Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The membrane raft protein Flotillin-1 is essential in dopamine neurons for amphetamine-induced behavior in Drosophila

Abstract

The dopamine transporter (DAT) is the primary molecular target responsible for the rewarding properties of the psychostimulants amphetamine (AMPH) and cocaine. AMPH increases extracellular dopamine (DA) by promoting its nonexocytotic release via DAT-mediated efflux. Previous studies in heterologous cells have shown that phosphorylation of the amino terminus of DAT is required for AMPH-induced DA efflux but not for DA uptake. However, the identity of many of the modulatory proteins and the molecular mechanisms that coordinate efflux and the ensuing behavioral effects remain poorly defined. Here, we establish a robust assay for AMPH-induced hyperlocomotion in Drosophila melanogaster larvae. Using a variety of genetic and pharmacological approaches, we demonstrate that this behavioral response is dependent on DA and on DAT and its phosphorylation. We also show that methylphenidate (MPH), which competitively inhibits DA uptake but does not induce DAT-mediated DA efflux, also leads to DAT-dependent hyperlocomotion, but this response is independent of DAT phosphorylation. Moreover, we demonstrate that the membrane raft protein Flotillin-1 is required for AMPH-induced, but not MPH-induced, hyperlocomotion. These results are the first evidence of a role for a raft protein in an AMPH-mediated behavior. Thus, using our assay we are able to translate molecular and cellular findings to a behavioral level and to differentiate in vivo the distinct mechanisms of two psychostimulants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Chen H, Wu J, Zhang J, Hashimoto K . Recent topics on pharmacotherapy for amphetamine-type stimulants abuse and dependence. Curr Drug Abuse Rev 2011; 3: 222–238.

    Article  Google Scholar 

  2. Jayanthi LD, Ramamoorthy S . Regulation of monoamine transporters: influence of psychostimulants and therapeutic antidepressants. AAPS J 2005; 7: E728–E738.

    Article  CAS  Google Scholar 

  3. Sulzer D, Sonders MS, Poulsen NW, Galli A . Mechanisms of neurotransmitter release by amphetamines: a review. Prog Neurobiol 2005; 75: 406–433.

    Article  CAS  Google Scholar 

  4. Wall SC, Gu H, Rudnick G . Biogenic amine flux mediated by cloned transporters stably expressed in cultured cell lines: amphetamine specificity for inhibition and efflux. Mol Pharmacol 1995; 47: 544–550.

    CAS  PubMed  Google Scholar 

  5. Mortensen OV, Amara SG . Dynamic regulation of the dopamine transporter. Eur J Pharmacol 2003; 479: 159–170.

    Article  CAS  Google Scholar 

  6. Fleckenstein AE, Volz TJ, Riddle EL, Gibb JW, Hanson GR . New insights into the mechanism of action of amphetamines. Annu Rev Pharmacol Toxicol 2007; 47: 681–698.

    Article  CAS  Google Scholar 

  7. Ritz MC, Lamb RJ, Goldberg SR, Kuhar MJ . Cocaine receptors on dopamine transporters are related to self-administration of cocaine. Science 1987; 237: 1219–1223.

    Article  CAS  Google Scholar 

  8. Zhu J, Reith ME . Role of the dopamine transporter in the action of psychostimulants, nicotine, and other drugs of abuse. CNS Neurol Disord Drug Targets 2008; 7: 393–409.

    Article  CAS  Google Scholar 

  9. Sotnikova TD, Beaulieu JM, Gainetdinov RR, Caron MG . Molecular biology, pharmacology and functional role of the plasma membrane dopamine transporter. CNS Neurol Disord Drug Targets 2006; 5: 45–56.

    Article  CAS  Google Scholar 

  10. Giros B, Jaber M, Jones SR, Wightman RM, Caron MG . Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 1996; 379: 606–612.

    Article  CAS  Google Scholar 

  11. Sora I, Li B, Igari M, Hall FS, Ikeda K . Transgenic mice in the study of drug addiction and the effects of psychostimulant drugs. Ann N Y Acad Sci 2010; 1187: 218–246.

    Article  CAS  Google Scholar 

  12. Thomsen M, Hall FS, Uhl GR, Caine SB . Dramatically decreased cocaine self-administration in dopamine but not serotonin transporter knock-out mice. J Neurosci 2009; 29: 1087–1092.

    Article  CAS  Google Scholar 

  13. Rocha BA, Fumagalli F, Gainetdinov RR, Jones SR, Ator R, Giros B et al. Cocaine self-administration in dopamine-transporter knockout mice. Nat Neurosci 1998; 1: 132–137.

    Article  CAS  Google Scholar 

  14. Gainetdinov RR, Wetsel WC, Jones SR, Levin ED, Jaber M, Caron MG . Role of serotonin in the paradoxical calming effect of psychostimulants on hyperactivity. Science 1999; 283: 397–401.

    Article  CAS  Google Scholar 

  15. Spielewoy C, Biala G, Roubert C, Hamon M, Betancur C, Giros B . Hypolocomotor effects of acute and daily d-amphetamine in mice lacking the dopamine transporter. Psychopharmacology (Berl) 2001; 159: 2–9.

    Article  CAS  Google Scholar 

  16. Rothman RB, Baumann MH . Balance between dopamine and serotonin release modulates behavioral effects of amphetamine-type drugs. Ann N Y Acad Sci 2006; 1074: 245–260.

    Article  CAS  Google Scholar 

  17. Chen R, Tilley MR, Wei H, Zhou F, Zhou FM, Ching S et al. Abolished cocaine reward in mice with a cocaine-insensitive dopamine transporter. Proc Natl Acad Sci USA 2006; 103: 9333–9338.

    Article  CAS  Google Scholar 

  18. Tilley MR, Gu HH . The effects of methylphenidate on knockin mice with a methylphenidate-resistant dopamine transporter. J Pharmacol Exp Ther 2008; 327: 554–560.

    Article  CAS  Google Scholar 

  19. Thomsen M, Han DD, Gu HH, Caine SB . Lack of cocaine self-administration in mice expressing a cocaine-insensitive dopamine transporter. J Pharmacol Exp Ther 2009; 331: 204–211.

    Article  CAS  Google Scholar 

  20. Khoshbouei H, Sen N, Guptaroy B, Johnson L, Lund D, Gnegy ME et al. N-terminal phosphorylation of the dopamine transporter is required for amphetamine-induced efflux. PLoS Biol 2004; 2: E78.

    Article  Google Scholar 

  21. Fog JU, Khoshbouei H, Holy M, Owens WA, Vaegter CB, Sen N et al. Calmodulin kinase II interacts with the dopamine transporter C terminus to regulate amphetamine-induced reverse transport. Neuron 2006; 51: 417–429.

    Article  CAS  Google Scholar 

  22. Cremona ML, Matthies HJ, Pau K, Bowton E, Speed N, Lute BJ et al. Flotillin-1 is essential for PKC-triggered endocytosis and membrane microdomain localization of DAT. Nat Neurosci 2011; 14: 469–477.

    Article  CAS  Google Scholar 

  23. Bellen HJ, Tong C, Tsuda H . 100 years of Drosophila research and its impact on vertebrate neuroscience: a history lesson for the future. Nat Rev Neurosci 2010; 11: 514–522.

    Article  CAS  Google Scholar 

  24. Greenspan RJ, Dierick HA . Am not I a fly like thee? From genes in fruit flies to behavior in humans. Hum Mol Genet 2004; 13 (Spec No 2): R267–R273.

    Article  CAS  Google Scholar 

  25. Monastirioti M . Biogenic amine systems in the fruit fly Drosophila melanogaster. Microsc Res Tech 1999; 45: 106–121.

    Article  CAS  Google Scholar 

  26. Blenau W, Baumann A . Molecular and pharmacological properties of insect biogenic amine receptors: lessons from Drosophila melanogaster and Apis mellifera. Arch Insect Biochem Physiol 2001; 48: 13–38.

    Article  CAS  Google Scholar 

  27. Chang HY, Grygoruk A, Brooks ES, Ackerson LC, Maidment NT, Bainton RJ et al. Overexpression of the Drosophila vesicular monoamine transporter increases motor activity and courtship but decreases the behavioral response to cocaine. Mol Psychiatry 2006; 11: 99–113.

    Article  CAS  Google Scholar 

  28. Kume K, Kume S, Park SK, Hirsh J, Jackson FR . Dopamine is a regulator of arousal in the fruit fly. J Neurosci 2005; 25: 7377–7384.

    Article  CAS  Google Scholar 

  29. Chen S, Lee AY, Bowens NM, Huber R, Kravitz EA . Fighting fruit flies: a model system for the study of aggression. Proc Natl Acad Sci USA 2002; 99: 5664–5668.

    Article  CAS  Google Scholar 

  30. Wang L, Anderson DJ . Identification of an aggression-promoting pheromone and its receptor neurons in Drosophila. Nature 2010; 463: 227–231.

    Article  CAS  Google Scholar 

  31. van Swinderen B . Attention in Drosophila. Int Rev Neurobiol 2011; 99: 51–85.

    Article  Google Scholar 

  32. Sitaraman D, Zars M, Laferriere H, Chen YC, Sable-Smith A, Kitamoto T et al. Serotonin is necessary for place memory in Drosophila. Proc Natl Acad Sci USA 2008; 105: 5579–5584.

    Article  CAS  Google Scholar 

  33. Waddell S . Dopamine reveals neural circuit mechanisms of fly memory. Trends Neurosci 2010; 33: 457–464.

    Article  CAS  Google Scholar 

  34. Andretic R, van Swinderen B, Greenspan RJ . Dopaminergic modulation of arousal in Drosophila. Curr Biol 2005; 15: 1165–1175.

    Article  CAS  Google Scholar 

  35. Li H, Chaney S, Roberts IJ, Forte M, Hirsh J . Ectopic G-protein expression in dopamine and serotonin neurons blocks cocaine sensitization in Drosophila melanogaster. Curr Biol 2000; 10: 211–214.

    Article  CAS  Google Scholar 

  36. Bainton RJ, Tsai LT, Singh CM, Moore MS, Neckameyer WS, Heberlein U . Dopamine modulates acute responses to cocaine, nicotine and ethanol in Drosophila. Curr Biol 2000; 10: 187–194.

    Article  CAS  Google Scholar 

  37. McClung C, Hirsh J . Stereotypic behavioral responses to free-base cocaine and the development of behavioral sensitization in Drosophila. Curr Biol 1998; 8: 109–112.

    Article  CAS  Google Scholar 

  38. Andretic R, Kim YC, Jones FS, Han KA, Greenspan RJ . Drosophila D1 dopamine receptor mediates caffeine-induced arousal. Proc Natl Acad Sci USA 2008; 105: 20392–20397.

    Article  CAS  Google Scholar 

  39. Kaun KR, Azanchi R, Maung Z, Hirsh J, Heberlein U . A Drosophila model for alcohol reward. Nat Neurosci 2011; 14: 612–619.

    Article  CAS  Google Scholar 

  40. Maqueira B, Chatwin H, Evans PD . Identification and characterization of a novel family of Drosophila beta-adrenergic-like octopamine G-protein coupled receptors. J Neurochem 2005; 94: 547–560.

    Article  CAS  Google Scholar 

  41. Saraswati S, Fox LE, Soll DR, Wu CF . Tyramine and octopamine have opposite effects on the locomotion of Drosophila larvae. J Neurobiol 2004; 58: 425–441.

    Article  CAS  Google Scholar 

  42. Hardie SL, Zhang JX, Hirsh J . Trace amines differentially regulate adult locomotor activity, cocaine sensitivity, and female fertility in Drosophila melanogaster. Dev Neurobiol 2007; 67: 1396–1405.

    Article  CAS  Google Scholar 

  43. Porzgen P, Park SK, Hirsh J, Sonders MS, Amara SG . The antidepressant-sensitive dopamine transporter in Drosophila melanogaster: a primordial carrier for catecholamines. Mol Pharmacol 2001; 59: 83–95.

    Article  CAS  Google Scholar 

  44. Yoshihara M, Ensminger AW, Littleton JT . Neurobiology and the Drosophila genome. Funct Integr Genomics 2001; 1: 235–240.

    Article  CAS  Google Scholar 

  45. Wang JW, Brent JR, Tomlinson A, Shneider NA, McCabe BD . The ALS-associated proteins FUS and TDP-43 function together to affect Drosophila locomotion and life span. J Clin Invest 2011; 121: 4118–4126.

    Article  CAS  Google Scholar 

  46. Galbiati F, Volonte D, Goltz JS, Steele Z, Sen J, Jurcsak J et al. Identification, sequence and developmental expression of invertebrate flotillins from Drosophila melanogaster. Gene 1998; 210: 229–237.

    Article  CAS  Google Scholar 

  47. Thibault ST, Singer MA, Miyazaki WY, Milash B, Dompe NA, Singh CM et al. A complementary transposon tool kit for Drosophila melanogaster using P and piggyBac. Nat Genet 2004; 36: 283–287.

    Article  CAS  Google Scholar 

  48. Schupbach T, Wieschaus E . Female sterile mutations on the second chromosome of Drosophila melanogaster. II. Mutations blocking oogenesis or altering egg morphology. Genetics 1991; 129: 1119–1136.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Riemensperger T, Isabel G, Coulom H, Neuser K, Seugnet L, Kume K et al. Behavioral consequences of dopamine deficiency in the Drosophila central nervous system. Proc Natl Acad Sci USA 2011; 108: 834–839.

    Article  CAS  Google Scholar 

  50. Dietzl G, Chen D, Schnorrer F, Su KC, Barinova Y, Fellner M et al. A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 2007; 448: 151–156.

    Article  CAS  Google Scholar 

  51. Swierczek NA, Giles AC, Rankin CH, Kerr RA . High-throughput behavioral analysis in C. elegans. Nat Methods 2011; 8: 592–598.

    Article  CAS  Google Scholar 

  52. Carvelli L, Matthies DS, Galli A . Molecular mechanisms of amphetamine actions in Caenorhabditis elegans. Mol Pharmacol 2010; 78: 151–156.

    Article  CAS  Google Scholar 

  53. Wu Z, Sweeney LB, Ayoob JC, Chak K, Andreone BJ, Ohyama T et al. A combinatorial semaphorin code instructs the initial steps of sensory circuit assembly in the Drosophila CNS. Neuron 2011; 70: 281–298.

    Article  CAS  Google Scholar 

  54. Cole SH, Carney GE, McClung CA, Willard SS, Taylor BJ, Hirsh J . Two functional but noncomplementing Drosophila tyrosine decarboxylase genes: distinct roles for neural tyramine and octopamine in female fertility. J Biol Chem 2005; 280: 14948–14955.

    Article  CAS  Google Scholar 

  55. Neckameyer WS, White K . Drosophila tyrosine hydroxylase is encoded by the pale locus. J Neurogenet 1993; 8: 189–199.

    Article  CAS  Google Scholar 

  56. Friggi-Grelin F, Coulom H, Meller M, Gomez D, Hirsh J, Birman S . Targeted gene expression in Drosophila dopaminergic cells using regulatory sequences from tyrosine hydroxylase. J Neurobiol 2003; 54: 618–627.

    Article  CAS  Google Scholar 

  57. Kong EC, Woo K, Li H, Lebestky T, Mayer N, Sniffen MR et al. A pair of dopamine neurons target the D1-like dopamine receptor DopR in the central complex to promote ethanol-stimulated locomotion in Drosophila. PLoS One 2010; 5: e9954.

    Article  Google Scholar 

  58. Mao Z, Davis RL . Eight different types of dopaminergic neurons innervate the Drosophila mushroom body neuropil: anatomical and physiological heterogeneity. Front Neural Circuits 2009; 3: 5.

    Article  Google Scholar 

  59. Bayersdorfer F, Voigt A, Schneuwly S, Botella JA . Dopamine-dependent neurodegeneration in Drosophila models of familial and sporadic Parkinson's disease. Neurobiol Dis 2010; 40: 113–119.

    Article  CAS  Google Scholar 

  60. Neckameyer WS . Multiple roles for dopamine in Drosophila development. Dev Biol 1996; 176: 209–219.

    Article  CAS  Google Scholar 

  61. Roeder T . High-affinity antagonists of the locust neuronal octopamine receptor. Eur J Pharmacol 1990; 191: 221–224.

    Article  CAS  Google Scholar 

  62. Unoki S, Matsumoto Y, Mizunami M . Roles of octopaminergic and dopaminergic neurons in mediating reward and punishment signals in insect visual learning. Eur J Neurosci 2006; 24: 2031–2038.

    Article  Google Scholar 

  63. Crocker A, Sehgal A . Octopamine regulates sleep in Drosophila through protein kinase A-dependent mechanisms. J Neurosci 2008; 28: 9377–9385.

    Article  CAS  Google Scholar 

  64. Barron AB, Maleszka R, Vander Meer RK, Robinson GE . Octopamine modulates honey bee dance behavior. Proc Natl Acad Sci USA 2007; 104: 1703–1707.

    Article  CAS  Google Scholar 

  65. Petrascheck M, Ye X, Buck LB . An antidepressant that extends lifespan in adult Caenorhabditis elegans. Nature 2007; 450: 553–556.

    Article  CAS  Google Scholar 

  66. Foster JD, Adkins SD, Lever JR, Vaughan RA . Phorbol ester induced trafficking-independent regulation and enhanced phosphorylation of the dopamine transporter associated with membrane rafts and cholesterol. J Neurochem 2008; 105: 1683–1699.

    Article  CAS  Google Scholar 

  67. Hoehne M, de Couet HG, Stuermer CA, Fischbach KF . Loss- and gain-of-function analysis of the lipid raft proteins Reggie/Flotillin in Drosophila: they are posttranslationally regulated, and misexpression interferes with wing and eye development. Mol Cell Neurosci 2005; 30: 326–338.

    Article  CAS  Google Scholar 

  68. Morrow IC, Rea S, Martin S, Prior IA, Prohaska R, Hancock JF et al. Flotillin-1/reggie-2 traffics to surface raft domains via a novel golgi-independent pathway. Identification of a novel membrane targeting domain and a role for palmitoylation. J Biol Chem 2002; 277: 48834–48841.

    Article  CAS  Google Scholar 

  69. Khoshbouei H, Wang H, Lechleiter JD, Javitch JA, Galli A . Amphetamine-induced dopamine efflux. A voltage-sensitive and intracellular Na+-dependent mechanism. J Biol Chem 2003; 278: 12070–12077.

    Article  CAS  Google Scholar 

  70. Kahlig KM, Binda F, Khoshbouei H, Blakely RD, McMahon DG, Javitch JA et al. Amphetamine induces dopamine efflux through a dopamine transporter channel. Proc Natl Acad Sci USA 2005; 102: 3495–3500.

    Article  CAS  Google Scholar 

  71. Bi K, Tanaka Y, Coudronniere N, Sugie K, Hong S, van Stipdonk MJ et al. Antigen-induced translocation of PKC-theta to membrane rafts is required for T cell activation. Nat Immunol 2001; 2: 556–563.

    Article  CAS  Google Scholar 

  72. Jayanthi LD, Samuvel DJ, Ramamoorthy S . Regulated internalization and phosphorylation of the native norepinephrine transporter in response to phorbol esters. Evidence for localization in lipid rafts and lipid raft-mediated internalization. J Biol Chem 2004; 279: 19315–19326.

    Article  CAS  Google Scholar 

  73. Weerth SH, Holtzclaw LA, Russell JT . Signaling proteins in raft-like microdomains are essential for Ca2+ wave propagation in glial cells. Cell Calcium 2007; 41: 155–167.

    Article  CAS  Google Scholar 

  74. Tsui J, Inagaki M, Schulman H . Calcium/calmodulin-dependent protein kinase II (CaMKII) localization acts in concert with substrate targeting to create spatial restriction for phosphorylation. J Biol Chem 2005; 280: 9210–9216.

    Article  CAS  Google Scholar 

  75. Suzuki T, Du F, Tian QB, Zhang J, Endo S . Ca2+/calmodulin-dependent protein kinase IIalpha clusters are associated with stable lipid rafts and their formation traps PSD-95. J Neurochem 2008; 104: 596–610.

    CAS  PubMed  Google Scholar 

  76. Johnson LA, Guptaroy B, Lund D, Shamban S, Gnegy ME . Regulation of amphetamine-stimulated dopamine efflux by protein kinase C beta. J Biol Chem 2005; 280: 10914–10919.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by PO1 DA12408 and K05 DA022413 (JAJ), T32 MH018870 (CSK, ZF) and the Lieber Center for Schizophrenia Research and Treatment. We thank Dr Rex Kerr and Nicholas Swierczek for providing us with the MWT software, Dr Marta Zlatic for help in setting up the MWT hardware, Dr Wesley Grueber for sharing his MWT system for the initial MWT/DIAS comparison.

Author Contribution:

ABP, CSK and JAJ designed the experiments, analyzed the data, discussed the results, and wrote the manuscript. ABP generated the hDAT mutant transgenic flies, developed the experimental protocol and implemented hardware setups for the behavioral tests. ABP, CSK and YZ performed the experiments. HY generated the hFlot1 and hFlot1 (C34A) transgenic flies. RF performed the statistical analyses. DSK developed the code that automates Choreography. BDM provided advice on fly genetics and the development of the behavioral assay. ZF, AY and BDM discussed the results and commented on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J A Javitch.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pizzo, A., Karam, C., Zhang, Y. et al. The membrane raft protein Flotillin-1 is essential in dopamine neurons for amphetamine-induced behavior in Drosophila. Mol Psychiatry 18, 824–833 (2013). https://doi.org/10.1038/mp.2012.82

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2012.82

Keywords

This article is cited by

Search

Quick links