Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cortical thickness of superior frontal cortex predicts impulsiveness and perceptual reasoning in adolescence

Abstract

Impulsiveness is a pivotal personality trait representing a core domain in all major personality inventories. Recently, impulsiveness has been identified as an important modulator of cognitive processing, particularly in tasks that require the processing of large amounts of information. Although brain imaging studies have implicated the prefrontal cortex to be a common underlying representation of impulsiveness and related cognitive functioning, to date a fine-grain and detailed morphometric analysis has not been carried out. On the basis of ahigh-resolution magnetic resonance scans acquired in 1620 healthy adolescents (IMAGEN), the individual cortical thickness (CT) was estimated. Correlations between Cloninger's impulsiveness and CT were studied in an entire cortex analysis. The cluster identified was tested for associations with performance in perceptual reasoning tasks of the Wechsler Intelligence Scale for Children (WISC IV). We observed a significant inverse correlation between trait impulsiveness and CT of the left superior frontal cortex (SFC; Monte Carlo Simulation P<0.01). CT within this cluster correlated with perceptual reasoning scores (Bonferroni corrected) of the WISC IV. On the basis of a large sample of adolescents, we identified an extended area in the SFC as a correlate of impulsiveness, which appears to be in line with the trait character of this prominent personality facet. The association of SFC thickness with perceptual reasoning argues for a common neurobiological basis of personality and specific cognitive domains comprising attention, spatial reasoning and response selection. The results may facilitate the understanding of the role of impulsiveness in several psychiatric disorders associated with prefrontal dysfunctions and cognitive deficits.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

References

  1. Carlson SRJ, Season C, Jacobs, Pauline C . Disinhibited characteristics and binge drinking among university student drinkers. Addict Behav 2010; 35: 242–251.

    PubMed  Google Scholar 

  2. Fox HC, Bergquist KL, Peihua G, Rajita S . Interactive effects of cumulative stress and impulsivity on alcohol consumption. Alcohol Clin Exp Res 2010; 34: 1376–1385.

    PubMed  PubMed Central  Google Scholar 

  3. Owsley C, McGwin Jr G, McNeal SF . Impact of impulsiveness, venturesomeness, and empathy on driving by older adults. J Safety Res 2003; 34: 353–359.

    PubMed  Google Scholar 

  4. Vitulano MLF, Paula J, Rathert, Jamie L . Delinquent peer influence on childhood delinquency: the moderating effect of impulsivity. J Psychopathol Behav Assess 2010; 32: 315–322.

    Google Scholar 

  5. Birkley EL, Smith GT . Recent advances in understanding the personality underpinnings of impulsive behavior and their role in risk for addictive behaviors. Curr Drug Abuse Rev 2011; 4: 215–212.

    PubMed  PubMed Central  Google Scholar 

  6. Galimberti E, Martoni RM, Cavallini MC, Erzegovesi S, Bellodi L . Motor inhibition and cognitive flexibility in eating disorder subtypes. Prog Neuropsychopharmacol Biol Psychiatry 2012; 36: 307–312.

    PubMed  Google Scholar 

  7. Ekinci O, Albayrak Y, Ekinci AE, Caykoylu A . Relationship of trait impulsivity with clinical presentation in euthymic bipolar disorder patients. Psychiatry Res 2011; 190: 259–264.

    PubMed  Google Scholar 

  8. Berlin HA, Rolls ET, Iversen SD . Borderline personality disorder, impulsivity, and the orbitofrontal cortex. Am J Psychiatry 2005; 162: 2360–2373.

    PubMed  Google Scholar 

  9. Solanto MV, Schulz KP, Fan J, Tang CY, Newcorn JH . Event-related FMRI of inhibitory control in the predominantly inattentive and combined subtypes of ADHD. J Neuroimag 2009; 19: 205–212.

    Google Scholar 

  10. Strohle A, Stoy M, Wrase J, Schwarzer S, Schlagenhauf F, Huss M et al. Reward anticipation and outcomes in adult males with attention-deficit/hyperactivity disorder. NeuroImage 2008; 39: 966–972.

    PubMed  Google Scholar 

  11. Barratt ES . Impulsivity: integrating cognitive, behavioural, biological, and environmental data. In: McCown WG, Johnson JL, Shure MB (eds). The Impulsive Client: Theory, Research, and Treatment. American Psychological Association: Washington, DC, 1994, pp 39–56.

    Google Scholar 

  12. Cloninger CR . A unified biosocial theory of personality and its role in the development of anxiety states. Psychiatr Dev 1986; 4: 167–226.

    CAS  PubMed  Google Scholar 

  13. Perales JC, Verdejo-Garcia A, Moya M, Lozano O, Perez-Garcia M . Bright and dark sides of impulsivity: performance of women with high and low trait impulsivity on neuropsychological tasks. J Clin Exp Neuropsychol 2009; 31: 927–944.

    PubMed  Google Scholar 

  14. Romer D, Betancourt L, Giannetta JM, Brodsky NL, Farah M, Hurt H . Executive cognitive functions and impulsivity as correlates of risk taking and problem behavior in preadolescents. Neuropsychologia 2009; 47: 2916–2926.

    PubMed  PubMed Central  Google Scholar 

  15. Hur YM, Bouchard Jr TJ . The genetic correlation between impulsivity and sensation seeking traits. Behav Genet 1997; 27: 455–463.

    CAS  PubMed  Google Scholar 

  16. Niv S, Tuvblad C, Raine A, Wang P, Baker LA . Heritability and longitudinal stability of impulsivity in adolescence. Behav Genet 2011; 42: 378–392.

    PubMed  PubMed Central  Google Scholar 

  17. Kazantseva AV, Gaisina DA, Malykh SB, Khusnutdinova EK . Role of dopamine transporter gene (DAT1) polymorphisms in personality traits variation. Genetika 2009; 45: 1110–1117.

    CAS  PubMed  Google Scholar 

  18. Cloninger CR, Svrakic DM, Przybeck TR . A psychobiological model of temperament and character. Arch Gen Psychiatry 1993; 50: 975–990.

    CAS  PubMed  Google Scholar 

  19. Cloninger CR . The psychobiological theory of temperament and character: comment on Farmer and Goldberg (2008). Psychol Assess 2008; 20: 292–299; discussion 300-294.

    PubMed  Google Scholar 

  20. Baron J . Personality and intelligence. In: Sternberg RJ (ed). Handbook of Human Intelligence. Cambridge University Press: New York, NY, 1982.

    Google Scholar 

  21. Brebner S . Theoretical and empirical relationships between personality and intelligence. In: Saklofske MZDH (ed). International Handbook of Personality and Intelligence (Language of Science). Springer: Berlin, 1995, pp 322–348.

    Google Scholar 

  22. de Wit H, Flory JD, Acheson A, McCloskey M, Manuck SB . IQ and nonplanning impulsivity are independently associated with delay discounting in middle-aged adults. Person Indiv Differ 2007; 42: 111–121.

    Google Scholar 

  23. Dickmann S . Impulsivity and information processing. In: MCCown WGJJ, Shure MB (eds). The Impulsive Client: Theory and Treatment. American Psychological Association: Washington, DC, 1993, pp 151–184.

    Google Scholar 

  24. Schweizer K . Does impulsivity influence performance in reasoning. Person Indiv Differ 2002; 33: 1031–1043.

    Google Scholar 

  25. Harmon-Jones E, Barratt ES, Wigg C . Impulsiveness, aggression, reading, and the P300 of the event-related potential. Person Indiv Differ 1997; 22: 439–445.

    Google Scholar 

  26. Barratt ES . Perceptual–motor performance related to impulsiveness and anxiety. Percept Motor Skills 1967; 25: 485–492.

    CAS  PubMed  Google Scholar 

  27. Bizot JC, Thiebot MH . Impulsivity as a confounding factor in certain animal tests of cognitive function. Brain Res Cogn Brain Res 1996; 3: 243–250.

    CAS  PubMed  Google Scholar 

  28. Dalley JW, Everitt BJ, Robbins TW . Impulsivity, compulsivity, and top–down cognitive control. Neuron 2011; 69: 680–694.

    CAS  PubMed  Google Scholar 

  29. Brannigan GGA, Thomas M . Howard impulsivity–reflectivity and children's intellectual performance. J Person Assess 1980; 44: 41–43.

    CAS  Google Scholar 

  30. Boes AD, Bechara A, Tranel D, Anderson SW, Richman L, Nopoulos P . Right ventromedial prefrontal cortex: a neuroanatomical correlate of impulse control in boys. Soc Cogn Affect Neurosci 2009; 4: 1–9.

    PubMed  Google Scholar 

  31. Gardini S, Cloninger CR, Venneri A . Individual differences in personality traits reflect structural variance in specific brain regions. Brain Res Bull 2009; 79: 265–270.

    PubMed  Google Scholar 

  32. Kumari V, Barkataki I, Goswami S, Flora S, Das M, Taylor P . Dysfunctional, but not functional, impulsivity is associated with a history of seriously violent behaviour and reduced orbitofrontal and hippocampal volumes in schizophrenia. Psychiatry Res 2009; 173: 39–44.

    PubMed  Google Scholar 

  33. Matsuo K, Nicoletti M, Nemoto K, Hatch JP, Peluso MA, Nery FG et al. A voxel-based morphometry study of frontal gray matter correlates of impulsivity. Hum Brain Mapp 2009; 30: 1188–1195.

    PubMed  Google Scholar 

  34. Nopoulos P, Boes AD, Jabines A, Conrad AL, Canady J, Richman L et al. Hyperactivity, impulsivity, and inattention in boys with cleft lip and palate: relationship to ventromedial prefrontal cortex morphology. J Neurodev Disord 2010; 2: 235–242.

    PubMed  PubMed Central  Google Scholar 

  35. Schilling C, Kuhn S, Romanowski A, Banaschewski T, Barbot A, Barker GJ et al. Common structural correlates of trait impulsiveness and perceptual reasoning in adolescence. Hum Brain Mapp 2012; e-pub ahead of print.

  36. Schilling C, Kuhn S, Romanowski A, Schubert F, Kathmann N, Gallinat J . Cortical thickness correlates with impulsiveness in healthy adults. NeuroImage 2012; 59: 824–830.

    PubMed  Google Scholar 

  37. Van Schuerbeek P, Baeken C, De Raedt R, De Mey J, Luypaert R . Individual differences in local gray and white matter volumes reflect differences in temperament and character: a voxel-based morphometry study in healthy young females. Brain Res 2011; 1371: 32–42.

    CAS  PubMed  Google Scholar 

  38. Greene SJ, Killiany RJ . Subregions of the inferior parietal lobule are affected in the progression to Alzheimer's disease. Neurobiol Aging 2010; 31: 1304–1311.

    PubMed  PubMed Central  Google Scholar 

  39. Kuhn S, Schubert F, Gallinat J . Reduced thickness of medial orbitofrontal cortex in smokers. Biol Psychiatry 2010; 68: 1061–1065.

    PubMed  Google Scholar 

  40. Kuhn S, Schubert F, Gallinat J . Structural correlates of trait anxiety: reduced thickness in medial orbitofrontal cortex accompanied by volume increase in nucleus accumbens. J Affect Disord 2011; 134: 315–319.

    PubMed  Google Scholar 

  41. McCauley SR, Wilde EA, Merkley TL, Schnelle KP, Bigler ED, Hunter JV et al. Patterns of cortical thinning in relation to event-based prospective memory performance three months after moderate to severe traumatic brain injury in children. Dev Neuropsychol 2010; 35: 318–332.

    PubMed  PubMed Central  Google Scholar 

  42. Raj A, Mueller SG, Young K, Laxer KD, Weiner M . Network-level analysis of cortical thickness of the epileptic brain. NeuroImage 2010; 52: 1302–1313.

    CAS  PubMed  Google Scholar 

  43. Choi YY, Shamosh NA, Cho SH, DeYoung CG, Lee MJ, Lee JM et al. Multiple bases of human intelligence revealed by cortical thickness and neural activation. J Neurosci 2008; 28: 10323–10329.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Dickerson BC, Fenstermacher E, Salat DH, Wolk DA, Maguire RP, Desikan R et al. Detection of cortical thickness correlates of cognitive performance: reliability across MRI scan sessions, scanners, and field strengths. NeuroImage 2008; 39: 10–18.

    CAS  PubMed  Google Scholar 

  45. Hutton C, Draganski B, Ashburner J, Weiskopf N . A comparison between voxel-based cortical thickness and voxel-based morphometry in normal aging. NeuroImage 2009; 48: 371–380.

    PubMed  Google Scholar 

  46. Salat DH, Buckner RL, Snyder AZ, Greve DN, Desikan RS, Busa E et al. Thinning of the cerebral cortex in aging. Cereb Cortex 2004; 14: 721–730.

    PubMed  Google Scholar 

  47. Goel V . Anatomy of deductive reasoning. Trends Cogn Sci 2007; 11: 435–441.

    PubMed  Google Scholar 

  48. Szeremi A, Tarnok Z, Farkas L, Dotzi J, Gadoros J . Neurocognitive symptoms of childhood attention deficit hyperactivity disorder. Psychiatr Hung 2005; 20: 299–311.

    PubMed  Google Scholar 

  49. Schumann GL, Loth E, Banaschewski T, Barbot A, Barker G, Buchel C et al. The IMAGEN study: reinforcement-related behaviour in normal brain function and psychopathology. Mol Psychiatry 2010; 15: 1–12.

    Google Scholar 

  50. Goodman R, Ford T, Richards H, Gatward R, Meltzer H . The development and well-being assessment: description and initial validation of an integrated assessment of child and adolescent psychopathology. J Child Psychol Psychiatry 2000; 41: 645–655.

    CAS  PubMed  Google Scholar 

  51. Cloninger CR . The Temperament and Character Inventory-Revised. Center for Psychobiology of Personality: St Louis, MO, 1999.

    Google Scholar 

  52. Farmer RF, Goldberg LR . A psychometric evaluation of the revised Temperament and Character Inventory (TCI-R) and the TCI-140. Psychol Assess 2008; 20: 281–291.

    PubMed  PubMed Central  Google Scholar 

  53. Wechsler A . WISC-IV. Technical and Interpretive Manual. Psychological Association: San Antonio, TX, 2003.

    Google Scholar 

  54. Fischl B, Dale AM . Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci USA 2000; 97: 11050–11055.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Dale AM, Fischl B, Sereno MI . Cortical surface-based analysis. I. Segmentation and surface reconstruction. NeuroImage 1999; 9: 179–194.

    CAS  PubMed  Google Scholar 

  56. Fischl B, Sereno MI, Tootell RB, Dale AM . High-resolution intersubject averaging and a coordinate system for the cortical surface. Hum Brain Mapp 1999; 8: 272–284.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Genovese CR, Lazar NA, Nichols T . Thresholding of statistical maps in functional neuroimaging using the false discovery rate. NeuroImage 2002; 15: 870–878.

    PubMed  Google Scholar 

  58. Elovainio M, Kivimaki M, Puttonen S, Heponiemi T, Pulkki L, Keltikangas-Jarvinen L . Temperament and depressive symptoms: a population-based longitudinal study on Cloninger's psychobiological temperament model. J Affect Disord 2004; 83: 227–232.

    PubMed  Google Scholar 

  59. Voets NL, Hough MG, Douaud G, Matthews PM, James A, Winmill L et al. Evidence for abnormalities of cortical development in adolescent-onset schizophrenia. NeuroImage 2008; 43: 665–675.

    PubMed  Google Scholar 

  60. Bookstein FL . ‘Voxel-based morphometry’ should not be used with imperfectly registered images. NeuroImage 2001; 14: 1454–1462.

    CAS  PubMed  Google Scholar 

  61. Jones DK, Symms MR, Cercignani M, Howard RJ . The effect of filter size on VBM analyses of DT-MRI data. NeuroImage 2005; 26: 546–554.

    PubMed  Google Scholar 

  62. Shaw P, Lerch J, Greenstein D, Sharp W, Clasen L, Evans A et al. Longitudinal mapping of cortical thickness and clinical outcome in children and adolescents with attention-deficit/hyperactivity disorder. Arch Gen Psychiatry 2006; 63: 540–549.

    PubMed  Google Scholar 

  63. Lopez-Larson MP, Bogorodzki P, Rogowska J, McGlade E, King JB, Terry J et al. Altered prefrontal and insular cortical thickness in adolescent marijuana users. Behav Brain Res 2011; 220: 164–172.

    PubMed  PubMed Central  Google Scholar 

  64. Almeida LG, Ricardo-Garcell J, Prado H, Barajas L, Fernandez-Bouzas A, Avila D et al. Reduced right frontal cortical thickness in children, adolescents and adults with ADHD and its correlation to clinical variables: a cross-sectional study. J Psychiatr Res 2010; 44: 1214–1223.

    PubMed  Google Scholar 

  65. Lawyer G, Bjerkan PS, Hammarberg A, Jayaram-Lindstrom N, Franck J, Agartz I . Amphetamine dependence and co-morbid alcohol abuse: associations to brain cortical thickness. BMC Pharmacol 2010; 10: 5.

    PubMed  PubMed Central  Google Scholar 

  66. Draganski B, Gaser C, Busch V, Schuierer G, Bogdahn U, May A . Neuroplasticity: changes in grey matter induced by training. Nature 2004; 427: 311–312.

    CAS  PubMed  Google Scholar 

  67. Horn NR, Dolan M, Elliott R, Deakin JF, Woodruff PW . Response inhibition and impulsivity: an fMRI study. Neuropsychologia 2003; 41: 1959–1966.

    CAS  PubMed  Google Scholar 

  68. Beck A, Schlagenhauf F, Wustenberg T, Hein J, Kienast T, Kahnt T et al. Ventral striatal activation during reward anticipation correlates with impulsivity in alcoholics. Biol Psychiatry 2009; 66: 734–742.

    CAS  PubMed  Google Scholar 

  69. Aron AR, Robbins TW, Poldrack RA . Inhibition and the right inferior frontal cortex. Trends Cogn Sci 2004; 8: 170–177.

    PubMed  Google Scholar 

  70. Rieger M, Gauggel S, Burmeister K . Inhibition of ongoing responses following frontal, nonfrontal, and basal ganglia lesions. Neuropsychology 2003; 17: 272–282.

    PubMed  Google Scholar 

  71. Chambers CD, Bellgrove MA, Stokes MG, Henderson TR, Garavan H, Robertson IH et al. Executive ‘brake failure’ following deactivation of human frontal lobe. J Cogn Neurosci 2006; 18: 444–455.

    PubMed  Google Scholar 

  72. Buchsbaum BR, Greer S, Chang WL, Berman KF . Meta-analysis of neuroimaging studies of the Wisconsin card-sorting task and component processes. Hum Brain Mapp 2005; 25: 35–45.

    PubMed  PubMed Central  Google Scholar 

  73. Congdon E, Canli T . A neurogenetic approach to impulsivity. J Pers 2008; 76: 1447–1484.

    PubMed  PubMed Central  Google Scholar 

  74. Nambu A, Tokuno H, Takada M . Functional significance of the cortico-subthalamo-pallidal ‘hyperdirect’ pathway. Neurosci Res 2002; 43: 111–117.

    PubMed  Google Scholar 

  75. Xue G, Aron AR, Poldrack RA . Common neural substrates for inhibition of spoken and manual responses. Cereb Cortex 2008; 18: 1923–1932.

    PubMed  Google Scholar 

  76. Patton JH, Stanford MS, Barratt ES . Factor structure of the Barratt impulsiveness scale. J Clin Psychol 1995; 51: 768–774.

    CAS  PubMed  Google Scholar 

  77. Antshel KM, Faraone SV, Stallone K, Nave A, Kaufmann FA, Doyle A et al. Is attention deficit hyperactivity disorder a valid diagnosis in the presence of high IQ? Results from the MGH Longitudinal Family Studies of ADHD. J Child Psychol Psychiatry 2007; 48: 687–694.

    PubMed  Google Scholar 

  78. Dickman S . Impulsivity, arousal, and attention. Person Indiv Differ 2000; 28: 563–582.

    Google Scholar 

  79. Marsh DM, Dougherty DM, Mathias CW, Moeller FG, Hicks LR . Comparison of women with high and low trait impulsivity using behavioral models of response-disinhibition and reward-choice. Person Indiv Differ 2002; 33: 1291–1310.

    Google Scholar 

  80. Whitney P, Jameson T, Hinson JM . Impulsiveness and executive control of working memory. Person Indiv Differ 2004; 37: 417–428.

    Google Scholar 

  81. Russo PM, De Pascalis V, Varriale V, Barratt ES . Impulsivity, intelligence and P300 wave: an empirical study. Int J Psychophysiol 2008; 69: 112–118.

    PubMed  Google Scholar 

  82. Colom R, Jung RE, Haier RJ . General intelligence and memory span: evidence for a common neuroanatomic framework. Cogn Neuropsychol 2007; 24: 867–878.

    PubMed  Google Scholar 

  83. Ehrlich S, Brauns S, Yendiki A, Ho BC, Calhoun V, Schulz SC et al. Associations of cortical thickness and cognition in patients with schizophrenia and healthy controls. Schizophr Bull 2012; e-pub ahead of print.

  84. Hartberg CB, Lawyer G, Nyman H, Jonsson EG, Haukvik UK, Saetre P et al. Investigating relationships between cortical thickness and cognitive performance in patients with schizophrenia and healthy adults. Psychiatry Res 2010; 182: 123–133.

    PubMed  Google Scholar 

  85. Klingberg T . Development of a superior frontal–intraparietal network for visuo-spatial working memory. Neuropsychologia 2006; 44: 2171–2177.

    PubMed  Google Scholar 

  86. Petermann FP . Ulrike. Hamburg-Wechsler-Intelligenztest für Kinder -IV Manual Übersetzung und Adaptation der WISC-IV von David Wechsler. Verlag Hans Huber, Hogrefe AG, Testverlag: Bern, 2007.

    Google Scholar 

  87. Wager TD, Smith EE . Neuroimaging studies of working memory: a meta-analysis. Cogn Affect Behav Neurosci 2003; 3: 255–274.

    PubMed  Google Scholar 

  88. Fan J, McCandliss BD, Fossella J, Flombaum JI, Posner MI . The activation of attentional networks. NeuroImage 2005; 26: 471–479.

    PubMed  Google Scholar 

  89. Jackson MC, Morgan HM, Shapiro KL, Mohr H, Linden DE . Strategic resource allocation in the human brain supports cognitive coordination of object and spatial working memory. Hum Brain Mapp 2011; 32: 1330–1348.

    PubMed  Google Scholar 

  90. Konrad K, Neufang S, Thiel CM, Specht K, Hanisch C, Fan J et al. Development of attentional networks: an fMRI study with children and adults. NeuroImage 2005; 28: 429–439.

    PubMed  Google Scholar 

  91. Schneider MF, Krick CM, Retz W, Hengesch G, Retz-Junginger P, Reith W et al. Impairment of fronto-striatal and parietal cerebral networks correlates with attention deficit hyperactivity disorder (ADHD) psychopathology in adults—a functional magnetic resonance imaging (fMRI) study. Psychiatry Res 2010; 183: 75–84.

    PubMed  Google Scholar 

  92. Kubicka L, Matejcek Z, Dytrych Z, Roth Z . IQ and personality traits assessed in childhood as predictors of drinking and smoking behaviour in middle-aged adults: a 24-year follow-up study. Addiction 2001; 96: 1615–1628.

    CAS  PubMed  Google Scholar 

  93. Luby JL, Svrakic DM, McCallum K, Przybeck TR, Cloninger CR . The junior temperament and character inventory: preliminary validation of a child self-report measure. Psychol Rep 1999; 84 (Part 2): 1127–1138.

    CAS  PubMed  Google Scholar 

  94. Cloninger CR, Sigvardsson S, Bohman M . Childhood personality predicts alcohol abuse in young adults. Alcohol Clin Exp Res 1988; 12: 494–505.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the Studienstiftung des Deutschen Volkes for funding Christina Schilling's PhD project. IMAGEN receives research funding from the European Community's Sixth Framework Programme (LSHM-CT-2007-037286). This paper reflects only the author's views and the Community is not liable for any use that may be made of the information contained therein.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to C Schilling.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schilling, C., Kühn, S., Paus, T. et al. Cortical thickness of superior frontal cortex predicts impulsiveness and perceptual reasoning in adolescence. Mol Psychiatry 18, 624–630 (2013). https://doi.org/10.1038/mp.2012.56

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2012.56

Keywords

This article is cited by

Search

Quick links