Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Genetic variability of drug-metabolizing enzymes: the dual impact on psychiatric therapy and regulation of brain function

Abstract

Polymorphic drug-metabolizing enzymes (DMEs) are responsible for the metabolism of the majority of psychotropic drugs. By explaining a large portion of variability in individual drug metabolism, pharmacogenetics offers a diagnostic tool in the burgeoning era of personalized medicine. This review updates existing evidence on the influence of pharmacogenetic variants on drug exposure and discusses the rationale for genetic testing in the clinical context. Dose adjustments based on pharmacogenetic knowledge are the first step to translate pharmacogenetics into clinical practice. However, also clinical factors, such as the consequences on toxicity and therapeutic failure, must be considered to provide clinical recommendations and assess the cost-effectiveness of pharmacogenetic treatment strategies. DME polymorphisms are relevant not only for clinical pharmacology and practice but also for research in psychiatry and neuroscience. Several DMEs, above all the cytochrome P (CYP) enzymes, are expressed in the brain, where they may contribute to the local biochemical homeostasis. Of particular interest is the possibility of DMEs playing a physiological role through their action on endogenous substrates, which may underlie the reported associations between genetic polymorphisms and cognitive function, personality and vulnerability to mental disorders. Neuroimaging studies have recently presented evidence of an effect of the CYP2D6 polymorphism on basic brain function. This review summarizes evidence on the effect of DME polymorphisms on brain function that adds to the well-known effects of DME polymorphisms on pharmacokinetics in explaining the range of phenotypes that are relevant to psychiatric practice.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

References

  1. Ingelman-Sundberg M, Oscarson M, McLellan RA . Polymorphic human cytochrome P450 enzymes: an opportunity for individualized drug treatment. Trends Pharmacol Sci 1999; 20: 342–349.

    CAS  PubMed  Google Scholar 

  2. Gonzalez FJ, Idle JR . Pharmacogenetic phenotyping and genotyping. Present status and future potential. Clin Pharmacokinet 1994; 26: 59–70.

    CAS  PubMed  Google Scholar 

  3. Motulsky AG . Drug reactions enzymes, and biochemical genetics. J Am Med Assoc 1957; 165: 835–837.

    CAS  PubMed  Google Scholar 

  4. Kalow W . Contribution of hereditary factors to the response to drugs. Fed Proc 1965; 24: 1259–1265.

    CAS  PubMed  Google Scholar 

  5. Mahgoub A, Idle JR, Dring LG, Lancaster R, Smith RL . Polymorphic hydroxylation of Debrisoquine in man. Lancet 1977; 2: 584–586.

    CAS  PubMed  Google Scholar 

  6. Niznik HB, Tyndale RF, Sallee FR, Gonzalez FJ, Hardwick JP, Inaba T et al. The dopamine transporter and cytochrome P45OIID1 (debrisoquine 4-hydroxylase) in brain: resolution and identification of two distinct [3H]GBR-12935 binding proteins. Arch Biochem Biophys 1990; 276: 424–432.

    CAS  PubMed  Google Scholar 

  7. Nebert DW . Proposed role of drug-metabolizing enzymes: regulation of steady state levels of the ligands that effect growth, homeostasis, differentiation, and neuroendocrine functions. Mol Endocrinol 1991; 5: 1203–1214.

    CAS  PubMed  Google Scholar 

  8. Swen JJ, Nijenhuis M, de Boer A, Grandia L, Maitland-van der Zee AH, Mulder H et al. Pharmacogenetics: from bench to byte–an update of guidelines. Clin Pharmacol Ther 2011; 89: 662–673.

    CAS  PubMed  Google Scholar 

  9. Relling MV, Klein TE . CPIC: Clinical Pharmacogenetics Implementation Consortium of the Pharmacogenomics Research Network. Clin Pharmacol Ther 2011; 89: 464–467.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Wu KM . A new classification of prodrugs: regulatory perspectives. Pharmaceuticals 2009; 2: 77–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Nebert DW, Nelson DR . Cytochrome P450 (CYP) Gene Superfamily. Encyclopedia of Life Sciences. John Wiley & Sons: Hoboken, 2011.

    Google Scholar 

  12. Conroy JL, Fang C, Gu J, Zeitlin SO, Yang W, Yang J, et al. Opioids activate brain analgesic circuits through cytochrome P450/epoxygenase signaling. Nat Neurosci 2011; 13: 284–286.

    Google Scholar 

  13. Lee HJ, Rao JS, Chang L, Rapoport SI, Kim HW . Chronic imipramine but not bupropion increases arachidonic acid signaling in rat brain: is this related to ‘switching’ in bipolar disorder? Mol Psychiatry 2011; 15: 602–614.

    Google Scholar 

  14. Mulder H, Heerdink ER, van Iersel EE, Wilmink FW, Egberts AC . Prevalence of patients using drugs metabolized by cytochrome P450 2D6 in different populations: a cross-sectional study. Ann Pharmacother 2007; 41: 408–413.

    PubMed  Google Scholar 

  15. Williams JA, Andersson T, Andersson TB, Blanchard R, Behm MO, Cohen N et al. PhRMA white paper on ADME pharmacogenomics. J Clin Pharmacol 2008; 48: 849–889.

    CAS  PubMed  Google Scholar 

  16. Leschziner GD, Andrew T, Pirmohamed M, Johnson MR . ABCB1 genotype and PGP expression, function and therapeutic drug response: a critical review and recommendations for future research. Pharmacogenomics J 2007; 7: 154–179.

    CAS  PubMed  Google Scholar 

  17. Sakaeda T, Nakamura T, Okumura K . Pharmacogenetics of drug transporters and its impact on the pharmacotherapy. Curr Top Med Chem 2004; 4: 1385–1398.

    CAS  PubMed  Google Scholar 

  18. Nebert DW, Zhang G, Vesell ES . From human genetics and genomics to pharmacogenetics and pharmacogenomics: past lessons, future directions. Drug Metab Rev 2008; 40: 187–224.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Ingelman-Sundberg M, Sim SC, Gomez A, Rodriguez-Antona C . Influence of cytochrome P450 polymorphisms on drug therapies: pharmacogenetic, pharmacoepigenetic and clinical aspects. Pharmacol Ther 2007; 116: 496–526.

    CAS  PubMed  Google Scholar 

  20. Rodriguez-Antona C, Ingelman-Sundberg M . Cytochrome P450 pharmacogenetics and cancer. Oncogene 2006; 25: 1679–1691.

    CAS  PubMed  Google Scholar 

  21. Baumann P, Hiemke C, Ulrich S, Eckermann G, Gaertner I, Gerlach M et al. The AGNP-TDM expert group consensus guidelines: therapeutic drug monitoring in psychiatry. Pharmacopsychiatry 2004; 37: 243–265.

    CAS  PubMed  Google Scholar 

  22. Kirchheiner J, Brosen K, Dahl ML, Gram LF, Kasper S, Roots I et al. CYP2D6 and CYP2C19 genotype-based dose recommendations for antidepressants: a first step towards subpopulation-specific dosages. Acta Psychiatr Scand 2001; 104: 173–192.

    CAS  PubMed  Google Scholar 

  23. Kirchheiner J, Fuhr U, Brockmöller J . Pharmacogenetics-based therapeutic recommendations–ready for clinical practice? Nat Rev Drug Discov 2005; 4: 639–647.

    CAS  PubMed  Google Scholar 

  24. Kirchheiner J, Nickchen K, Bauer M, Wong ML, Licinio J, Roots I et al. Pharmacogenetics of antidepressants and antipsychotics: the contribution of allelic variations to the phenotype of drug response. Mol Psychiatry 2004; 9: 442–473.

    CAS  PubMed  Google Scholar 

  25. Sim SC, Risinger C, Dahl ML, Aklillu E, Christensen M, Bertilsson L et al. A common novel CYP2C19 gene variant causes ultrarapid drug metabolism relevant for the drug response to proton pump inhibitors and antidepressants. Clin Pharmacol Ther 2006; 79: 103–113.

    CAS  PubMed  Google Scholar 

  26. Fukuda T, Yamamoto I, Nishida Y, Zhou Q, Ohno M, Takada K et al. Effect of the CYP2D6*10 genotype on venlafaxine pharmacokinetics in healthy adult volunteers. Br J Clin Pharmacol 1999; 47: 450–453.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Fukuda T, Nishida Y, Zhou Q, Yamamoto I, Kondo S, Azuma J . The impact of the CYP2D6 and CYP2C19 genotypes on venlafaxine pharmacokinetics in a Japanese population. Eur J Clin Pharmacol 2000; 56: 175–180.

    CAS  PubMed  Google Scholar 

  28. Otton SV, Ball SE, Cheung SW, Inaba T, Rudolph RL, Sellers EM . Venlafaxine oxidation in vitro is catalysed by CYP2D6. Br J Clin Pharmacol 1996; 41: 149–156.

    CAS  PubMed  Google Scholar 

  29. Veefkind AH, Haffmans PM, Hoencamp E . Venlafaxine serum levels and CYP2D6 genotype. Ther Drug Monit 2000; 22: 202–208.

    CAS  PubMed  Google Scholar 

  30. Shams ME, Arneth B, Hiemke C, Dragicevic A, Muller MJ, Kaiser R et al. CYP2D6 polymorphism and clinical effect of the antidepressant venlafaxine. J Clin Pharm Ther 2006; 31: 493–502.

    CAS  PubMed  Google Scholar 

  31. Lessard E, Yessine M, Hamelin B, O’Hara G, LeBlanc J, Turgeon J . Influence of CYP2D6 activity on the disposition and cardiovascular toxicity of the antidepressant agent venlafaxine in humans. Pharmacogenetics 1999; 9: 435–443.

    CAS  PubMed  Google Scholar 

  32. Kakihara S, Yoshimura R, Shinkai K, Matsumoto C, Goto M, Kaji K et al. Prediction of response to risperidone treatment with respect to plasma concencentrations of risperidone, catecholamine metabolites, and polymorphism of cytochrome P450 2D6. Int Clin Psychopharmacol 2005; 20: 71–78.

    PubMed  Google Scholar 

  33. Lane HY, Liu YC, Huang CL, Chang YC, Wu PL, Lu CT et al. Risperidone-related weight gain: genetic and nongenetic predictors. J Clin Psychopharmacol 2006; 26: 128–134.

    CAS  PubMed  Google Scholar 

  34. Wang L, Yu L, Zhang AP, Fang C, Du J, Gu NF et al. Serum prolactin levels, plasma risperidone levels, polymorphism of cytochrome P450 2D6 and clinical response in patients with schizophrenia. J Psychopharmacol 2007; 21: 837–842.

    CAS  PubMed  Google Scholar 

  35. Mrazek DA, Biernacka JM, O’Kane DJ, Black JL, Cunningham JM, Drews MS et al. CYP2C19 variation and citalopram response. Pharmacogenet Genomics 2011; 21: 1–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Huezo-Diaz P, Perroud N, Spencer E, Smith R, Sim S, Virding S et al. CYP2C19 genotype predicts steady state escitalopram concentration in GENDEP. J Psychopharmacol 2012; 26: 398–407.

    CAS  PubMed  Google Scholar 

  37. Laine K, Tybring G, Hartter S, Andersson K, Svensson JO, Widen J et al. Inhibition of cytochrome P4502D6 activity with paroxetine normalizes the ultrarapid metabolizer phenotype as measured by nortriptyline pharmacokinetics and the debrisoquin test. Clin Pharmacol Ther 2001; 70: 327–335.

    CAS  PubMed  Google Scholar 

  38. Sachse C, Brockmöller J, Bauer S, Roots I . Functional significance of a C → A polymorphism in intron 1 of the cytochrome P450 CYP1A2 gene tested with caffeine. Br J Clin Pharmacol 1999; 47: 445–449.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Kirchheiner J, Brockmöller J . Clinical consequences of cytochrome P450 2C9 polymorphisms. Clin Pharmacol Ther 2005; 77: 1–16.

    CAS  PubMed  Google Scholar 

  40. Grosse SD, Khoury MJ . What is the clinical utility of genetic testing? Genet Med 2006; 8: 448–450.

    PubMed  Google Scholar 

  41. Thakur M, Grossman I, McCrory DC, Orlando LA, Steffens DC, Cline KE et al. Review of evidence for genetic testing for CYP450 polymorphisms in management of patients with nonpsychotic depression with selective serotonin reuptake inhibitors. Genet Med 2007; 9: 826–835.

    CAS  PubMed  Google Scholar 

  42. Fleeman N, McLeod C, Bagust A, Beale S, Boland A, Dundar Y et al. The clinical effectiveness and cost-effectiveness of testing for cytochrome P450 polymorphisms in patients with schizophrenia treated with antipsychotics: a systematic review and economic evaluation. Health Technol Assess 2011; 14: 1–157, iii.

    Google Scholar 

  43. Temple R . Enrichment of clinical study populations. Clin Pharmacol Ther 2010; 88: 774–778.

    CAS  PubMed  Google Scholar 

  44. Bijl MJ, Visser LE, Hofman A, Vulto AG, van Gelder T, Stricker BH et al. Influence of the CYP2D6*4 polymorphism on dose, switching and discontinuation of antidepressants. Br J Clin Pharmacol 2008; 65: 558–564.

    CAS  PubMed  Google Scholar 

  45. Rau T, Wohlleben G, Wuttke H, Thuerauf N, Lunkenheimer J, Lanczik M et al. CYP2D6 genotype: impact on adverse effects and nonresponse during treatment with antidepressants-a pilot study. Clin Pharmacol Ther 2004; 75: 386–393.

    CAS  PubMed  Google Scholar 

  46. Chen S, Chou WH, Blouin RA, Mao Z, Humphries LL, Meek QC et al. The cytochrome P450 2D6 (CYP2D6) enzyme polymorphism: screening costs and influence on clinical outcomes in psychiatry. Clin Pharmacol Ther 1996; 60: 522–534.

    CAS  PubMed  Google Scholar 

  47. Kobylecki CJ, Jakobsen KD, Hansen T, Jakobsen IV, Rasmussen HB, Werge T . CYP2D6 genotype predicts antipsychotic side effects in schizophrenia inpatients: a retrospective matched case-control study. Neuropsychobiology 2009; 59: 222–226.

    CAS  PubMed  Google Scholar 

  48. Kawanishi C, Lundgren S, Agren H, Bertilsson L . Increased incidence of CYP2D6 gene duplication in patients with persistent mood disorders: ultrarapid metabolism of antidepressants as a cause of nonresponse. A pilot study. Eur J Clin Pharmacol 2004; 59: 803–807.

    CAS  PubMed  Google Scholar 

  49. Lesko LJ, Zineh I, Huang SM . What is clinical utility and why should we care? Clin Pharmacol Ther 2011; 88: 729–733.

    Google Scholar 

  50. Dutheil F, Beaune P, Loriot MA . Xenobiotic metabolizing enzymes in the central nervous system: contribution of cytochrome P450 enzymes in normal and pathological human brain. Biochimie 2008; 90: 426–436.

    CAS  PubMed  Google Scholar 

  51. Miksys S, Rao Y, Hoffmann E, Mash DC, Tyndale RF . Regional and cellular expression of CYP2D6 in human brain: higher levels in alcoholics. J Neurochem 2002; 82: 1376–1387.

    CAS  PubMed  Google Scholar 

  52. Haining RL, Nichols-Haining M . Cytochrome P450-catalyzed pathways in human brain: metabolism meets pharmacology or old drugs with new mechanism of action? Pharmacol Ther 2007; 113: 537–545.

    CAS  PubMed  Google Scholar 

  53. Nishimura M, Naito S . Tissue-specific mRNA expression profiles of human phase I metabolizing enzymes except for cytochrome P450 and phase II metabolizing enzymes. Drug Metab Pharmacokinet 2006; 21: 357–374.

    CAS  PubMed  Google Scholar 

  54. Tukey RH, Strassburg CP . Human UDP-glucuronosyltransferases: metabolism, expression, and disease. Annu Rev Pharmacol Toxicol 2000; 40: 581–616.

    CAS  PubMed  Google Scholar 

  55. Dauchy S, Dutheil F, Weaver RJ, Chassoux F, Daumas-Duport C, Couraud PO et al. ABC transporters, cytochromes P450 and their main transcription factors: expression at the human blood-brain barrier. J Neurochem 2008; 107: 1518–1528.

    CAS  PubMed  Google Scholar 

  56. Klose TS, Blaisdell JA, Goldstein JA . Gene structure of CYP2C8 and extrahepatic distribution of the human CYP2Cs. J Biochem Mol Toxicol 1999; 13: 289–295.

    CAS  PubMed  Google Scholar 

  57. Fleming I . Vascular cytochrome P450 enzymes: physiology and pathophysiology. Trends Cardiovasc Med 2008; 18: 20–25.

    CAS  PubMed  Google Scholar 

  58. Farin FM, Omiecinski CJ . Regiospecific expression of cytochrome P-450s and microsomal epoxide hydrolase in human brain tissue. J Toxicol Environ Health 1993; 40: 317–335.

    CAS  PubMed  Google Scholar 

  59. Bhagwat SV, Boyd MR, Ravindranath V . Multiple forms of cytochrome P450 and associated monooxygenase activities in human brain mitochondria. Biochem Pharmacol 2000; 59: 573–582.

    CAS  PubMed  Google Scholar 

  60. Gervot L, Rochat B, Gautier JC, Bohnenstengel F, Kroemer H, de Berardinis V et al. Human CYP2B6: expression, inducibility and catalytic activities. Pharmacogenetics 1999; 9: 295–306.

    CAS  PubMed  Google Scholar 

  61. Nishimura M, Yaguti H, Yoshitsugu H, Naito S, Satoh T . Tissue distribution of mRNA expression of human cytochrome P450 isoforms assessed by high-sensitivity real-time reverse transcription PCR. Yakugaku Zasshi 2003; 123: 369–375.

    CAS  PubMed  Google Scholar 

  62. Miksys S, Lerman C, Shields P, Mash D, Tyndale R . The influence of smoking, alcoholism and genetics on CYP2B6 in human brain. Clin Pharmacol Ther 2003; 73: P59.

    Google Scholar 

  63. Miksys SL, Tyndale RF . Drug-metabolizing cytochrome P450s in the brain. J Psychiatry Neurosci 2002; 27: 406–415.

    PubMed  PubMed Central  Google Scholar 

  64. Chinta SJ, Pai HV, Upadhya SC, Boyd MR, Ravindranath V . Constitutive expression and localization of the major drug metabolizing enzyme, cytochrome P4502D in human brain. Brain Res Mol Brain Res 2002; 103: 49–61.

    CAS  PubMed  Google Scholar 

  65. Gilham DE, Cairns W, Paine MJ, Modi S, Poulsom R, Roberts GC et al. Metabolism of MPTP by cytochrome P4502D6 and the demonstration of 2D6 mRNA in human foetal and adult brain by in situ hybridization. Xenobiotica 1997; 27: 111–125.

    CAS  PubMed  Google Scholar 

  66. Dutheil F, Dauchy S, Diry M, Sazdovitch V, Cloarec O, Mellottee L et al. Xenobiotic-metabolizing enzymes and transporters in the normal human brain: regional and cellular mapping as a basis for putative roles in cerebral function. Drug Metab Dispos 2009; 37: 1528–1538.

    CAS  PubMed  Google Scholar 

  67. Mann A, Miksys S, Lee A, Mash DC, Tyndale RF . Induction of the drug metabolizing enzyme CYP2D in monkey brain by chronic nicotine treatment. Neuropharmacology 2008; 55: 1147–1155.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Siegle I, Fritz P, Eckhardt K, Zanger UM, Eichelbaum M . Cellular localization and regional distribution of CYP2D6 mRNA and protein expression in human brain. Pharmacogenetics 2001; 11: 237–245.

    CAS  PubMed  Google Scholar 

  69. Howard LA, Miksys S, Hoffmann E, Mash D, Tyndale RF . Brain CYP2E1 is induced by nicotine and ethanol in rat and is higher in smokers and alcoholics. Br J Pharmacol 2003; 138: 1376–1386.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. King CD, Rios GR, Assouline JA, Tephly TR . Expression of UDP-glucuronosyltransferases (UGTs) 2B7 and 1A6 in the human brain and identification of 5-hydroxytryptamine as a substrate. Arch Biochem Biophys 1999; 365: 156–162.

    CAS  PubMed  Google Scholar 

  71. Voirol P, Jonzier-Perey M, Porchet F, Reymond MJ, Janzer RC, Bouras C et al. Cytochrome P-450 activities in human and rat brain microsomes. Brain Res 2000; 855: 235–243.

    CAS  PubMed  Google Scholar 

  72. Kodaira H, Spector S . Transformation of thebaine to oripavine, codeine, and morphine by rat liver, kidney, and brain microsomes. Proc Natl Acad Sci USA 1988; 85: 1267–1271.

    CAS  PubMed  Google Scholar 

  73. Chen ZR, Irvine RJ, Bochner F, Somogyi AA . Morphine formation from codeine in rat brain: a possible mechanism of codeine analgesia. Life Sci 1990; 46: 1067–1074.

    CAS  PubMed  Google Scholar 

  74. Kathiramalainathan K, Kaplan HL, Romach MK, Busto UE, Li NY, Sawe J et al. Inhibition of cytochrome P450 2D6 modifies codeine abuse liability. J Clin Psychopharmacol 2000; 20: 435–444.

    CAS  PubMed  Google Scholar 

  75. Miksys S, Lerman C, Shields PG, Mash DC, Tyndale RF . Smoking, alcoholism and genetic polymorphisms alter CYP2B6 levels in human brain. Neuropharmacology 2003; 45: 122–132.

    CAS  PubMed  Google Scholar 

  76. Khokhar JY, Tyndale RF . Drug metabolism within the brain changes drug response: selective manipulation of brain CYP2B alters propofol effects. Neuropsychopharmacology 2011; 36: 692–700.

    CAS  PubMed  Google Scholar 

  77. Hedlund E, Gustafsson JA, Warner M . Cytochrome P450 in the brain; a review. Curr Drug Metab 2001; 2: 245–263.

    CAS  PubMed  Google Scholar 

  78. Westerink WM, Schoonen WG . Cytochrome P450 enzyme levels in HepG2 cells and cryopreserved primary human hepatocytes and their induction in HepG2 cells. Toxicol In Vitro 2007; 21: 1581–1591.

    CAS  PubMed  Google Scholar 

  79. Miksys S, Tyndale RF . The unique regulation of brain cytochrome P450 2 (CYP2) family enzymes by drugs and genetics. Drug Metab Rev 2004; 36: 313–333.

    CAS  PubMed  Google Scholar 

  80. Hedlund E, Wyss A, Kainu T, Backlund M, Kohler C, Pelto-Huikko M et al. Cytochrome P4502D4 in the brain: specific neuronal regulation by clozapine and toluene. Mol Pharmacol 1996; 50: 342–350.

    CAS  PubMed  Google Scholar 

  81. Warner M, Gustafsson JA . Effect of ethanol on cytochrome P450 in the rat brain. Proc Natl Acad Sci USA 1994; 91: 1019–1023.

    CAS  PubMed  Google Scholar 

  82. Yue J, Miksys S, Hoffmann E, Tyndale RF . Chronic nicotine treatment induces rat CYP2D in the brain but not in the liver: an investigation of induction and time course. J Psychiatry Neurosci 2008; 33: 54–63.

    PubMed  PubMed Central  Google Scholar 

  83. Uhr M, Tontsch A, Namendorf C, Ripke S, Lucae S, Ising M et al. Polymorphisms in the drug transporter gene ABCB1 predict antidepressant treatment response in depression. Neuron 2008; 57: 203–209.

    CAS  PubMed  Google Scholar 

  84. Rosenhagen MC, Uhr M . The clinical impact of ABCB1 polymorphisms on the treatment of psychiatric diseases. Curr Pharm Des 2011.

  85. Yu AM, Idle JR, Byrd LG, Krausz KW, Kupfer A, Gonzalez FJ . Regeneration of serotonin from 5-methoxytryptamine by polymorphic human CYP2D6. Pharmacogenetics 2003; 13: 173–181.

    CAS  PubMed  Google Scholar 

  86. Hiroi T, Imaoka S, Funae Y . Dopamine formation from tyramine by CYP2D6. Biochem Biophys Res Commun 1998; 249: 838–843.

    CAS  PubMed  Google Scholar 

  87. Norris PJ, Hardwick JP, Emson PC . Regional distribution of cytochrome P450 2D1 in the rat central nervous system. J Comp Neurol 1996; 366: 244–258.

    CAS  PubMed  Google Scholar 

  88. Bromek E, Haduch A, Golembiowska K, Daniel WA . Cytochrome P450 mediates dopamine formation in the brain in vivo. J Neurochem 2011; 118: 806–815.

    CAS  PubMed  Google Scholar 

  89. Kirchheiner J, Henckel HB, Franke L, Meineke I, Tzvetkov M, Uebelhack R et al. Impact of the CYP2D6 ultra-rapid metabolizer genotype on doxepin pharmacokinetics and serotonin in platelets. Pharmacogenet Genomics 2005; 15: 579–587.

    CAS  PubMed  Google Scholar 

  90. Guiard BP, El Mansari M, Merali Z, Blier P . Functional interactions between dopamine, serotonin and norepinephrine neurons: an in-vivo electrophysiological study in rats with monoaminergic lesions. Int J Neuropsychopharmacol 2008; 11: 625–639.

    CAS  PubMed  Google Scholar 

  91. Prisco S, Esposito E . Differential effects of acute and chronic fluoxetine administration on the spontaneous activity of dopaminergic neurones in the ventral tegmental area. Br J Pharmacol 1995; 116: 1923–1931.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Ozdemir V, Bertilsson L, Miura J, Carpenter E, Reist C, Harper P et al. CYP2D6 genotype in relation to perphenazine concentration and pituitary pharmacodynamic tissue sensitivity in Asians: CYP2D6-serotonin-dopamine crosstalk revisited. Pharmacogenet Genomics 2007; 17: 339–347.

    CAS  PubMed  Google Scholar 

  93. Ozdemir V, Gunes A, Dahl ML, Scordo MG, Williams-Jones B, Someya T . Could endogenous substrates of drug-metabolizing enzymes influence constitutive physiology and drug target responsiveness? Pharmacogenomics 2006; 7: 1199–1210.

    CAS  PubMed  Google Scholar 

  94. Bertilsson L . CYP2D6, serotonin, and suicide–a relationship? Clin Pharmacol Ther 2011; 88: 304–305.

    Google Scholar 

  95. Sridar C, Snider NT, Hollenberg PF . Anandamide oxidation by wild type and polymorphically expressed CYP2B6 and CYP2D6. Drug Metab Dispos 2011; 39: 782–788.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Snider NT, Sikora MJ, Sridar C, Feuerstein TJ, Rae JM, Hollenberg PF . The endocannabinoid anandamide is a substrate for the human polymorphic cytochrome P450 2D6. J Pharmacol Exp Ther 2008; 327: 538–545.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Yamada H, Ishii K, Ishii Y, Ieiri I, Nishio S, Morioka T et al. Formation of highly analgesic morphine-6-glucuronide following physiologic concentration of morphine in human brain. J Toxicol Sci 2003; 28: 395–401.

    CAS  PubMed  Google Scholar 

  98. Zhu W . CYP2D6: a key enzyme in morphine synthesis in animals. Med Sci Monit 2008; 14: SC15–SC18.

    CAS  PubMed  Google Scholar 

  99. Mikus G, Bochner F, Eichelbaum M, Horak P, Somogyi AA, Spector S . Endogenous codeine and morphine in poor and extensive metabolisers of the CYP2D6 (debrisoquine/sparteine) polymorphism. J Pharmacol Exp Ther 1994; 268: 546–551.

    CAS  PubMed  Google Scholar 

  100. Funae Y, Kishimoto W, Cho T, Niwa T, Hiroi T . CYP2D in the brain. Drug Metab Pharmacokinet 2003; 18: 337–349.

    CAS  PubMed  Google Scholar 

  101. Kishimoto W, Hiroi T, Shiraishi M, Osada M, Imaoka S, Kominami S et al. Cytochrome P450 2D catalyze steroid 21-hydroxylation in the brain. Endocrinology 2004; 145: 699–705.

    CAS  PubMed  Google Scholar 

  102. Badawi AF, Cavalieri EL, Rogan EG . Role of human cytochrome P450 1A1, 1A2, 1B1, and 3A4 in the 2-, 4-, and 16alpha-hydroxylation of 17beta-estradiol. Metabolism 2001; 50: 1001–1003.

    CAS  PubMed  Google Scholar 

  103. Miksys S, Tyndale RF . Brain drug-metabolizing cytochrome P450 enzymes are active in vivo, demonstrated by mechanism-based enzyme inhibition. Neuropsychopharmacology 2009; 34: 634–640.

    CAS  PubMed  Google Scholar 

  104. Scheer N, Kapelyukh Y, McEwan J, Beuger V, Stanley LA, Rode A et al. Modeling human cytochrome P450 2D6 metabolism and drug-drug interaction by a novel panel of knockout and humanized mouse lines. Mol Pharmacol 2012; 81: 63–72.

    CAS  PubMed  Google Scholar 

  105. Winter JC, Amorosi DJ, Rice KC, Cheng K, Yu AM . Stimulus control by 5-methoxy-N,N-dimethyltryptamine in wild-type and CYP2D6-humanized mice. Pharmacol Biochem Behav 2011; 99: 311–315.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Shen HW, Jiang XL, Yu AM . Nonlinear pharmacokinetics of 5-methoxy-N,N-dimethyltryptamine in mice. Drug Metab Dispos 2011; 39: 1227–1234.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Miksys SL, Cheung C, Gonzalez FJ, Tyndale RF . Human CYP2D6 and mouse CYP2Ds: organ distribution in a humanized mouse model. Drug Metab Dispos 2005; 33: 1495–1502.

    CAS  PubMed  Google Scholar 

  108. Kirchheiner J, Seeringer A, Godoy AL, Ohmle B, Maier C, Beschoner P et al. CYP2D6 in the brain: genotype effects on resting brain perfusion. Mol Psychiatry 2011; 16: 333–341.

    CAS  Google Scholar 

  109. Meyer-Lindenberg A, Weinberger DR . Intermediate phenotypes and genetic mechanisms of psychiatric disorders. Nat Rev Neurosci 2006; 7: 818–827.

    CAS  PubMed  Google Scholar 

  110. Owen AM, McMillan KM, Laird AR, Bullmore E . N-back working memory paradigm: a meta-analysis of normative functional neuroimaging studies. Hum Brain Mapp 2005; 25: 46–59.

    PubMed  Google Scholar 

  111. Drevets WC, Raichle ME . Positron Emission Tomographic Imaging Studies of Human Emotional Disorders. The MIT Press: Cambridge (Mass), 1995.

    Google Scholar 

  112. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL . A default mode of brain function. Proc Natl Acad Sci USA 2001; 98: 676–682.

    CAS  PubMed  Google Scholar 

  113. Wang J, Zhang Y, Wolf RL, Roc AC, Alsop DC, Detre JA . Amplitude-modulated continuous arterial spin-labeling 3.0-T perfusion MR imaging with a single coil: feasibility study. Radiology 2005; 235: 218–228.

    PubMed  Google Scholar 

  114. Viviani R, Sim EJ, Lo H, Richter S, Haffer S, Osterfeld N, et al. Components of variance in brain perfusion and the design of studies of individual differences: the baseline study. Neuroimage 2009; 46: 12–22.

    PubMed  Google Scholar 

  115. Wang DJ, Chen Y, Fernandez-Seara MA, Detre JA . Potentials and challenges for arterial spin labeling in pharmacological magnetic resonance imaging. J Pharmacol Exp Ther 2011; 337: 359–366.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Viviani R, Sim EJ, Lo H, Beschoner P, Osterfeld N, Maier C et al. Baseline brain perfusion and the serotonin transporter promoter polymorphism. Biol Psychiatry 2010; 67: 317–322.

    CAS  PubMed  Google Scholar 

  117. Paus T . Functional anatomy of arousal and attention systems in the human brain. Prog Brain Res 2000; 126: 65–77.

    CAS  PubMed  Google Scholar 

  118. Stingl JC, Esslinger C, Tost H, Bilek E, Kirsch P, Ohmle B et al. Genetic variation in CYP2D6 impacts neural activation during cognitive tasks in humans. Neuroimage 2011.

  119. Chen W, Ogawa S . Principle of BOLD-functional MRI. Springer: Berlin, 1999.

    Google Scholar 

  120. Hariri AR, Bookheimer SY, Mazziotta JC . Modulating emotional responses: effects of a neocortical network on the limbic system. Neuroreport 2000; 11: 43–48.

    CAS  PubMed  Google Scholar 

  121. Davies D, Parasumaran R . The Psychology of Vigilance. Academic Press: London, 1982.

    Google Scholar 

  122. Penas LLed EM, Dorado P, Pacheco R, Gonzalez I, LLerena A . Relation between CYP2D6 genotype, personality, neurocognition and overall psychopathology in healthy volunteers. Pharmacogenomics 2009; 10: 1111–1120.

    Google Scholar 

  123. Bertilsson L, Alm C, De Las Carreras C, Widen J, Edman G, Schalling D . Debrisoquine hydroxylation polymorphism and personality. Lancet 1989; 1: 555.

    CAS  PubMed  Google Scholar 

  124. Sjobring H . Personality structure and development. A model and its application. Acta Psychiatr Scand Suppl 1973; 244: 1–20.

    CAS  PubMed  Google Scholar 

  125. Berrios GE . Feelings of fatigue and psychopathology: a conceptual history. Compr Psychiatry 1990; 31: 140–151.

    CAS  PubMed  Google Scholar 

  126. Roberts RL, Luty SE, Mulder RT, Joyce PR, Kennedy MA . Association between cytochrome P450 2D6 genotype and harm avoidance. Am J Med Genet B Neuropsychiatr Genet 2004; 127B: 90–93.

    PubMed  Google Scholar 

  127. LLerena A, Edman G, Cobaleda J, Benitez J, Schalling D, Bertilsson L . Relationship between personality and debrisoquine hydroxylation capacity. Suggestion of an endogenous neuroactive substrate or product of the cytochrome P4502D6. Acta Psychiatr Scand 1993; 87: 23–28.

    CAS  PubMed  Google Scholar 

  128. Gonzalez I, Penas-Lledo EM, Perez B, Dorado P, Alvarez M, LLerena A . Relation between CYP2D6 phenotype and genotype and personality in healthy volunteers. Pharmacogenomics 2008; 9: 833–840.

    CAS  PubMed  Google Scholar 

  129. Iwashima K, Yasui-Furukori N, Kaneda A, Saito M, Nakagami T, Sato Y, et al. No association between CYP2D6 polymorphisms and personality trait in Japanese. Br J Clin Pharmacol 2007; 64: 96–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Kirchheiner J, Lang U, Stamm T, Sander T, Gallinat J . Association of CYP2D6 genotypes and personality traits in healthy individuals. J Clin Psychopharmacol 2006; 26: 440–442.

    PubMed  Google Scholar 

  131. Suzuki E, Kitao Y, Ono Y, Iijima Y, Inada T . Cytochrome P450 2D6 polymorphism and character traits. Psychiatr Genet 2003; 13: 111–113.

    PubMed  Google Scholar 

  132. Gan SH, Ismail R, Wan Adnan WA, Zulmi W, Kumaraswamy N, Larmie ET . Relationship between Type A and B personality and debrisoquine hydroxylation capacity. Br J Clin Pharmacol 2004; 57: 785–789.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Kalow W . Interethnic variation of drug metabolism. Trends Pharmacol Sci 1991; 12: 102–107.

    CAS  PubMed  Google Scholar 

  134. Sistonen J, Fuselli S, Palo JU, Chauhan N, Padh H, Sajantila A . Pharmacogenetic variation at CYP2C9, CYP2C19, and CYP2D6 at global and microgeographic scales. Pharmacogenet Genomics 2009; 19: 170–179.

    CAS  PubMed  Google Scholar 

  135. Ishii G, Suzuki A, Oshino S, Shiraishi H, Otani K . CYP2C19 polymorphism affects personality traits of Japanese females. Neurosci Lett 2007; 411: 77–80.

    CAS  PubMed  Google Scholar 

  136. Yasui-Furukori N, Kaneda A, Iwashima K, Saito M, Nakagami T, Tsuchimine S et al. Association between cytochrome P450 (CYP) 2C19 polymorphisms and harm avoidance in Japanese. Am J Med Genet B Neuropsychiatr Genet 2007; 144B: 724–727.

    CAS  PubMed  Google Scholar 

  137. Tyndale RF, Sunahara R, Inaba T, Kalow W, Gonzalez FJ, Niznik HB . Neuronal cytochrome P450IID1 (debrisoquine/sparteine-type): potent inhibition of activity by (-)-cocaine and nucleotide sequence identity to human hepatic P450 gene CYP2D6. Mol Pharmacol 1991; 40: 63–68.

    CAS  PubMed  Google Scholar 

  138. Alvarez S, Mas S, Gasso P, Bernardo M, Parellada E, Lafuente A . Lack of association between schizophrenia and polymorphisms in dopamine metabolism and transport genes. Fundam Clin Pharmacol 2009; 24: 741–747.

    Google Scholar 

  139. Armstrong M, Daly AK, Blennerhassett R, Ferrier N, Idle JR . Antipsychotic drug-induced movement disorders in schizophrenics in relation to CYP2D6 genotype. Br J Psychiatry 1997; 170: 23–26.

    CAS  PubMed  Google Scholar 

  140. Daniels J, Williams J, Asherson P, McGuffin P, Owen M . No association between schizophrenia and polymorphisms within the genes for debrisoquine 4-hydroxylase (CYP2D6) and the dopamine transporter (DAT). Am J Med Genet 1995; 60: 85–87.

    CAS  PubMed  Google Scholar 

  141. Dawson E, Powell JF, Nothen MM, Crocq MA, Lanczik M, Korner J et al. An association study of debrisoquine hydroxylase (CYP2D6) polymorphisms in schizophrenia. Psychiatr Genet 1994; 4: 215–218.

    CAS  PubMed  Google Scholar 

  142. Jonsson EG, Dahl ML, Roh HK, Jerling M, Sedvall GC . Lack of association between debrisoquine 4-hydroxylase (CYP2D6) gene polymorphisms and schizophrenia. Psychiatr Genet 1998; 8: 25–28.

    CAS  PubMed  Google Scholar 

  143. Kohlrausch FB, Gama CS, Lobato MI, Belmonte-de-Abreu P, Gesteira A, Barros F et al. Molecular diversity at the CYP2D6 locus in healthy and schizophrenic southern Brazilians. Pharmacogenomics 2009; 10: 1457–1466.

    CAS  PubMed  Google Scholar 

  144. Pirmohamed M, Wild MJ, Kitteringham NR, O’Brien K, Buchan IE, Back DJ et al. Lack association between schizophrenia and the CYP2D6 gene polymorphisms. Am J Med Genet 1996; 67: 236–237.

    CAS  PubMed  Google Scholar 

  145. Spina E, Ancione M, Di Rosa AE, Meduri M, Caputi AP . Polymorphic debrisoquine oxidation and acute neuroleptic-induced adverse effects. Eur J Clin Pharmacol 1992; 42: 347–348.

    CAS  PubMed  Google Scholar 

  146. Vallada H, Collier D, Dawson E, Owen M, Nanko S, Murray R et al. Debrisoquine 4-hydroxylase (CYP2D) locus and possible susceptibility to schizophrenia. Lancet 1992; 340: 181–182.

    CAS  PubMed  Google Scholar 

  147. Brockmöller J, Kirchheiner J, Schmider J, Walter S, Sachse C, Muller-Oerlinghausen B et al. The impact of the CYP2D6 polymorphism on haloperidol pharmacokinetics and on the outcome of haloperidol treatment. Clin Pharmacol Ther 2002; 72: 438–452.

    PubMed  Google Scholar 

  148. Dahl AA, Lowert A, Asserson S, Bjarking L, Berglund J, Kristensen F et al. Hydroxylation polymorphism of debrisoquine hydroxylase (CYP2D6) in patients with schizophrenia in Norway and Denmark. Hum Psychopharmacol 1998; 13: 509–511.

    Google Scholar 

  149. Gasso P, Mas S, Alvarez S, Trias G, Bioque M, Oliveira C et al. Xenobiotic metabolizing and transporter genes: gene-gene interactions in schizophrenia and related disorders. Pharmacogenomics 2010; 11: 1725–1731.

    CAS  PubMed  Google Scholar 

  150. LLerena A, Dorado P, Penas-LLedó EM, Caceres MC, De la Rubia A . Low frequency of CYP2D6 poor metabolizers among schizophrenia patients. Pharmacogenomics J 2007; 7: 408–410.

    CAS  PubMed  Google Scholar 

  151. Druid H, Holmgren P, Carlsson B, Ahlner J . Cytochrome P450 2D6 (CYP2D6) genotyping on postmortem blood as a supplementary tool for interpretation of forensic toxicological results. Forensic Sci Int 1999; 99: 25–34.

    CAS  PubMed  Google Scholar 

  152. Holmgren P, Carlsson B, Zackrisson AL, Lindblom B, Dahl ML, Scordo MG et al. Enantioselective analysis of citalopram and its metabolites in postmortem blood and genotyping for CYD2D6 and CYP2C19. J Anal Toxicol 2004; 28: 94–104.

    CAS  PubMed  Google Scholar 

  153. Zackrisson AL, Holmgren P, Gladh AB, Ahlner J, Lindblom B . Fatal intoxication cases: cytochrome P450 2D6 and 2C19 genotype distributions. Eur J Clin Pharmacol 2004; 60: 547–552.

    CAS  PubMed  Google Scholar 

  154. Zackrisson AL, Lindblom B, Ahlner J . High frequency of occurrence of CYP2D6 gene duplication/multiduplication indicating ultrarapid metabolism among suicide cases. Clin Pharmacol Ther 2010; 88: 354–359.

    CAS  PubMed  Google Scholar 

  155. Stingl JC, Viviani R . CYP2D6 in the brain: impact on suicidality. Clin Pharmacol Ther 2011; 89: 352–353.

    CAS  PubMed  Google Scholar 

  156. Penas-Lledo EM, Blasco-Fontecilla H, Dorado P, Vaquero-Lorenzo C, Baca-Garcia E, Llerena A . CYP2D6 and the severity of suicide attempts. Pharmacogenomics 2011.

  157. Penas-LLedó EM, Dorado P, Aguera Z, Gratacos M, Estivill X, Fernandez-Aranda F et al. CYP2D6 polymorphism in patients with eating disorders. Pharmacogenomics J 2011.

  158. Josefsson A, Sydsjo G, Berg G, Dahl ML, Wadelius M, Nordin C . CYP2D6 genotypes and depressive symptoms during late pregnancy and postpartum. Nord J Psychiatry 2004; 58: 61–64.

    PubMed  Google Scholar 

  159. Sim SC, Nordin L, Andersson TM, Virding S, Olsson M, Pedersen NL et al. Association between CYP2C19 polymorphism and depressive symptoms. Am J Med Genet B Neuropsychiatr Genet 2011; 153B: 1160–1166.

    Google Scholar 

  160. Lofgren S, Baldwin RM, Hiratsuka M, Lindqvist A, Carlberg A, Sim SC et al. Generation of mice transgenic for human CYP2C18 and CYP2C19: characterization of the sexually dimorphic gene and enzyme expression. Drug Metab Dispos 2008; 36: 955–962.

    PubMed  Google Scholar 

  161. LLerena A, Berecz R, Dorado P, Gonzalez AP, Penas-LLedo EM, De La Rubia A . CYP2C9 gene and susceptibility to major depressive disorder. Pharmacogenomics J 2003; 3: 300–302.

    CAS  PubMed  Google Scholar 

  162. Bijl MJ, Luijendijk HJ, van den Berg JF, Visser LE, van Schaik RH, Hofman A et al. Association between the CYP2D6*4 polymorphism and depression or anxiety in the elderly. Pharmacogenomics 2009; 10: 541–547.

    CAS  PubMed  Google Scholar 

  163. Hiemke C, Baumann P, Bergemann N, Conca A, Dietmaier O, Egberts K et al. AGNP Consensus Guidelines for Therapeutic Drug Monitoring in Psychiatry Update 2011. Psychopharmacology (Berl) 2011; 44: 195–235.

    Google Scholar 

  164. Isacsson G, Reutfors J, Papadopoulos FC, Osby U, Ahlner J . Antidepressant medication prevents suicide in depression. Acta Psychiatr Scand 2009; 122: 454–460.

    Google Scholar 

  165. Robbins TW, Crockett MJ . Role of central serotonin in impulsivity and compulsivity: comparative studies in experimental animals and humans. In: Müller C, Jacobs B (eds). Handbook of Behavioral Neurobiology of Serotonin. Academic Press: London, 2010, pp 415–427.

    Google Scholar 

  166. Zanger UM, Raimundo S, Eichelbaum M . Cytochrome P450 2D6: overview and update on pharmacology, genetics, biochemistry. Naunyn Schmiedebergs Arch Pharmacol 2004; 369: 23–37.

    CAS  PubMed  Google Scholar 

  167. Sachse C, Brockmöller J, Bauer S, Roots I . Functional significance of a C → A polymorphism in intron 1 of the cytochrome P450 CYP1A2 gene tested with caffeine. Br J Clin Pharmacol 1999; 47: 445–449.

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Westlind-Johnsson A, Hermann R, Huennemeyer A, Hauns B, Lahu G, Nassr N et al. Identification and characterization of CYP3A4*20, a novel rare CYP3A4 allele without functional activity. Clin Pharmacol Ther 2006; 79: 339–349.

    CAS  PubMed  Google Scholar 

  169. Kirchheiner J, Klein C, Meineke I, Sasse J, Zanger UM, Murdter TE et al. Bupropion and 4-OH-bupropion pharmacokinetics in relation to genetic polymorphisms in CYP2B6. Pharmacogenetics 2003; 13: 619–626.

    CAS  PubMed  Google Scholar 

  170. Mwenifumbo JC, Tyndale RF . Genetic variability in CYP2A6 and the pharmacokinetics of nicotine. Pharmacogenomics 2007; 8: 1385–1402.

    CAS  PubMed  Google Scholar 

  171. de Leon J . Glucuronidation enzymes, genes and psychiatry. Int J Neuropsychopharmacol 2003; 6: 57–72.

    CAS  PubMed  Google Scholar 

  172. Grasmader K, Verwohlt PL, Rietschel M, Dragicevic A, Muller M, Hiemke C et al. Impact of polymorphisms of cytochrome-P450 isoenzymes 2C9, 2C19 and 2D6 on plasma concentrations and clinical effects of antidepressants in a naturalistic clinical setting. Eur J Clin Pharmacol 2004; 60: 329–336.

    PubMed  Google Scholar 

  173. Murphy Jr GM, Kremer C, Rodrigues HE, Schatzberg AF . Pharmacogenetics of antidepressant medication intolerance. Am J Psychiatry 2003; 160: 1830–1835.

    PubMed  Google Scholar 

  174. Steimer W, Zopf K, von Amelunxen S, Pfeiffer H, Bachofer J, Popp J et al. Amitriptyline or not, that is the question: pharmacogenetic testing of CYP2D6 and CYP2C19 identifies patients with low or high risk for side effects in amitriptyline therapy. Clin Chem 2005; 51: 376–385.

    CAS  PubMed  Google Scholar 

  175. de Vos A, van der Weide J, Loovers HM . Association between CYP2C19*17 and metabolism of amitriptyline, citalopram and clomipramine in Dutch hospitalized patients. Pharmacogenomics J 2011; 11: 359–367.

    CAS  PubMed  Google Scholar 

  176. Schenk PW, van Vliet M, Mathot RA, van Gelder T, Vulto AG, van Fessem MA et al. The CYP2C19*17 genotype is associated with lower imipramine plasma concentrations in a large group of depressed patients. Pharmacogenomics J 2010; 10: 219–225.

    CAS  PubMed  Google Scholar 

  177. Peters EJ, Slager SL, Kraft JB, Jenkins GD, Reinalda MS, McGrath PJ et al. Pharmacokinetic genes do not influence response or tolerance to citalopram in the STAR*D sample. PLoS ONE 2008; 3: e1872.

    PubMed  PubMed Central  Google Scholar 

  178. Fudio S, Borobia AM, Pinana E, Ramirez E, Tabares B, Guerra P et al. Evaluation of the influence of sex and CYP2C19 and CYP2D6 polymorphisms in the disposition of citalopram. Eur J Pharmacol 2011; 626: 200–204.

    Google Scholar 

  179. Rudberg I, Hendset M, Uthus LH, Molden E, Refsum H . Heterozygous mutation in CYP2C19 significantly increases the concentration/dose ratio of racemic citalopram and escitalopram (S-citalopram). Ther Drug Monit 2006; 28: 102–105.

    CAS  PubMed  Google Scholar 

  180. Noehr-Jensen L, Zwisler ST, Larsen F, Sindrup SH, Damkier P, Nielsen F et al. Impact of CYP2C19 phenotypes on escitalopram metabolism and an evaluation of pupillometry as a serotonergic biomarker. Eur J Clin Pharmacol 2009; 65: 887–894.

    CAS  PubMed  Google Scholar 

  181. Tsai MH, Lin KM, Hsiao MC, Shen WW, Lu ML, Tang HS et al. Genetic polymorphisms of cytochrome P450 enzymes influence metabolism of the antidepressant escitalopram and treatment response. Pharmacogenomics 2011; 11: 537–546.

    Google Scholar 

  182. Ohlsson Rosenborg S, Mwinyi J, Andersson M, Baldwin RM, Pedersen RS, Sim SC et al. Kinetics of omeprazole and escitalopram in relation to the CYP2C19*17 allele in healthy subjects. Eur J Clin Pharmacol 2008; 64: 1175–1179.

    CAS  PubMed  Google Scholar 

  183. Rudberg I, Mohebi B, Hermann M, Refsum H, Molden E . Impact of the ultrarapid CYP2C19*17 allele on serum concentration of escitalopram in psychiatric patients. Clin Pharmacol Ther 2008; 83: 322–327.

    CAS  PubMed  Google Scholar 

  184. Roberts RL, Mulder RT, Joyce PR, Luty SE, Kennedy MA . No evidence of increased adverse drug reactions in cytochrome P450 CYP2D6 poor metabolizers treated with fluoxetine or nortriptyline. Hum Psychopharmacol 2004; 19: 17–23.

    CAS  PubMed  Google Scholar 

  185. Scordo MG, Spina E, Dahl ML, Gatti G, Perucca E . Influence of CYP2C9, 2C19 and 2D6 genetic polymorphisms on the steady-state plasma concentrations of the enantiomers of fluoxetine and norfluoxetine. Basic Clin Pharmacol Toxicol 2005; 97: 296–301.

    CAS  PubMed  Google Scholar 

  186. Gerstenberg G, Aoshima T, Fukasawa T, Yoshida K, Takahashi H, Higuchi H et al. Relationship between clinical effects of fluvoxamine and the steady-state plasma concentrations of fluvoxamine and its major metabolite fluvoxamino acid in Japanese depressed patients. Psychopharmacology (Berl) 2003; 167: 443–448.

    CAS  Google Scholar 

  187. Suzuki Y, Sawamura K, Someya T . Polymorphisms in the 5-hydroxytryptamine 2A receptor and cytochrome P4502D6 genes synergistically predict fluvoxamine-induced side effects in Japanese depressed patients. Neuropsychopharmacology 2006; 31: 825–831.

    CAS  PubMed  Google Scholar 

  188. Watanabe J, Suzuki Y, Fukui N, Sugai T, Ono S, Inoue Y et al. Dose-dependent effect of the CYP2D6 genotype on the steady-state fluvoxamine concentration. Ther Drug Monit 2008; 30: 705–708.

    CAS  PubMed  Google Scholar 

  189. Van Nieuwerburgh FC, Denys DA, Westenberg HG, Deforce DL . Response to serotonin reuptake inhibitors in OCD is not influenced by common CYP2D6 polymorphisms. Int J Psychiatry Clin Pract 2009; 13: 345–348.

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Zourkova A, Ceskova E, Hadasova E, Ravcukova B . Links among paroxetine-induced sexual dysfunctions, gender, and CYP2D6 activity. J Sex Marital Ther 2007; 33: 343–355.

    PubMed  Google Scholar 

  191. Laine K, Kytola J, Bertilsson L . Severe adverse effects in a newborn with two defective CYP2D6 alleles after exposure to paroxetine during late pregnancy. Ther Drug Monit 2004; 26: 685–687.

    CAS  PubMed  Google Scholar 

  192. Sato A, Okura Y, Minagawa S, Ohno Y, Fujita S, Kondo D et al. Life-threatening serotonin syndrome in a patient with chronic heart failure and CYP2D6*1/*5. Mayo Clin Proc 2004; 79: 1444–1448.

    PubMed  Google Scholar 

  193. Grasmader K, Verwohlt PL, Kuhn KU, Dragicevic A, von Widdern O, Zobel A et al. Population pharmacokinetic analysis of mirtazapine. Eur J Clin Pharmacol 2004; 60: 473–480.

    PubMed  Google Scholar 

  194. Rudberg I, Hermann M, Refsum H, Molden E . Serum concentrations of sertraline and N-desmethyl sertraline in relation to CYP2C19 genotype in psychiatric patients. Eur J Clin Pharmacol 2008; 64: 1181–1188.

    CAS  PubMed  Google Scholar 

  195. Wang JH, Liu ZQ, Wang W, Chen XP, Shu Y, He N et al. Pharmacokinetics of sertraline in relation to genetic polymorphism of CYP2C19. Clin Pharmacol Ther 2001; 70: 42–47.

    CAS  PubMed  Google Scholar 

  196. Product information. Agomelatine, 2010; Available from: http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_Product_Information/human/000915/WC500046227.pdf (retrieved May 2012).

  197. Kirchheiner J, Klein C, Meineke I, Sasse J, Zanger UM, Murdter TE et al. Bupropion and 4-OH-bupropion pharmacokinetics in relation to genetic polymorphisms in CYP2B6. Pharmacogenetics 2003; 13: 619–626.

    CAS  PubMed  Google Scholar 

  198. Chan C, Yeo KP, Pan AX, Lim M, Knadler MP, Small DS . Duloxetine pharmacokinetics are similar in Japanese and Caucasian subjects. Br J Clin Pharmacol 2007; 63: 310–314.

    CAS  PubMed  Google Scholar 

  199. Tianmei S, Knadler MP, Lim MT, Yeo KP, Teng L, Liang S et al. Pharmacokinetics and tolerability of duloxetine following oral administration to healthy Chinese subjects. Clin Pharmacokinet 2007; 46: 767–775.

    PubMed  Google Scholar 

  200. Gabris G, Baumann P, Janzier-perey M, Bosshart P, Woggon B, Küpfer A . N-methylation of maprotiline in debrisoquine/mephenytoin-phenotyped depressive patients. Biochem Pharmacol 1985; 34: 409–410.

    CAS  Google Scholar 

  201. Firkusny L, Gleiter CH . Maprotiline metabolism appears to co-segregate with the genetically-determined CYP2D6 polymorphic hydroxylation of debrisoquine. Br J Clin Pharmacol 1994; 37: 383–388.

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Brockmöller J, Meineke I, Kirchheiner J . Pharmacokinetics of mirtazapine: enantioselective effects of the CYP2D6 ultra rapid metabolizer genotype and correlation with adverse effects. Clin Pharmacol Ther 2007; 81: 699–707.

    PubMed  Google Scholar 

  203. Lind AB, Reis M, Bengtsson F, Jonzier-Perey M, Powell Golay K, Ahlner J et al. Steady-state concentrations of mirtazapine, N-desmethylmirtazapine, 8-hydroxymirtazapine and their enantiomers in relation to cytochrome P450 2D6 genotype, age and smoking behaviour. Clin Pharmacokinet 2009; 48: 63–70.

    CAS  PubMed  Google Scholar 

  204. Lobello KW, Preskorn SH, Guico-Pabia CJ, Jiang Q, Paul J, Nichols AI et al. Cytochrome P450 2D6 phenotype predicts antidepressant efficacy of venlafaxine: a secondary analysis of 4 studies in major depressive disorder. J Clin Psychiatry 2010; 71: 1482–1487.

    CAS  PubMed  Google Scholar 

  205. Nichols AI, Lobello K, Guico-Pabia CJ, Paul J, Preskorn SH . Venlafaxine metabolism as a marker of cytochrome P450 enzyme 2D6 metabolizer status. J Clin Psychopharmacol 2009; 29: 383–386.

    CAS  PubMed  Google Scholar 

  206. Kandasamy M, Srinivas P, Subramaniam K, Ravi S, John J, Shekar R et al. Differential outcomes from metabolic ratios in the identification of CYP2D6 phenotypes–focus on venlafaxine and O-desmethylvenlafaxine. Eur J Clin Pharmacol 2010; 66: 879–887.

    CAS  PubMed  Google Scholar 

  207. McAlpine DE, Biernacka JM, Mrazek DA, O’Kane DJ, Stevens SR, Langman LJ et al. Effect of cytochrome P450 enzyme polymorphisms on pharmacokinetics of venlafaxine. Ther Drug Monit 2010; 33: 14–20.

    Google Scholar 

  208. Nichols AI, Focht K, Jiang Q, Preskorn SH, Kane CP . Pharmacokinetics of venlafaxine extended release 75 mg and desvenlafaxine 50 mg in healthy CYP2D6 extensive and poor metabolizers: a randomized, open-label, two-period, parallel-group, crossover study. Clin Drug Investig 2011; 31: 155–167.

    CAS  PubMed  Google Scholar 

  209. Aitchison KJ, Munro J, Wright P, Smith S, Makoff AJ, Sachse C et al. Failure to respond to treatment with typical antipsychotics is not associated with CYP2D6 ultrarapid hydroxylation. Br J Clin Pharmacol 1999; 48: 388–394.

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Andreassen OA, MacEwan T, Gulbrandsen AK, McCreadie RG, Steen VM . Non-functional CYP2D6 alleles and risk for neuroleptic-induced movement disorders in schizophrenic patients. Psychopharmacology (Berl) 1997; 131: 174–179.

    CAS  Google Scholar 

  211. Arthur H, Dahl ML, Siwers B, Sjöqvist F . Polymorphic drug metabolism in schizophrenic patients with tardive dyskinesia. J Clin Psychopharmacol 1995; 15: 211–216.

    CAS  PubMed  Google Scholar 

  212. Ellingrod VL, Schultz SK, Arndt S . Association between cytochrome P4502D6 (CYP2D6) genotype, antipsychotic exposure, and abnormal involuntary movement scale (AIMS) score. Psychiatr Genet 2000; 10: 9–11.

    CAS  PubMed  Google Scholar 

  213. Plesnicar BK, Zalar B, Breskvar K, Dolzan V . The influence of the CYP2D6 polymorphism on psychopathological and extrapyramidal symptoms in the patients on long-term antipsychotic treatment. J Psychopharmacol 2006; 20: 829–833.

    CAS  PubMed  Google Scholar 

  214. Scordo MG, Spina E, Romeo P, Dahl ML, Bertilsson L, Johansson I et al. CYP2D6 genotype and antipsychotic-induced extrapyramidal side effects in schizophrenic patients. Eur J Clin Pharmacol 2000; 56: 679–683.

    CAS  PubMed  Google Scholar 

  215. Topic E, Stefanovic M, Ivanisevic AM, Blazinic F, Culav J, Skocilic Z . CYP2D6 genotyping in patients on psychoactive drug therapy. Clin Chem Lab Med 2000; 38: 921–927.

    CAS  PubMed  Google Scholar 

  216. Panagiotidis G, Arthur HW, Lindh JD, Dahl ML, Sjoqvist F . Depot haloperidol treatment in outpatients with schizophrenia on monotherapy: impact of CYP2D6 polymorphism on pharmacokinetics and treatment outcome. Ther Drug Monit 2007; 29: 417–422.

    CAS  PubMed  Google Scholar 

  217. Jerling M, Dahl ML, Aberg Wistedt A, Liljenberg B, Landell NE, Bertilsson L et al. The CYP2D6 genotype predicts the oral clearance of the neuroleptic agents perphenazine and zuclopenthixol. Clin Pharmacol Ther 1996; 59: 423–428.

    CAS  PubMed  Google Scholar 

  218. Jaanson P, Marandi T, Kiivet RA, Vasar V, Vaan S, Svensson JO et al. Maintenance therapy with zuclopenthixol decanoate: associations between plasma concentrations, neurological side effects and CYP2D6 genotype. Psychopharmacology (Berl) 2002; 162: 67–73.

    CAS  Google Scholar 

  219. Thanacoody RH, Daly AK, Reilly JG, Ferrier IN, Thomas SH . Factors affecting drug concentrations and QT interval during thioridazine therapy. Clin Pharmacol Ther 2007; 82: 555–565.

    CAS  PubMed  Google Scholar 

  220. Oosterhuis M, Van De Kraats G, Tenback D . Safety of aripiprazole: high serum levels in a CYP2D6 mutated patient. Am J Psychiatry 2007; 164: 175.

    PubMed  Google Scholar 

  221. Hendset M, Hermann M, Lunde H, Refsum H, Molden E . Impact of the CYP2D6 genotype on steady-state serum concentrations of aripiprazole and dehydroaripiprazole. Eur J Clin Pharmacol 2007; 63: 1147–1151.

    CAS  PubMed  Google Scholar 

  222. Jaquenoud S E, Knezevic B, Morena GP, Harenberg S, Oneda B, Crettol S et al. ABCB1 and cytochrome P450 polymorphisms: clinical pharmacogenetics of clozapine. J Clin Psychopharmacol 2009; 29: 319–326.

    Google Scholar 

  223. Dettling M, Sachse C, Muller-Oerlinghausen B, Roots I, Brockmöller J, Rolfs A et al. Clozapine-induced agranulocytosis and hereditary polymorphisms of clozapine metabolizing enzymes: no association with myeloperoxidase and cytochrome P4502D6. Pharmacopsychiatry 2000; 33: 218–220.

    CAS  PubMed  Google Scholar 

  224. Ellingrod VL, Miller D, Schultz SK, Wehring H, Arndt S . CYP2D6 polymorphisms and atypical antipsychotic weight gain. Psychiatr Genet 2002; 12: 55–58.

    PubMed  Google Scholar 

  225. Ghotbi R, Mannheimer B, Aklillu E, Suda A, Bertilsson L, Eliasson E et al. Carriers of the UGT1A4 142T>G gene variant are predisposed to reduced olanzapine exposure–an impact similar to male gender or smoking in schizophrenic patients. Eur J Clin Pharmacol 2010; 66: 465–474.

    CAS  PubMed  Google Scholar 

  226. Hendset M, Molden E, Refsum H, Hermann M . Impact of CYP2D6 genotype on steady-state serum concentrations of risperidone and 9-hydroxyrisperidone in patients using long-acting injectable risperidone. J Clin Psychopharmacol 2009; 29: 537–541.

    CAS  PubMed  Google Scholar 

  227. Jovanovic N, Bozina N, Lovric M, Medved V, Jakovljevic M, Peles AM . The role of CYP2D6 and ABCB1 pharmacogenetics in drug-naive patients with first-episode schizophrenia treated with risperidone. Eur J Clin Pharmacol 2010; 66: 1109–1117.

    CAS  PubMed  Google Scholar 

  228. Locatelli I, Kastelic M, Koprivsek J, Kores-Plesnicar B, Mrhar A, Dolzan V et al. A population pharmacokinetic evaluation of the influence of CYP2D6 genotype on risperidone metabolism in patients with acute episode of schizophrenia. Eur J Pharm Sci 2010; 41: 289–298.

    CAS  PubMed  Google Scholar 

  229. Fukasawa T, Yasui-Furukori N, Suzuki A, Inoue Y, Tateishi T, Otani K . Pharmacokinetics and pharmacodynamics of etizolam are influenced by polymorphic CYP2C19 activity. Eur J Clin Pharmacol 2005; 61: 791–795.

    CAS  PubMed  Google Scholar 

  230. Bertilsson L, Henthorn TK, Sanz E, Tybring G, Säwe J, Villen T . Importance of genetic factors in the regulation of diazepam metabolism: relationship to S-mephenytoin, but not debrisoquin, hydroxylation phenotype. Clin Pharmacol Ther 1989; 45: 348–355.

    CAS  PubMed  Google Scholar 

  231. Chung JY, Cho JY, Yu KS, Kim JR, Lim KS, Sohn DR et al. Pharmacokinetic and pharmacodynamic interaction of lorazepam and valproic acid in relation to UGT2B7 genetic polymorphism in healthy subjects. Clin Pharmacol Ther 2008; 83: 595–600.

    CAS  PubMed  Google Scholar 

  232. Chung JY, Cho JY, Yu KS, Kim JR, Jung HR, Lim KS et al. Effect of the UGT2B15 genotype on the pharmacokinetics, pharmacodynamics, and drug interactions of intravenous lorazepam in healthy volunteers. Clin Pharmacol Ther 2005; 77: 486–494.

    CAS  PubMed  Google Scholar 

  233. He X, Hesse LM, Hazarika S, Masse G, Harmatz JS, Greenblatt DJ et al. Evidence for oxazepam as an in vivo probe of UGT2B15: oxazepam clearance is reduced by UGT2B15 D85Y polymorphism but unaffected by UGT2B17 deletion. Br J Clin Pharmacol 2009; 68: 721–730.

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Blanca Sanchez M, Herranz JL, Leno C, Arteaga R, Oterino A, Valdizan EM et al. UGT2B7_-161C>T polymorphism is associated with lamotrigine concentration-to-dose ratio in a multivariate study. Ther Drug Monit 2011; 32: 177–184.

    Google Scholar 

  235. Gulcebi MI, Ozkaynakci A, Goren MZ, Aker RG, Ozkara C, Onat FY . The relationship between UGT1A4 polymorphism and serum concentration of lamotrigine in patients with epilepsy. Epilepsy Res 2011; 95: 1–8.

    CAS  PubMed  Google Scholar 

  236. Hiemke C, Baumann P, Bergemann N, Conca A, Dietmaier O, Egberts K et al. AGNP Consensus Guidelines for Therapeutic Drug Monitoring in Psychiatry Update 2011. Pharmacopsychiatry 2011; 44: 195–235.

    PubMed  Google Scholar 

  237. Magro L, Moretti U, Leone R . Epidemiology and characteristics of adverse drug reactions caused by drug-drug interactions. Expert Opin Drug Saf 2011.

  238. Yu AM, Idle JR, Herraiz T, Kupfer A, Gonzalez FJ . Screening for endogenous substrates reveals that CYP2D6 is a 5-methoxyindolethylamine O-demethylase. Pharmacogenetics 2003; 13: 307–319.

    CAS  PubMed  Google Scholar 

  239. Yu AM, Idle JR, Krausz KW, Kupfer A, Gonzalez FJ . Contribution of individual cytochrome P450 isozymes to the O-demethylation of the psychotropic beta-carboline alkaloids harmaline and harmine. J Pharmacol Exp Ther 2003; 305: 315–322.

    CAS  PubMed  Google Scholar 

  240. Fradette C, Yamaguchi N, Du Souich P . 5-Hydroxytryptamine is biotransformed by CYP2C9, 2C19 and 2B6 to hydroxylamine, which is converted into nitric oxide. Br J Pharmacol 2004; 141: 407–414.

    CAS  PubMed  PubMed Central  Google Scholar 

  241. Watanabe K, Yamaori S, Funahashi T, Kimura T, Yamamoto I . Cytochrome P450 enzymes involved in the metabolism of tetrahydrocannabinols and cannabinol by human hepatic microsomes. Life Sci 2007; 80: 1415–1419.

    CAS  PubMed  Google Scholar 

  242. Ma X, Idle JR, Krausz KW, Gonzalez FJ . Metabolism of melatonin by human cytochromes p450. Drug Metab Dispos 2005; 33: 489–494.

    CAS  PubMed  Google Scholar 

  243. Krishnaswamy S, Hao Q, Al-Rohaimi A, Hesse LM, von Moltke LL, Greenblatt DJ et al. UDP glucuronosyltransferase (UGT) 1A6 pharmacogenetics I. Identification of polymorphisms in the 5′-regulatory and exon 1 regions, and association with human liver UGT1A6 gene expression and glucuronidation. J Pharmacol Exp Ther 2005; 313: 1331–1339.

    CAS  PubMed  Google Scholar 

  244. Mazur A, Lichti CF, Prather PL, Zielinska AK, Bratton SM, Gallus-Zawada A et al. Characterization of human hepatic and extrahepatic UDP-glucuronosyltransferase enzymes involved in the metabolism of classic cannabinoids. Drug Metab Dispos 2009; 37: 1496–1504.

    CAS  PubMed  PubMed Central  Google Scholar 

  245. Shimada T, Yamazaki H, Mimura M, Inui Y, Guengerich FP . Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther 1994; 270: 414–423.

    CAS  PubMed  Google Scholar 

  246. Jansson I, Stoilov I, Sarfarazi M, Schenkman JB . Effect of two mutations of human CYP1B1, G61E and R469W, on stability and endogenous steroid substrate metabolism. Pharmacogenetics 2001; 11: 793–801.

    CAS  PubMed  Google Scholar 

  247. Hashizume T, Imaoka S, Mise M, Terauchi Y, Fujii T, Miyazaki H et al. Involvement of CYP2J2 and CYP4F12 in the metabolism of ebastine in human intestinal microsomes. J Pharmacol Exp Ther 2002; 300: 298–304.

    CAS  PubMed  Google Scholar 

  248. Matsumoto S, Hirama T, Matsubara T, Nagata K, Yamazoe Y . Involvement of CYP2J2 on the intestinal first-pass metabolism of antihistamine drug, astemizole. Drug Metab Dispos 2002; 30: 1240–1245.

    CAS  PubMed  Google Scholar 

  249. Van Essen DC . A population-average, landmark- and surface-based (PALS) atlas of human cerebral cortex. Neuroimage 2005; 28: 635–662.

    Google Scholar 

Download references

Acknowledgements

We thank Ms Baerbel Reiser for her helpful assistance in the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J C Stingl.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stingl, J., Brockmöller, J. & Viviani, R. Genetic variability of drug-metabolizing enzymes: the dual impact on psychiatric therapy and regulation of brain function. Mol Psychiatry 18, 273–287 (2013). https://doi.org/10.1038/mp.2012.42

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2012.42

Keywords

This article is cited by

Search

Quick links