Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Measuring endogenous changes in serotonergic neurotransmission in humans: a [11C]CUMI-101 PET challenge study

Abstract

Serotonin (5-HT) neurotransmission is implicated in cognitive and emotional processes and a number of neuropsychiatric disorders. The use of positron emission tomography (PET) to measure ligand displacement has allowed estimation of endogenous dopamine release in the human brain; however, applying this methodology to assess central 5-HT release has proved more challenging. The aim of this study was to assess the sensitivity of a highly selective 5-HT1A partial agonist radioligand [11C]CUMI-101 to changes in endogenous 5-HT levels induced by an intravenous challenge with the selective 5-HT re-uptake inhibitor (SSRI), citalopram, in healthy human participants. We studied 15 healthy participants who underwent PET scanning in conjunction with [11C]CUMI-101 after receiving an intravenous infusion of citalopram 10 mg or placebo in a double-blind, crossover, randomized design. Regional estimates of binding potential (BPND) were obtained by calculating total volumes of distribution (VT) for presynaptic dorsal raphe nucleus (DRN) and postsynaptic cortical regions. Relative to placebo, citalopram infusion significantly increased [11C]CUMI-101 BPND at postsynaptic 5-HT1A receptors in several cortical regions, but there was no change in binding at 5-HT1A autoreceptors in the DRN. Across the postsynaptic brain regions, citalopram treatment induced a mean 7% in [11C]CUMI-101 BPND (placebo 1.3 (0.2); citalopram 1.4 (0.2); paired t-test P=0.003). The observed increase in postsynaptic [11C]CUMI-101 availability identified following acute citalopram administration could be attributable to a decrease in endogenous 5-HT availability in cortical terminal regions, consistent with preclinical animal studies, in which acute administration of SSRIs decreases DRN cell firing through activation of 5-HT1A autoreceptors to reduce 5-HT levels in postsynaptic regions. We conclude that [11C]CUMI-101 may be sensitive to changes in endogenous 5-HT release in humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Laruelle M, Abi-Dargham A, van Dyck CH, Gil R, D'Souza CD, Erdos J et al. Single photon emission computerized tomography imaging of amphetamine-induced dopamine release in drug-free schizophrenic subjects. Proc Natl Acad Sci USA 1996; 93: 9235–9240.

    Article  CAS  Google Scholar 

  2. Breier A, Su TP, Saunders R, Carson RE, Kolachana BS, de Bartolomeis A et al. Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: evidence from a novel positron emission tomography method. Proc Natl Acad Sci USA 1997; 94: 2569–2574.

    Article  CAS  Google Scholar 

  3. Egerton A, Mehta MA, Montgomery AJ, Lappin JM, Howes OD, Reeves SJ et al. The dopaminergic basis of human behaviors: a review of molecular imaging studies. Neurosci Biobehav Rev 2009; 33: 1109–1132.

    Article  CAS  Google Scholar 

  4. Brooks DJ . PET studies on the function of dopamine in health and Parkinson's disease. Ann N Y Acad Sci 2003; 991: 22–35.

    Article  CAS  Google Scholar 

  5. Paterson LM, Tyacke RJ, Nutt DJ, Knudsen GM . Measuring endogenous 5-HT release by emission tomography: promises and pitfalls. J Cereb Blood Flow Metab 2010; 30: 1682–1706.

    Article  CAS  Google Scholar 

  6. Sibon I, Benkelfat C, Gravel P, Aznavour N, Costes N, Mzengeza S et al. Decreased [18F]MPPF binding potential in the dorsal raphe nucleus after a single oral dose of fluoxetine: a positron-emission tomography study in healthy volunteers. Biol Psychiatry 2008; 63: 1135–1140.

    Article  CAS  Google Scholar 

  7. Malagie I, Trillat AC, Jacquot C, Gardier AM . Effects of acute fluoxetine on extracellular serotonin levels in the raphe: an in vivo microdialysis study. Eur J Pharmacol 1995; 286: 213–217.

    Article  CAS  Google Scholar 

  8. Gartside SE, Umbers V, Hajos M, Sharp T . Interaction between a selective 5-HT1A receptor antagonist and an SSRI in vivo: effects on 5-HT cell firing and extracellular 5-HT. Br J Pharmacol 1995; 115: 1064–1070.

    Article  CAS  Google Scholar 

  9. Artigas F, Romero L, de Montigny C, Blier P . Acceleration of the effect of selected antidepressant drugs in major depression by 5-HT1A antagonists. Trends Neurosci 1996; 19: 378–383.

    Article  CAS  Google Scholar 

  10. Bel N, Artigas F . Fluvoxamine preferentially increases extracellular 5-hydroxytryptamine in the raphe nuclei: an in vivo microdialysis study. Eur J Pharmacol 1992; 229: 101–103.

    Article  CAS  Google Scholar 

  11. Barnes NM, Sharp T . A review of central 5-HT receptors and their function. Neuropharmacology 1999; 38: 1083–1152.

    Article  CAS  Google Scholar 

  12. Gartside SE, Clifford EM, Cowen PJ, Sharp T . Effects of (−)-tertatolol, (−)-penbutolol and (+/−)-pindolol in combination with paroxetine on presynaptic 5-HT function: an in vivo microdialysis and electrophysiological study. Br J Pharmacol 1999; 127: 145–152.

    Article  CAS  Google Scholar 

  13. Romero L, Artigas F . Preferential potentiation of the effects of serotonin uptake inhibitors by 5-HT1A receptor antagonists in the dorsal raphe pathway: role of somatodendritic autoreceptors. J Neurochem 1997; 68: 2593–2603.

    Article  CAS  Google Scholar 

  14. Hjorth S, Auerbach SB . 5-HT1A autoreceptors and the mode of action of selective serotonin reuptake inhibitors (SSRI). Behav Brain Res 1996; 73: 281–283.

    Article  CAS  Google Scholar 

  15. Invernizzi R, Belli S, Samanin R . Citalopram's ability to increase the extracellular concentrations of serotonin in the dorsal raphe prevents the drug's effect in the frontal cortex. Brain Res 1992; 584: 322–324.

    Article  CAS  Google Scholar 

  16. de Montigny C, Blier P, Chaput Y . Electrophysiologically-identified serotonin receptors in the rat CNS. Effect of antidepressant treatment. Neuropharmacology 1984; 23: 1511–1520.

    Article  CAS  Google Scholar 

  17. Chaput Y, de Montigny C, Blier P . Effects of a selective 5-HT reuptake blocker, citalopram, on the sensitivity of 5-HT autoreceptors: electrophysiological studies in the rat brain. Naunyn Schmiedebergs Arch Pharmacol 1986; 333: 342–348.

    Article  CAS  Google Scholar 

  18. Adell A, Artigas F . Effects of clomipramine on extracellular serotonin in the rat frontal cortex. Adv Exp Med Biol 1991; 294: 451–454.

    Article  CAS  Google Scholar 

  19. Giovacchini G, Lang L, Ma Y, Herscovitch P, Eckelman WC, Carson RE . Differential effects of paroxetine on raphe and cortical 5-HT1A binding: a PET study in monkeys. NeuroImage 2005; 28: 238–248.

    Article  Google Scholar 

  20. Auerbach SB, Lundberg JF, Hjorth S . Differential inhibition of serotonin release by 5-HT and NA reuptake blockers after systemic administration. Neuropharmacology 1995; 34: 89–96.

    Article  CAS  Google Scholar 

  21. Kumar JS, Prabhakaran J, Majo VJ, Milak MS, Hsiung SC, Tamir H et al. Synthesis and in vivo evaluation of a novel 5-HT1A receptor agonist radioligand [O-methyl-11C]2-(4-(4-(2-methoxyphenyl)piperazin-1-yl)butyl)-4-methyl-1,2,4-triazine-3,5(2H,4H)dione in nonhuman primates. Eur J Nucl Med Mol Imag 2007; 34: 1050–1060.

    Article  CAS  Google Scholar 

  22. Milak MS, Severance AJ, Prabhakaran J, Kumar JS, Majo VJ, Ogden RT et al. In vivo serotonin-sensitive binding of [11C]CUMI-101: a serotonin 1A receptor agonist positron emission tomography radiotracer. J Cereb Blood Flow Metab 2011; 31: 243–249.

    Article  CAS  Google Scholar 

  23. Milak MS, DeLorenzo C, Zanderigo F, Prabhakaran J, Kumar JS, Majo VJ et al. In vivo quantification of human serotonin 1A receptor using 11C-CUMI-101, an agonist PET radiotracer. J Nucl Med 2010; 51: 1892–1900.

    Article  Google Scholar 

  24. Prabhakaran J, Parsey RV, Majo VJ, Hsiung SC, Milak MS, Tamir H et al. Synthesis, in vitro and in vivo evaluation of [O-methyl-11C] 2-{4-[4-(3-methoxyphenyl)piperazin-1-yl]-butyl}-4-methyl-2H-[1,2,4]-triazine-3,5-dione: a novel agonist 5-HT1A receptor PET ligand. Bioorg Med Chem Lett 2006; 16: 2101–2104.

    Article  CAS  Google Scholar 

  25. Spitzer RL, Williams JB, Gibbon M, First MB . Structured Clinical Interview for the DSM-IV (SCID-I/P). American Psychiatric Press: Washington, 2004.

    Google Scholar 

  26. Hinz R, Selvaraj S, Murthy NV, Bhagwagar Z, Taylor M, Cowen PJ et al. Effects of citalopram infusion on the serotonin transporter binding of [11C]DASB in healthy controls. J Cereb Blood Flow Metab 2008; 28: 1478–1490.

    Article  CAS  Google Scholar 

  27. Attenburrow MJ, Mitter PR, Whale R, Terao T, Cowen PJ . Low-dose citalopram as a 5-HT neuroendocrine probe. Psychopharmacology (Berl) 2001; 155: 323–326.

    Article  CAS  Google Scholar 

  28. Kemp BJ, Kim C, Williams JJ, Ganin A, Lowe VJ . NEMA NU 2-2001 performance measurements of an LYSO-based PET/CT system in 2D and 3D acquisition modes. J Nucl Med 2006; 47: 1960–1967.

    PubMed  Google Scholar 

  29. Turkheimer FE, Brett M, Visvikis D, Cunningham VJ . Multiresolution analysis of emission tomography images in the wavelet domain. J Cereb Blood Flow Metab 1999; 19: 1189–1208.

    Article  CAS  Google Scholar 

  30. Studholme C, Hill DL, Hawkes DJ . Automated three-dimensional registration of magnetic resonance and positron emission tomography brain images by multiresolution optimization of voxel similarity measures. Med Phys 1997; 24: 25–35.

    Article  CAS  Google Scholar 

  31. Hammers A, Allom R, Koepp MJ, Free SL, Myers R, Lemieux L et al. Three-dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe. Hum Brain Mapp 2003; 19: 224–247.

    Article  Google Scholar 

  32. Selvaraj S, Murthy NV, Bhagwagar Z, Bose SK, Hinz R, Grasby PM et al. Diminished brain 5-HT transporter binding in major depression: a positron emission tomography study with [11C]DASB. Psychopharmacology (Berl) 2011; 213: 555–562.

    Article  CAS  Google Scholar 

  33. Milak MS, Severance AJ, Ogden RT, Prabhakaran J, Kumar JS, Majo VJ et al. Modeling considerations for 11C-CUMI-101, an agonist radiotracer for imaging serotonin 1A receptor in vivo with PET. J Nucl Med 2008; 49: 587–596.

    Article  CAS  Google Scholar 

  34. Logan J, Fowler JS, Volkow ND, Wolf AP, Dewey SL, Schlyer DJ et al. Graphical analysis of reversible radioligand binding from time-activity measurements applied to [N-11C-methyl]-(−)-cocaine PET studies in human subjects. J Cereb Blood Flow Metab 1990; 10: 740–747.

    Article  CAS  Google Scholar 

  35. Lassen NA, Bartenstein PA, Lammertsma AA, Prevett MC, Turton DR, Luthra SK et al. Benzodiazepine receptor quantification in vivo in humans using [11C]flumazenil and PET: application of the steady-state principle. J Cereb Blood Flow Metab 1995; 15: 152–165.

    Article  CAS  Google Scholar 

  36. Cunningham VJ, Rabiner EA, Slifstein M, Laruelle M, Gunn RN . Measuring drug occupancy in the absence of a reference region: the Lassen plot re-visited. J Cereb Blood Flow Metab 2010; 30: 46–50.

    Article  Google Scholar 

  37. Turkheimer FE, Selvaraj S, Hinz R, Murthy V, Bhagwagar Z, Grasby P et al. Quantification of ligand PET studies using a reference region with a displaceable fraction: application to occupancy studies with [(11)C]-DASB as an example. J Cereb Blood Flow Metab 2012; 32: 70–80.

    Article  CAS  Google Scholar 

  38. Innis RB, Cunningham VJ, Delforge J, Fujita M, Gjedde A, Gunn RN et al. Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab 2007; 27: 1533–1539.

    CAS  Google Scholar 

  39. Gunn RN, Sargent PA, Bench CJ, Rabiner EA, Osman S, Pike VW et al. Tracer kinetic modeling of the 5-HT1A receptor ligand [carbonyl-11C]WAY-100635 for PET. NeuroImage 1998; 8: 426–440.

    Article  CAS  Google Scholar 

  40. Fuller RW . Uptake inhibitors increase extracellular serotonin concentration measured by brain microdialysis. Life Sci 1994; 55: 163–167.

    Article  CAS  Google Scholar 

  41. Kish SJ, Furukawa Y, Chang LJ, Tong J, Ginovart N, Wilson A et al. Regional distribution of serotonin transporter protein in postmortem human brain: is the cerebellum a SERT-free brain region? Nucl Med Biol 2005; 32: 123–128.

    Article  CAS  Google Scholar 

  42. Varnas K, Halldin C, Hall H . Autoradiographic distribution of serotonin transporters and receptor subtypes in human brain. Hum Brain Mapp 2004; 22: 246–260.

    Article  Google Scholar 

  43. Hornung JP . The human raphe nuclei and the serotonergic system. J Chem Neuroanat 2003; 26: 331–343.

    Article  CAS  Google Scholar 

  44. Blier P, Serrano A, Scatton B . Differential responsiveness of the rat dorsal and median raphe 5-HT systems to 5-HT1 receptor agonists and p-chloroamphetamine. Synapse 1990; 5: 120–133.

    Article  CAS  Google Scholar 

  45. Miller JM, Brennan KG, Ogden TR, Oquendo MA, Sullivan GM, Mann JJ et al. Elevated serotonin 1A binding in remitted major depressive disorder: evidence for a trait biological abnormality. Neuropsychopharmacology 2009; 34: 2275–2284.

    Article  CAS  Google Scholar 

  46. Palner M, Underwood MD, Kumar DJ, Arango V, Knudsen GM, John Mann J et al. Ex vivo evaluation of the serotonin 1A receptor partial agonist [(3)H]CUMI-101 in awake rats. Synapse 2011; 65: 715–723.

    Article  CAS  Google Scholar 

  47. Kumar JS, Prabhakaran J, Majo VJ, Milak MS, Hsiung SC, Tamir H et al. Synthesis and in vivo evaluation of a novel 5-HT1A receptor agonist radioligand [O-methyl-11C]2-(4-(4-(2-methoxyphenyl)piperazin-1-yl)butyl)-4-methyl-1,2,4-triazine-3,5(2H,4H)dione in nonhuman primates. Eur J Nucl Med Mol Imag 2007; 34: 1050–1060.

    Article  CAS  Google Scholar 

  48. Liow J-S, Lu S, Zoghbi S, Shrestha S, Gladding R, Morse C et al. Selectivity in rodents and monkeys of 11C-CUMI-101, an agonist radioligand for serotonin 5-HT1A receptors. J Nucl Med Meet Abstr 2010; 51: 164–16.

    Article  Google Scholar 

  49. Hendry N, Christie I, Rabiner EA, Laruelle M, Watson J . In vitro assessment of the agonist properties of the novel 5-HT1A receptor ligand, CUMI-101 (MMP), in rat brain tissue. Nucl Med Biol 2011; 38: 273–277.

    Article  CAS  Google Scholar 

  50. Derry C, Benjamin C, Bladin P, le Bars D, Tochon-Danguy H, Berkovic SF et al. Increased serotonin receptor availability in human sleep: evidence from an [18F]MPPF PET study in narcolepsy. NeuroI'mage 2006; 30: 341–348.

    Article  Google Scholar 

  51. Jick H, Kaye JA, Jick SS . Antidepressants and the risk of suicidal behaviors. JAMA 2004; 292: 338–343.

    Article  CAS  Google Scholar 

  52. Chamberlain SR, Muller U, Blackwell AD, Clark L, Robbins TW, Sahakian BJ . Neurochemical modulation of response inhibition and probabilistic learning in humans. Science 2006; 311: 861–863.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the Medical Research Council, UK. We thank the staff at Hammersmith Imanet (Andrew Blyth, Hope McDevitt, Andreanna Williams, Safiye Osman and Noora Ali) for the technical expertise they provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Selvaraj.

Ethics declarations

Competing interests

Sudhakar Selvaraj, Federico Turkheimer, Lula Rosso, Elias Mouchlianitis, Paul Faulkner, Jonathan Roiser, Philip McGuire and Oliver Howes report no competing interests. Philip Cowen has been a member of advisory boards of Eli Lilly, Servier and Lundbeck and has been a paid lecturer for Eli Lilly, Servier, Lundbeck and GlaxoSmithKline.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Selvaraj, S., Turkheimer, F., Rosso, L. et al. Measuring endogenous changes in serotonergic neurotransmission in humans: a [11C]CUMI-101 PET challenge study. Mol Psychiatry 17, 1254–1260 (2012). https://doi.org/10.1038/mp.2012.78

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2012.78

Keywords

This article is cited by

Search

Quick links