Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A new perspective for schizophrenia: TAAR1 agonists reveal antipsychotic- and antidepressant-like activity, improve cognition and control body weight

Abstract

Schizophrenia is a chronic, severe and highly complex mental illness. Current treatments manage the positive symptoms, yet have minimal effects on the negative and cognitive symptoms, two prominent features of the disease with critical impact on the long-term morbidity. In addition, antipsychotic treatments trigger serious side effects that precipitate treatment discontinuation. Here, we show that activation of the trace amine-associated receptor 1 (TAAR1), a modulator of monoaminergic neurotransmission, represents a novel therapeutic option. In rodents, activation of TAAR1 by two novel and pharmacologically distinct compounds, the full agonist RO5256390 and the partial agonist RO5263397, blocks psychostimulant-induced hyperactivity and produces a brain activation pattern reminiscent of the antipsychotic drug olanzapine, suggesting antipsychotic-like properties. TAAR1 agonists do not induce catalepsy or weight gain; RO5263397 even reduced haloperidol-induced catalepsy and prevented olanzapine from increasing body weight and fat accumulation. Finally, TAAR1 activation promotes vigilance in rats and shows pro-cognitive and antidepressant-like properties in rodent and primate models. These data suggest that TAAR1 agonists may provide a novel and differentiated treatment of schizophrenia as compared with current medication standards: TAAR1 agonists may improve not only the positive symptoms but also the negative symptoms and cognitive deficits, without causing adverse effects such as motor impairments or weight gain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Insel TR . Rethinking schizophrenia. Nature 2010; 468: 187–193.

    Article  CAS  PubMed  Google Scholar 

  2. Lewis DA, Lieberman JA . Catching up on schizophrenia: natural history and neurobiology. Neuron 2000; 28: 325–334.

    Article  CAS  PubMed  Google Scholar 

  3. Carpenter Jr WT, Buchanan RW . Schizophrenia. N Engl J Med 1994; 330: 681–690.

    Article  PubMed  Google Scholar 

  4. Abi-Dargham A, Moore H . Prefrontal DA transmission at D1 receptors and the pathology of schizophrenia. Neuroscientist 2003; 9: 404–416.

    Article  CAS  PubMed  Google Scholar 

  5. Carlsson A, Waters N, Holm-Waters S, Tedroff J, Nilsson M, Carlsson ML . Interactions between monoamines, glutamate, and GABA in schizophrenia: new evidence. Annu Rev Pharmacol Toxicol 2001; 41: 237–260.

    Article  CAS  PubMed  Google Scholar 

  6. Heinz A, Romero B, Gallinat J, Juckel G, Weinberger DR . Molecular brain imaging and the neurobiology and genetics of schizophrenia. Pharmacopsychiatry 2003; 36 Suppl 3: S152–S157.

    CAS  PubMed  Google Scholar 

  7. Webber MA, Marder SR . Better pharmacotherapy for schizophrenia: what does the future hold? Curr Psychiatry Rep 2008; 10: 352–358.

    Article  PubMed  Google Scholar 

  8. Abi-Dargham A, Laruelle M . Mechanisms of action of second generation antipsychotic drugs in schizophrenia: insights from brain imaging studies. Eur Psychiatry 2005; 20: 15–27.

    Article  PubMed  Google Scholar 

  9. Allison DB, Casey DE . Antipsychotic-induced weight gain: a review of the literature. J Clin Psychiatry 2001; 62 Suppl 7: 22–31.

    CAS  PubMed  Google Scholar 

  10. Allison DB, Mackell JA, McDonnell DD . The impact of weight gain on quality of life among persons with schizophrenia. Psychiatr Serv 2003; 54: 565–567.

    Article  PubMed  Google Scholar 

  11. Baptista T, Zarate J, Joober R, Colasante C, Beaulieu S, Paez X et al. Drug induced weight gain, an impediment to successful pharmacotherapy: focus on antipsychotics. Curr Drug Targets 2004; 5: 279–299.

    Article  CAS  PubMed  Google Scholar 

  12. Casey DE, Haupt DW, Newcomer JW, Henderson DC, Sernyak MJ, Davidson M et al. Antipsychotic-induced weight gain and metabolic abnormalities: implications for increased mortality in patients with schizophrenia. J Clin Psychiatry 2004; 65 Suppl 7: 4–18; quiz 19–20.

    PubMed  Google Scholar 

  13. Carpenter WT, Koenig JI . The evolution of drug development in schizophrenia: past issues and future opportunities. Neuropsychopharmacology 2008; 33: 2061–2079.

    Article  CAS  PubMed  Google Scholar 

  14. Kirkpatrick B, Fenton WS, Carpenter Jr WT, Marder SR . The NIMH-MATRICS consensus statement on negative symptoms. Schizophr Bull 2006; 32: 214–219.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Green MF, Nuechterlein KH, Gold JM, Barch DM, Cohen J, Essock S et al. Approaching a consensus cognitive battery for clinical trials in schizophrenia: the NIMH-MATRICS conference to select cognitive domains and test criteria. Biol Psychiatry 2004; 56: 301–307.

    Article  PubMed  Google Scholar 

  16. Borowsky B, Adham N, Jones KA, Raddatz R, Artymyshyn R, Ogozalek KL et al. Trace amines: identification of a family of mammalian G protein-coupled receptors. Proc Natl Acad Sci USA 2001; 98: 8966–8971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bunzow JR, Sonders MS, Arttamangkul S, Harrison LM, Zhang G, Quigley DI et al. Amphetamine, 3,4-methylenedioxymethamphetamine, lysergic acid diethylamide, and metabolites of the catecholamine neurotransmitters are agonists of a rat trace amine receptor. Mol Pharmacol 2001; 60: 1181–1188.

    Article  CAS  PubMed  Google Scholar 

  18. Revel FG, Moreau JL, Gainetdinov RR, Bradaia A, Sotnikova TD, Mory R et al. TAAR1 activation modulates monoaminergic neurotransmission, preventing hyperdopaminergic and hypoglutamatergic activity. Proc Natl Acad Sci USA 2011; 108: 8485–8490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Grandy DK . Trace amine-associated receptor 1-family archetype or iconoclast? Pharmacol Ther 2007; 116: 355–390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lindemann L, Hoener MC . A renaissance in trace amines inspired by a novel GPCR family. Trends Pharmacol Sci 2005; 26: 274–281.

    Article  CAS  PubMed  Google Scholar 

  21. Miller GM . The emerging role of trace amine-associated receptor 1 in the functional regulation of monoamine transporters and dopaminergic activity. J Neurochem 2011; 116: 164–176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Narang D, Tomlinson S, Holt A, Mousseau DD, Baker GB . Trace amines and their relevance to psychiatry and neurology: a brief overview. Bull Clin Psychopharmacol 2011; 21: 73–79.

    Article  Google Scholar 

  23. Sotnikova TD, Caron MG, Gainetdinov RR . Trace amine-associated receptors as emerging therapeutic targets. Mol Pharmacol 2009; 76: 229–235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Burchett SA, Hicks TP . The mysterious trace amines: protean neuromodulators of synaptic transmission in mammalian brain. Prog Neurobiol 2006; 79: 223–246.

    Article  CAS  PubMed  Google Scholar 

  25. Davis BA . Biogenic amines and their metabolites in body fluids of normal, psychiatric and neurological subjects. J Chromatogr 1989; 466: 89–218.

    Article  CAS  PubMed  Google Scholar 

  26. Berry MD . The potential of trace amines and their receptors for treating neurological and psychiatric diseases. Rev Recent Clin Trials 2007; 2: 3–19.

    Article  CAS  PubMed  Google Scholar 

  27. Potkin SG, Karoum F, Chuang LW, Cannon-Spoor HE, Phillips I, Wyatt RJ . Phenylethylamine in paranoid chronic schizophrenia. Science 1979; 206: 470–471.

    Article  CAS  PubMed  Google Scholar 

  28. O′Reilly RL, Davis BA . Phenylethylamine and schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 1994; 18: 63–75.

    Article  PubMed  Google Scholar 

  29. Sandler M, Reynolds GP . Does phenylethylamine cause schizophrenia? Lancet 1976; 1: 70–71.

    Article  CAS  PubMed  Google Scholar 

  30. Sullivan JL, Coffey CE, Basuk B, Cavenar JO, Maltbie AA, Zung WW . Urinary tryptamine excretion in chronic schizophrenics with low platelet MAO activity. Biol Psychiatry 1980; 15: 113–120.

    CAS  PubMed  Google Scholar 

  31. Boulton AA . Some aspects of basic psychopharmacology: the trace amines. Prog Neuropsychopharmacol Biol Psychiatry 1982; 6: 563–570.

    Article  CAS  PubMed  Google Scholar 

  32. Lindemann L, Meyer CA, Jeanneau K, Bradaia A, Ozmen L, Bluethmann H et al. Trace amine-associated receptor 1 modulates dopaminergic activity. J Pharmacol Exp Ther 2008; 324: 948–956.

    Article  CAS  PubMed  Google Scholar 

  33. Wolinsky TD, Swanson CJ, Smith KE, Zhong H, Borowsky B, Seeman P et al. The trace amine 1 receptor knockout mouse: an animal model with relevance to schizophrenia. Genes Brain Behav 2007; 6: 628–639.

    Article  CAS  PubMed  Google Scholar 

  34. Bradaia A, Trube G, Stalder H, Norcross RD, Ozmen L, Wettstein JG et al. The selective antagonist EPPTB reveals TAAR1-mediated regulatory mechanisms in dopaminergic neurons of the mesolimbic system. Proc Natl Acad Sci USA 2009; 106: 20081–20086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Stalder H, Hoener MC, Norcross RD . Selective antagonists of mouse trace amine-associated receptor 1 (mTAAR1): discovery of EPPTB (RO5212773). Bioorg Med Chem Lett 2011; 21: 1227–1231.

    Article  CAS  PubMed  Google Scholar 

  36. Espinoza S, Salahpour A, Masri B, Sotnikova TD, Messa M, Barak LS et al. Functional interaction between trace amine-associated receptor 1 and dopamine D2 receptor. Mol Pharmacol 2011; 80: 416–425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kunnecke B, Verry P, Benardeau A, von Kienlin M . Quantitative body composition analysis in awake mice and rats by magnetic resonance relaxometry. Obes Res 2004; 12: 1604–1615.

    Article  PubMed  Google Scholar 

  38. Ballard TM, Knoflach F, Prinssen E, Borroni E, Vivian JA, Basile J et al. RO4938581, a novel cognitive enhancer acting at GABAA alpha5 subunit-containing receptors. Psychopharmacology 2009; 202: 207–223.

    Article  CAS  PubMed  Google Scholar 

  39. Rutten K, Basile JL, Prickaerts J, Blokland A, Vivian JA . Selective PDE inhibitors rolipram and sildenafil improve object retrieval performance in adult cynomolgus macaques. Psychopharmacology 2008; 196: 643–648.

    Article  CAS  PubMed  Google Scholar 

  40. Wallace TL, Callahan PM, Tehim A, Bertrand D, Tombaugh G, Wang S et al. RG3487, a novel nicotinic alpha7 receptor partial agonist, improves cognition and sensorimotor gating in rodents. J Pharmacol Exp Ther 2011; 336: 242–253.

    Article  CAS  PubMed  Google Scholar 

  41. Rodefer JS, Nguyen TN, Karlsson JJ, Arnt J . Reversal of subchronic PCP-induced deficits in attentional set shifting in rats by sertindole and a 5-HT6 receptor antagonist: comparison among antipsychotics. Neuropsychopharmacology 2008; 33: 2657–2666.

    Article  CAS  PubMed  Google Scholar 

  42. Morairty SR, Hedley L, Flores J, Martin R, Kilduff TS . Selective 5HT2A and 5HT6 receptor antagonists promote sleep in rats. Sleep 2008; 31: 34–44.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lindemann L, Ebeling M, Kratochwil NA, Bunzow JR, Grandy DK, Hoener MC . Trace amine-associated receptors form structurally and functionally distinct subfamilies of novel G protein-coupled receptors. Genomics 2005; 85: 372–385.

    Article  CAS  PubMed  Google Scholar 

  44. Alberati D, Moreau JL, Mory R, Pinard E, Wettstein JG . Pharmacological evaluation of a novel assay for detecting glycine transporter 1 inhibitors and their antipsychotic potential. Pharmacol Biochem Behav 2010; 97: 185–191.

    Article  CAS  PubMed  Google Scholar 

  45. Large CH . Do NMDA receptor antagonist models of schizophrenia predict the clinical efficacy of antipsychotic drugs? J Psychopharmacol 2007; 21: 283–301.

    Article  CAS  PubMed  Google Scholar 

  46. Bruns A, Kunnecke B, Risterucci C, Moreau JL, von Kienlin M . Validation of cerebral blood perfusion imaging as a modality for quantitative pharmacological MRI in rats. Magn Reson Med 2009; 61: 1451–1458.

    Article  PubMed  Google Scholar 

  47. Risterucci C, Jeanneau K, Schoppenthau S, Bielser T, Kunnecke B, von Kienlin M et al. Functional magnetic resonance imaging reveals similar brain activity changes in two different animal models of schizophrenia. Psychopharmacology 2005; 180: 724–734.

    Article  CAS  PubMed  Google Scholar 

  48. Boyda HN, Tse L, Procyshyn RM, Honer WG, Barr AM . Preclinical models of antipsychotic drug-induced metabolic side effects. Trends Pharmacol Sci 2010; 31: 484–497.

    Article  CAS  PubMed  Google Scholar 

  49. Regard JB, Kataoka H, Cano DA, Camerer E, Yin L, Zheng YW et al. Probing cell type-specific functions of Gi in vivo identifies GPCR regulators of insulin secretion. J Clin Invest 2007; 117: 4034–4043.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Regard JB, Sato IT, Coughlin SR . Anatomical profiling of G protein-coupled receptor expression. Cell 2008; 135: 561–571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ito J, Ito M, Nambu H, Fujikawa T, Tanaka K, Iwaasa H et al. Anatomical and histological profiling of orphan G-protein-coupled receptor expression in gastrointestinal tract of C57BL/6J mice. Cell Tissue Res 2009; 338: 257–269.

    Article  CAS  PubMed  Google Scholar 

  52. Kim DH, Stahl SM . Antipsychotic drug development. Curr Top Behav Neurosci 2010; 4: 123–139.

    Article  CAS  PubMed  Google Scholar 

  53. Casey DE . Tardive dyskinesia and atypical antipsychotic drugs. Schizophr Res 1999; 35: S61–S66.

    Article  PubMed  Google Scholar 

  54. Sanberg PR, Bunsey MD, Giordano M, Norman AB . The catalepsy test: its ups and downs. Behav Neurosci 1988; 102: 748–759.

    Article  CAS  PubMed  Google Scholar 

  55. Lucas G, Bonhomme N, De Deurwaerdere P, Le Moal M, Spampinato U . 8-OH-DPAT, a 5-HT1A agonist and ritanserin, a 5-HT2A/C antagonist, reverse haloperidol-induced catalepsy in rats independently of striatal dopamine release. Psychopharmacology 1997; 131: 57–63.

    Article  CAS  PubMed  Google Scholar 

  56. Jentsch JD, Taylor JR, Elsworth JD, Redmond DE, Jr . Roth RH##Altered frontal cortical dopaminergic transmission in monkeys after subchronic phencyclidine exposure: involvement in frontostriatal cognitive deficits. Neurosci 1999; 90: 823–832.

    Article  CAS  Google Scholar 

  57. Rodefer JS, Murphy ER, Baxter MG . PDE10A inhibition reverses subchronic PCP-induced deficits in attentional set-shifting in rats. Eur J Neurosci 2005; 21: 1070–1076.

    Article  PubMed  Google Scholar 

  58. Cryan JF, Mombereau C . In search of a depressed mouse: utility of models for studying depression-related behavior in genetically modified mice. Mol Psychiatry 2004; 9: 326–357.

    Article  CAS  PubMed  Google Scholar 

  59. O′Donnell JM, Marek GJ, Seiden LS . Antidepressant effects assessed using behavior maintained under a differential-reinforcement-of-low-rate (DRL) operant schedule. Neurosci Biobehav Rev 2005; 29: 785–798.

    Article  PubMed  Google Scholar 

  60. Datta S, Maclean RR . Neurobiological mechanisms for the regulation of mammalian sleep-wake behavior: reinterpretation of historical evidence and inclusion of contemporary cellular and molecular evidence. Neurosci Biobehav Rev 2007; 31: 775–824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Smith KL, Jessop DS, Finn DP . Modulation of stress by imidazoline binding sites: implications for psychiatric disorders. Stress 2009; 12: 97–114.

    Article  CAS  PubMed  Google Scholar 

  62. Gainetdinov RR, Mohn AR, Caron MG . Genetic animal models: focus on schizophrenia. Trends Neurosci 2001; 24: 527–533.

    Article  CAS  PubMed  Google Scholar 

  63. Berry MD, Juorio AV, Li XM, Boulton AA . Aromatic L-amino acid decarboxylase: a neglected and misunderstood enzyme. Neurochem Res 1996; 21: 1075–1087.

    Article  CAS  PubMed  Google Scholar 

  64. Hadjiconstantinou M, Neff NH . Enhancing aromatic L-amino acid decarboxylase activity: implications for L-DOPA treatment in Parkinson's disease. CNS Neurosci Ther 2008; 14: 340–351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Nordquist RE, Risterucci C, Moreau JL, von Kienlin M, Kunnecke B, Maco M et al. Effects of aripiprazole/OPC-14597 on motor activity, pharmacological models of psychosis, and brain activity in rats. Neuropharmacology 2008; 54: 405–416.

    Article  CAS  PubMed  Google Scholar 

  66. Karmacharya R, Lynn SK, Demarco S, Ortiz A, Wang X, Lundy MY et al. Behavioral effects of clozapine: involvement of trace amine pathways in C. elegans and M. musculus. Brain Res 2011; 1393: 91–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Geyer MA, Krebs-Thomson K, Braff DL, Swerdlow NR . Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: a decade in review. Psychopharmacology 2001; 156: 117–154.

    Article  CAS  PubMed  Google Scholar 

  68. Bilder RM, Goldman RS, Volavka J, Czobor P, Hoptman M, Sheitman B et al. Neurocognitive effects of clozapine, olanzapine, risperidone, and haloperidol in patients with chronic schizophrenia or schizoaffective disorder. Am J Psychiatry 2002; 159: 1018–1028.

    Article  PubMed  Google Scholar 

  69. Gessa GL, Devoto P, Diana M, Flore G, Melis M, Pistis M . Dissociation of haloperidol, clozapine, and olanzapine effects on electrical activity of mesocortical dopamine neurons and dopamine release in the prefrontal cortex. Neuropsychopharmacology 2000; 22: 642–649.

    Article  CAS  PubMed  Google Scholar 

  70. Robertson GS, Matsumura H, Fibiger HC . Induction patterns of Fos-like immunoreactivity in the forebrain as predictors of atypical antipsychotic activity. J Pharmacol Exp Ther 1994; 271: 1058–1066.

    CAS  PubMed  Google Scholar 

  71. Jentsch JD, Redmond Jr DE, Elsworth JD, Taylor JR, Youngren KD, Roth RH . Enduring cognitive deficits and cortical dopamine dysfunction in monkeys after long-term administration of phencyclidine. Science 1997; 277: 953–955.

    Article  CAS  PubMed  Google Scholar 

  72. Casey DE, Zorn SH . The pharmacology of weight gain with antipsychotics. J Clin Psychiatry 2001; 62 Suppl 7: 4–10.

    CAS  PubMed  Google Scholar 

  73. D′Andrea G, Terrazzino S, Fortin D, Farruggio A, Rinaldi L, Leon A . HPLC electrochemical detection of trace amines in human plasma and platelets and expression of mRNA transcripts of trace amine receptors in circulating leukocytes. Neurosci Lett 2003; 346: 89–92.

    Article  PubMed  Google Scholar 

  74. Nelson DA, Tolbert MD, Singh SJ, Bost KL . Expression of neuronal trace amine-associated receptor (Taar) mRNAs in leukocytes. J Neuroimmunol 2007; 192: 21–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sabelli HC, Javaid JI . Phenylethylamine modulation of affect: therapeutic and diagnostic implications. J Neuropsychiatry Clin Neurosci 1995; 7: 6–14.

    Article  CAS  PubMed  Google Scholar 

  76. Sabelli HC, Fawcett J, Gusovsky F, Javaid J, Edwards J, Jeffriess H . Urinary phenyl acetate: a diagnostic test for depression? Science 1983; 220: 1187–1188.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the continuous support by F. Hoffmann-La Roche and we thank C André, G Chiu, J Basile, H Dao, V Graf, M Maco, P Mortas, M-T Miss, S Debilly, C Waelti, S Schoeppenthau, T Bielser and M Brecheisen for excellent technical assistance; V Dall’Asen, MS Gruyer, C Rapp and J-P Parys for the pharmacokinetic in vivo studies and C Flament for the bioanalytical analysis; J Rodefer for the attentional set-shifting experiment; S Lazic for help with statistics; G Trube for valuable discussions and the Xenopus oocyte experiments; A Harmeier, L Steward, B Kuennecke, M von Kienlin, S Sewing, S Raab and AC Harrison for valuable discussion and input on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M C Hoener.

Ethics declarations

Competing interests

All authors are employed by F. Hoffmann-La Roche, with exception of AB who is employed by Neuroservice, and SRM and TSK who are employed by SRI International. Research of AB, SRM and TSK was supported in part by F. Hoffmann-La Roche.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Revel, F., Moreau, JL., Pouzet, B. et al. A new perspective for schizophrenia: TAAR1 agonists reveal antipsychotic- and antidepressant-like activity, improve cognition and control body weight. Mol Psychiatry 18, 543–556 (2013). https://doi.org/10.1038/mp.2012.57

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2012.57

Keywords

This article is cited by

Search

Quick links