog I, Haim A, Stevens RG, Barchana M, Portnov BA . Light at night co-distributes with incident breast but not lung cancer in the female population of Israel. Chronobiol Int 2008; 25: 65–81.

    Article  PubMed  Google Scholar 

  7. Wyse CA, Selman C, Page MM, Coogan AN, Hazlerigg DG . Circadian desynchrony and metabolic dysfunction; did light pollution make us fat? Med Hypotheses 2011; 77: 1139–1144.

    CAS  Article  PubMed  Google Scholar 

  8. Navara KJ, Nelson RJ . The dark side of light at night: physiological, epidemiological, and ecological consequences. J Pineal Res 2007; 43: 215–224.

    CAS  Article  PubMed  Google Scholar 

  9. Frodl T, Meisenzahl EM, Zetzsche T, Born C, Groll C, Jager M et al. Hippocampal changes in patients with a first episode of major depression. Am J Psychiatry 2002; 159: 1112–1118.

    Article  PubMed  Google Scholar 

  10. Sheline YI, Sanghavi M, Mintun MA, Gado MH . Depression duration but not age predicts hippocampal volume loss in medically healthy women with recurrent major depression. J Neurosci 1999; 19: 5034–5043.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Gallassi R, Di Sarro R, Morreale A, Amore M . Memory impairment in patients with late-onset major depression: the effect of antidepressant therapy. J Affect Disord 2006; 91: 243–250.

    CAS  Article  PubMed  Google Scholar 

  12. Halbreich U, Asnis GM, Shindledecker R, Zumoff B, Nathan RS . Cortisol secretion in endogenous depression. I. Basal plasma levels. Arch Gen Psychiatry 1985; 42: 904–908.

    CAS  Article  PubMed  Google Scholar 

  13. McEwen BS . Mood disorders and allostatic load. Biol Psychiatry 2003; 54: 200–207.

    Article  PubMed  Google Scholar 

  14. Hajszan T, Dow A, Warner-Schmidt JL, Szigeti-Buck K, Sallam NL, Parducz A et al. Remodeling of hippocampal spine synapses in the rat learned helplessness model of depression. Biol Psychiatry 2009; 65: 392–400.

    Article  PubMed  Google Scholar 

  15. Hajszan T, MacLusky NJ, Leranth C . Short-term treatment with the antidepressant fluoxetine triggers pyramidal dendritic spine synapse formation in rat hippocampus. Eur J Neurosci 2005; 21: 1299–1303.

    Article  PubMed  Google Scholar 

  16. Hajszan T, Szigeti-Buck K, Sallam NL, Bober J, Parducz A, Maclusky NJ et al. Effects of estradiol on learned helplessness and associated remodeling of hippocampal spine synapses in female rats. Biol Psychiatry 2010; 67: 168–174.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Duman RS, Monteggia LM . A neurotrophic model for stress-related mood disorders. Biol Psychiatry 2006; 59: 1116–1127.

    CAS  Article  PubMed  Google Scholar 

  18. Maier SF, Watkins LR . Cytokines for psychologists: implications of bidirectional immune-to-brain communication for understanding behavior, mood, and cognition. Psychol Rev 1998; 105: 83–107.

    CAS  Article  PubMed  Google Scholar 

  19. Richwine AF, Parkin AO, Buchanan JB, Chen J, Markham JA, Juraska JM et al. Architectural changes to CA1 pyramidal neurons in adult and aged mice after peripheral immune stimulation. Psychoneuroendocrinology 2008; 33: 1369–1377.

    CAS  Article  PubMed  Google Scholar 

  20. Raison CL, Capuron L, Miller AH . Cytokines sing the blues: inflammation and the pathogenesis of depression. Trends Immunol 2006; 27: 24–31.

    CAS  Article  PubMed  Google Scholar 

  21. Steptoe A . Depression and Physical Illness. Cambridge University Press: Cambridge, 2007.

    Google Scholar 

  22. Yirmiya R . Endotoxin produces a depressive-like episode in rats. Brain Res 1996; 711: 163–174.

    CAS  Article  PubMed  Google Scholar 

  23. Dantzer R, Wollman EE, Vitkovic L, Yirmiya R . Cytokines, stress, and depression. Conclusions and perspectives. Adv Exp Med Biol 1999; 461: 317–329.

    CAS  Article  PubMed  Google Scholar 

  24. Muller N, Schwarz MJ, Dehning S, Douhe A, Cerovecki A, Goldstein-Muller B et al. The cyclooxygenase-2 inhibitor celecoxib has therapeutic effects in major depression: results of a double-blind, randomized, placebo controlled, add-on pilot study to reboxetine. Mol Psychiatry 2006; 11: 680–684.

    CAS  Article  PubMed  Google Scholar 

  25. Hickie IB, Rogers NL . Novel melatonin-based therapies: potential advances in the treatment of major depression. Lancet 2011; 378: 621–631.

    CAS  Article  PubMed  Google Scholar 

  26. Crupi R, Mazzon E, Marino A, La Spada G, Bramanti P, Cuzzocrea S et al. Melatonin treatment mimics the antidepressant action in chronic corticosterone-treated mice. J Pineal Res 2010; 49: 123–129.

    CAS  PubMed  Google Scholar 

  27. Ochoa JJ, Diaz-Castro J, Kajarabille N, Garcia C, Guisado IM, De Teresa C et al. Melatonin supplementation ameliorates oxidative stress and inflammatory signaling induced by strenuous exercise in adult human males. J Pineal Res 2011; 51: 373–380.

    CAS  Article  PubMed  Google Scholar 

  28. Tyagi E, Agrawal R, Nath C, Shukla R . Effect of melatonin on neuroinflammation and acetylcholinesterase activity induced by LPS in rat brain. Eur J Pharmacol 2010; 640: 206–210.

    CAS  Article  PubMed  Google Scholar 

  29. Brainard GC, Richardson BA, Petterborg LJ, Reiter RJ . The effect of different light intensities on pineal melatonin content. Brain Res 1982; 233: 75–81.

    CAS  Article  PubMed  Google Scholar 

  30. Woolley CS, McEwen BS . Estradiol mediates fluctuation in hippocampal synapse density during the estrous cycle in the adult rat. J Neurosci 1992; 12: 2549–2554.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Zalevsky J, Secher T, Ezhevsky SA, Janot L, Steed PM, O’Brien C et al. Dominant-negative inhibitors of soluble TNF attenuate experimental arthritis without suppressing innate immunity to infection. J Immunol 2007; 179: 1872–1883.

    CAS  Article  PubMed  Google Scholar 

  32. Porsolt RD, Bertin A, Jalfre M . Behavioral despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther 1977; 229: 327–336.

    CAS  PubMed  Google Scholar 

  33. Willner P, Muscat R, Papp M . An animal model of anhedonia. Clin Neuropharmacol 1992; 15 (Suppl 1 Pt A): 550A–551A.

    Article  PubMed  Google Scholar 

  34. Pyter LM, Samuelsson AR, Quan N, Nelson RJ . Photoperiod alters hypothalamic cytokine gene expression and sickness responses following immune challenge in female Siberian hamsters (Phodopus sungorus). Neuroscience 2005; 131: 779–784.

    CAS  Article  PubMed  Google Scholar 

  35. Benca R, Duncan MJ, Frank E, McClung C, Nelson RJ, Vicentic A . Biological rhythms, higher brain function, and behavior: gaps, opportunities, and challenges. Brain Res Rev 2009; 62: 57–70.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bedrosian TA, Fonken LK, Walton JC, Haim A, Nelson RJ . Dim light at night provokes depression-like behaviors and reduces CA1 dendritic spine density in female hamsters. Psychoneuroendocrinology 2011; 36: 1062–1069.

    Article  PubMed  Google Scholar 

  37. Fonken LK, Finy MS, Walton JC, Weil ZM, Workman JL, Ross J et al. Influence of light at night on murine anxiety- and depressive-like responses. Behav Brain Res 2009; 205: 349–354.

    Article  PubMed  Google Scholar 

  38. Megias M, Emri Z, Freund TF, Gulyas AI . Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells. Neuroscience 2001; 102: 527–540.

    CAS  Article  PubMed  Google Scholar 

  39. von Bohlen Und Halbach O . Structure and function of dendritic spines within the hippocampus. Ann Anat 2009; 191: 518–531.

    Article  PubMed  Google Scholar 

  40. Fischer M, Kaech S, Knutti D, Matus A . Rapid actin-based plasticity in dendritic spines. Neuron 1998; 20: 847–854.

    CAS  Article  PubMed  Google Scholar 

  41. Yoshihara Y, De Roo M, Muller D . Dendritic spine formation and stabilization. Curr Opin Neurobiol 2009; 19: 146–153.

    CAS  Article  PubMed  Google Scholar 

  42. McEwen BS . Central effects of stress hormones in health and disease: understanding the protective and damaging effects of stress and stress mediators. Eur J Pharmacol 2008; 583: 174–185.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. Law AJ, Weickert CS, Hyde TM, Kleinman JE, Harrison PJ . Reduced spinophilin but not microtubule-associated protein 2 expression in the hippocampal formation in schizophrenia and mood disorders: molecular evidence for a pathology of dendritic spines. Am J Psychiatry 2004; 161: 1848–1855.

    PubMed  Google Scholar 

  44. Norrholm SD, Ouimet CC . Altered dendritic spine density in animal models of depression and in response to antidepressant treatment. Synapse 2001; 42: 151–163.

    CAS  Article  PubMed  Google Scholar 

  45. Altar CA . Neurotrophins and depression. Trends Pharmacol Sci 1999; 20: 59–61.

    CAS  Article  PubMed  Google Scholar 

  46. Angelucci F, Brene S, Mathe AA . BDNF in schizophrenia, depression and corresponding animal models. Mol Psychiatry 2005; 10: 345–352.

    CAS  Article  PubMed  Google Scholar 

  47. Garcia LS, Comim CM, Valvassori SS, Reus GZ, Barbosa LM, Andreazza AC et al. Acute administration of ketamine induces antidepressant-like effects in the forced swimming test and increases BDNF levels in the rat hippocampus. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32: 140–144.

    CAS  Article  PubMed  Google Scholar 

  48. Li N, Lee B, Liu RJ, Banasr M, Dwyer JM, Iwata M et al. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 2010; 329: 959–964.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. Irwin M . Immune correlates of depression. Adv Exp Med Biol 1999; 461: 1–24.

    CAS  Article  PubMed  Google Scholar 

  50. Maes M . Evidence for an immune response in major depression: a review and hypothesis. Prog Neuropsychopharmacol Biol Psychiatry 1995; 19: 11–38.

    CAS  Article  PubMed  Google Scholar 

  51. Nunes SO, Reiche EM, Morimoto HK, Matsuo T, Itano EN, Xavier EC et al. Immune and hormonal activity in adults suffering from depression. Braz J Med Biol Res 2002; 35: 581–587.

    CAS  Article  PubMed  Google Scholar 

  52. Yirmiya R, Weidenfeld J, Pollak Y, Morag M, Morag A, Avitsur R et al. Cytokines, ‘depression due to a general medical condition,’ and antidepressant drugs. Adv Exp Med Biol 1999; 461: 283–316.

    CAS  Article  PubMed  Google Scholar 

  53. Bedrosian TA, Fonken LK, Walton JC, Nelson RJ . Chronic exposure to dim light at night suppresses immune responses in Siberian hamsters. Biol Lett 2011; 7: 468–471.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Fonken LK, Haim A, Nelson RJ . Dim light at night increases immune function in Nile grass rats, a diurnal rodent. Chronobiol Int 2012; 29: 26–34.

    Article  PubMed  Google Scholar 

  55. Reiter RJ . The melatonin rhythm: both a clock and a calendar. Experientia 1993; 49: 654–664.

    CAS  Article  PubMed  Google Scholar 

  56. Goodwin GM, Emsley R, Rembry S, Rouillon F . Agomelatine prevents relapse in patients with major depressive disorder without evidence of a discontinuation syndrome: a 24-week randomized, double-blind, placebo-controlled trial. J Clin Psychiatry 2009; 70: 1128–1137.

    Article  PubMed  Google Scholar 

  57. Kennedy SH, Rizvi SJ . Agomelatine in the treatment of major depressive disorder: potential for clinical effectiveness. CNS Drugs 2010; 24: 479–499.

    CAS  Article  PubMed  Google Scholar 

  58. Maldonado MD, Reiter RJ, Perez-San-Gregorio MA . Melatonin as a potential therapeutic agent in psychiatric illness. Hum Psychopharmacol 2009; 24: 391–400.

    CAS  Article  PubMed  Google Scholar 

  59. Sacco S, Aquilini L, Ghezzi P, Pinza M, Guglielmotti A . Mechanism of the inhibitory effect of melatonin on tumor necrosis factor production in vivo and in vitro. Eur J Pharmacol 1998; 343: 249–255.

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Science Foundation (IOS-1118792 and IOS-0838098). TAB was supported by the Department of Defense through a National Defense Science and Engineering Graduate (NDSEG) fellowship. XPro1595 was a generous gift from David Szymkowski at Xencor. We thank Kamillya Herring, Mara Ford, Nicole Maher and Shannon Chen for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T A Bedrosian.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bedrosian, T., Weil, Z. & Nelson, R. Chronic dim light at night provokes reversible depression-like phenotype: possible role for TNF. Mol Psychiatry 18, 930–936 (2013). https://doi.org/10.1038/mp.2012.96

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2012.96

Keywords

  • BDNF
  • cytokine
  • hamster
  • hippocampus
  • light pollution
  • Phodopus sungorus

Further reading

Search

Quick links