Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A neurogenetics approach to understanding individual differences in brain, behavior, and risk for psychopathology

Abstract

Neurogenetics research has begun to advance our understanding of how genetic variation gives rise to individual differences in brain function, which, in turn, shapes behavior and risk for psychopathology. Despite these advancements, neurogenetics research is currently confronted by three major challenges: (1) conducting research on individual variables with small effects, (2) absence of detailed mechanisms, and (3) a need to translate findings toward greater clinical relevance. In this review, we showcase techniques and developments that address these challenges and highlight the benefits of a neurogenetics approach to understanding brain, behavior and psychopathology. To address the challenge of small effects, we explore approaches including incorporating the environment, modeling epistatic relationships and using multilocus profiles. To address the challenge of mechanism, we explore how non-human animal research, epigenetics research and genome-wide association studies can inform our mechanistic understanding of behaviorally relevant brain function. Finally, to address the challenge of clinical relevance, we examine how neurogenetics research can identify novel therapeutic targets and for whom treatments work best. By addressing these challenges, neurogenetics research is poised to exponentially increase our understanding of how genetic variation interacts with the environment to shape the brain, behavior and risk for psychopathology.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1
Figure 2

References

  1. Kempton MJ, Salvador Z, Munafo MR, Geddes JR, Simmons A, Frangou S et al. Structural neuroimaging studies in major depressive disorder. Meta-analysis and comparison with bipolar disorder. Arch Gen Psychiatry 2011; 68: 675–690.

    Article  PubMed  Google Scholar 

  2. Thomason ME, Thompson PM . Diffusion imaging, white matter, and psychopathology. Annu Rev Clin Psychol 2011; 7: 63–85.

    Article  PubMed  Google Scholar 

  3. Whitfield-Gabrieli S, Thermenos HW, Milanovic S, Tsuang MT, Faraone SV, McCarley RW et al. Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first-degree relatives of persons with schizophrenia. Proc Natl Acad Sci USA 2009; 106: 1279–1284.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Pizzagalli DA . Frontocingulate dysfunction in depression: toward biomarkers of treatment response. Neuropsychopharmacology 2011; 36: 183–206.

    Article  PubMed  Google Scholar 

  5. Jang JH, Jung WH, Choi JS, Choi CH, Kang DH, Shin NY et al. Reduced prefrontal functional connectivity in the default mode network is related to greater psychopathology in subjects with high genetic loading for schizophrenia. Schizophr Res 2011; 127: 58–65.

    Article  PubMed  Google Scholar 

  6. Hariri AR . The neurobiology of individual differences in complex behavioral traits. Annu Rev Neurosci 2009; 32: 225–247.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. Yehuda R . Post-traumatic stress disorder. N Engl J Med 2002; 346: 108–114.

    CAS  Article  PubMed  Google Scholar 

  8. Bigos KL, Pollock BG, Aizenstein HJ, Fisher PM, Bies RR, Hariri AR . Acute 5-HT reuptake blockade potentiates human amygdala reactivity. Neuropsychopharmacology 2008; 33: 3221–3225.

    CAS  PubMed  Article  Google Scholar 

  9. Santesso DL, Evins AE, Frank MJ, Schetter EC, Bogdan R, Pizzagalli DA . Single dose of a dopamine agonist impairs reinforcement learning in humans: evidence from event-related potentials and computational modeling of striatal-cortical function. Hum Brain Mapp 2009; 30: 1963–1976.

    PubMed  Article  Google Scholar 

  10. Holtzheimer PE, Mayberg HS . Deep brain stimulation for psychiatric disorders. Annu Rev Neurosci 2011; 34: 289–307.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. De Raedt R, Leyman L, Baeken C, Van Schuerbeek P, Luypaert R, Vanderhasselt MA et al. Neurocognitive effects of HF-rTMS over the dorsolateral prefrontal cortex on the attentional processing of emotional information in healthy women: an event-related fMRI study. Biol Psychol 2010; 85: 487–495.

    Article  PubMed  Google Scholar 

  12. Charney DS, Barlow DH, Botteron K, Cohen JD, Goldman D, Gur RE et al. Neuroscience research agenda to guide development of a pathophysiologically based classification system. A Research Agenda for DSM-V. American Psychiatric Association: Washington, DC, 2002, pp 31–83.

    Google Scholar 

  13. Kupfer DJ, Regier DA . Neuroscience, clinical evidence, and the future of psychiatric classification in DSM-5. Am J Psychiatry 2011; 168: 672–674.

    Article  PubMed  Google Scholar 

  14. Hasler G, Northoff G . Discovering imaging endophenotypes for major depression. Mol Psychiatry 2011; 16: 604–619.

    CAS  Article  PubMed  Google Scholar 

  15. Gross C, Zhuang X, Stark K, Ramboz S, Oosting R, Kirby L et al. Serotonin1A receptor acts during development to establish normal anxiety-like behaviour in the adult. Nature 2002; 416: 396–400.

    CAS  Article  PubMed  Google Scholar 

  16. Buckholtz JW, Treadway MT, Cowan RL, Woodward ND, Li R, Ansari MS et al. Dopaminergic network differences in human impulsivity. Science 2010; 329: 532.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. Bigos KL, Weinberger DR . Imaging genetics--days of future past. Neuroimage 2010; 53: 804–809.

    CAS  Article  PubMed  Google Scholar 

  18. Meyer-Lindenberg A, Weinberger DR . Intermediate phenotypes and genetic mechanisms of psychiatric disorders. Nat Rev Neurosci 2006; 7: 818–827.

    CAS  Article  PubMed  Google Scholar 

  19. Meyer-Lindenberg A . The future of fMRI and genetics research. Neuroimage advance online publication, 28 October 2011; doi:10.1016/j.neuroimage.2011.10.063.

    CAS  Article  PubMed  Google Scholar 

  20. Holmes A, le Guisquet AM, Vogel E, Millstein RA, Leman S, Belzung C . Early life genetic, epigenetic and environmental factors shaping emotionality in rodents. Neurosci Biobehav Rev 2005; 29: 1335–1346.

    Article  PubMed  Google Scholar 

  21. Meaney MJ . Epigenetics and the biological definition of gene x environment interactions. Child Dev 2010; 81: 41–79.

    Article  PubMed  Google Scholar 

  22. Ursini G, Bollati V, Fazio L, Porcelli A, Iacovelli L, Catalani A et al. Stress-related methylation of the catechol-O-methyltransferase Val 158 allele predicts human prefrontal cognition and activity. J Neurosci 2011; 31: 6692–6698.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Caspi A, Sugden K, Moffitt TE, Taylor A, Craig IW, Harrington H et al. Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 2003; 301: 386–389.

    CAS  Article  PubMed  Google Scholar 

  24. Hyde LW, Bogdan R, Hariri AR . Understanding risk for psychopathology through imaging gene-environment interactions. Trends Cogn Sci 2011; 15: 417–427.

    PubMed  PubMed Central  Article  Google Scholar 

  25. Hariri AR, Mattay VS, Tessitore A, Kolachana B, Fera F, Goldman D et al. Serotonin transporter genetic variation and the response of the human amygdala. Science 2002; 297: 400–403.

    CAS  Article  PubMed  Google Scholar 

  26. Lesch KP, Bengel D, Heils A, Sabol SZ, Greenberg BD, Petri S et al. Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science 1996; 274: 1527–1531.

    CAS  Article  PubMed  Google Scholar 

  27. Heils A, Teufel A, Petri S, Stober G, Riederer P, Bengel D et al. Allelic variation of human serotonin transporter gene expression. J Neurochem 1996; 66: 2621–2624.

    CAS  Article  PubMed  Google Scholar 

  28. Hariri AR, Drabant EM, Munoz KE, Kolachana BS, Mattay VS, Egan MF et al. A susceptibility gene for affective disorders and the response of the human amygdala. Arch Gen Psychiatry 2005; 62: 146–152.

    CAS  Article  PubMed  Google Scholar 

  29. Lonsdorf TB, Golkar A, Lindstom KM, Fransson P, Schalling M, Ohman A et al. 5-HTTLPR and COMTval158met genotype gate amygdala reactivity and habituation. Biol Psychol 2011; 87: 106–112.

    Article  PubMed  Google Scholar 

  30. von dem Hagen EA, Passamonti L, Nutland S, Sambrook J, Calder AJ . The serotonin transporter gene polymorphism and the effect of baseline on amygdala response to emotional faces. Neuropsychologia 2011; 49: 674–680.

    PubMed  PubMed Central  Article  Google Scholar 

  31. Munafo MR, Brown SM, Hariri AR . Serotonin transporter (5-HTTLPR) genotype and amygdala activation: a meta-analysis. Biol Psychiatry 2008; 63: 852–857.

    CAS  Article  PubMed  Google Scholar 

  32. Kalin NH, Shelton SE, Fox AS, Rogers J, Oakes TR, Davidson RJ . The serotonin transporter genotype is associated with intermediate brain phenotypes that depend on the context of eliciting stressor. Mol Psychiatry 2008; 13: 1021–1027.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. Caspi A, Hariri AR, Holmes A, Uher R, Moffitt TE . Genetic sensitivity to the environment: the case of the serotonin transporter gene and its implications for studying complex diseases and traits. Am J Psychiatry 2010; 167: 509–527.

    PubMed  PubMed Central  Article  Google Scholar 

  34. Gillihan SJ, Rao H, Brennan L, Wang DJ, Detre JA, Sankoorikal GM et al. Serotonin transporter genotype modulates the association between depressive symptoms and amygdala activity among psychiatrically healthy adults. Psychiatry Res 2011; 193: 161–167.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. Chen J, Lipska BK, Halim N, Ma QD, Matsumoto M, Melhem S et al. Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): effects on mRNA, protein, and enzyme activity in postmortem human brain. Am J Hum Genet 2004; 75: 807–821.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. Meyer-Lindenberg A, Kohn PD, Kolachana B, Kippenhan S, McInerney-Leo A, Nussbaum R et al. Midbrain dopamine and prefrontal function in humans: interaction and modulation by COMT genotype. Nat Neurosci 2005; 8: 594–596.

    CAS  Article  PubMed  Google Scholar 

  37. Meyer-Lindenberg A, Nichols T, Callicott JH, Ding J, Kolachana B, Buckholtz J et al. Impact of complex genetic variation in COMT on human brain function. Mol Psychiatry 2006; 11: 867–877, 797.

    CAS  Article  PubMed  Google Scholar 

  38. Mier D, Kirsch P, Meyer-Lindenberg A . Neural substrates of pleiotropic action of genetic variation in COMT: a meta-analysis. Mol Psychiatry 2010; 15: 918–927.

    CAS  Article  PubMed  Google Scholar 

  39. Hariri AR . The what, where, and when of catechol-o-methyltransferase. Biol Psychiatry 2011; 70: 214–215.

    Article  PubMed  Google Scholar 

  40. Stein DJ, Newman TK, Savitz J, Ramesar R . Warriors versus worriers: the role of COMT gene variants. CNS Spectr 2006; 11: 745–748.

    Article  PubMed  Google Scholar 

  41. Egan MF, Goldberg TE, Kolachana BS, Callicott JH, Mazzanti CM, Straub RE et al. Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc Natl Acad Sci USA 2001; 98: 6917–6922.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Bertolino A, Rubino V, Sambataro F, Blasi G, Latorre V, Fazio L et al. Prefrontal-hippocampal coupling during memory processing is modulated by COMT val158met genotype. Biol Psychiatry 2006; 60: 1250–1258.

    CAS  Article  PubMed  Google Scholar 

  43. Tan HY, Chen Q, Goldberg TE, Mattay VS, Meyer-Lindenberg A, Weinberger DR et al. Catechol-O-methyltransferase Val158Met modulation of prefrontal-parietal-striatal brain systems during arithmetic and temporal transformations in working memory. J Neurosci 2007; 27: 13393–13401.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. Li T, Sham PC, Vallada H, Xie T, Tang X, Murray RM et al. Preferential transmission of the high activity allele of COMT in schizophrenia. Psychiatr Genet 1996; 6: 131–133.

    CAS  Article  PubMed  Google Scholar 

  45. Flint J, Munafo MR . The endophenotype concept in psychiatric genetics. Psychol Med 2007; 37: 163–180.

    Article  PubMed  Google Scholar 

  46. Williamson DE . Teen Alcohol Outcomes Study. http://adolescenthealthinstitute.com.

  47. Gur R . Neurodevelopmental Genomics Project. http://projectreporter.nih.gov/project_info_description.cfm?aid=7943007&icde=922023.

  48. Buckner RL . Brain Genomics Superstruct Project. http://www.nmr.mgh.harvard.edu/nexus/.

  49. Manuck SB, Ferrell RE, Devlin B . Adult Health and Behavior Project. http://www.chronicle.pitt.edu/media/pcc010924/AHAB.html.

  50. Hariri AR . Duke Neurogenetics Study. www.haririlab.com.

  51. Human Connectome Project. http://www.humanconnectomeproject.org/.

  52. IMAGEN. http://www.imagen-europe.com/.

  53. Thompson PM, Martin NG . ENIGMA. http://enigma.loni.ucla.edu/.

  54. Pizzagalli DA, Sherwood RJ, Henriques JB, Davidson RJ . Frontal brain asymmetry and reward responsiveness: a source-localization study. Psychol Sci 2005; 16: 805–813.

    Article  PubMed  Google Scholar 

  55. Nikolova YS, Ferrell RE, Manuck SB, Hariri AR . Multilocus genetic profile for dopamine signaling predicts ventral striatum reactivity. Neuropsychopharmacology 2011; 36: 1940–1947.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. Rutter M, Moffitt TE, Caspi A . Gene-environment interplay and psychopathology: multiple varieties but real effects. J Child Psychol Psychiatry 2006; 47: 226–261.

    Article  PubMed  Google Scholar 

  57. Caspi A, Moffitt TE . Gene-environment interactions in psychiatry: joining forces with neuroscience. Nat Rev Neurosci 2006; 7: 583–590.

    CAS  Article  PubMed  Google Scholar 

  58. Kendler KS, Kuhn JW, Vittum J, Prescott CA, Riley B . The interaction of stressful life events and a serotonin transporter polymorphism in the prediction of episodes of major depression: a replication. Arch Gen Psychiatry 2005; 62: 529–535.

    CAS  Article  PubMed  Google Scholar 

  59. Karg K, Burmeister M, Shedden K, Sen S . The serotonin transporter promoter variant (5-HTTLPR), stress, and depression meta-analysis revisited: evidence of genetic moderation. Arch Gen Psychiatry 2011; 68: 444–454.

    PubMed  PubMed Central  Article  Google Scholar 

  60. Risch N, Herrell R, Lehner T, Liang KY, Eaves L, Hoh J et al. Interaction between the serotonin transporter gene (5-HTTLPR), stressful life events, and risk of depression: a meta-analysis. JAMA 2009; 301: 2462–2471.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. Duncan LE, Keller MC . A critical review of the first 10 years of candidate gene-by-environment interaction research in psychiatry. Am J Psychiatry 2011; 168: 1041–1049.

    PubMed  PubMed Central  Article  Google Scholar 

  62. Gerritsen L, Tendolkar I, Franke B, Vasquez AA, Kooijman S, Buitelaar J et al. BDNF Val66Met genotype modulates the effect of childhood adversity on subgenual anterior cingulate cortex volume in healthy subjects. Mol Psychiatry (2013) 18, –; 17 May 2011; doi:10.1038/mp.2011.51.

    Article  CAS  PubMed  Google Scholar 

  63. McGowan PO, Sasaki A, D’Alessio AC, Dymov S, Labonte B, Szyf M et al. Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat Neurosci 2009; 12: 342–348.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. Bogdan R, Santesso DL, Fagerness J, Perlis RH, Pizzagalli DA . Corticotropin-releasing hormone receptor type 1 (CRHR1) genetic variation and stress interact to influence reward learning. J Neurosci 2011; 31: 13246–13254.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. Cousijn H, Rijpkema M, Qin S, van Marle HJ, Franke B, Hermans EJ et al. Acute stress modulates genotype effects on amygdala processing in humans. Proc Natl Acad Sci USA 2010; 107: 9867–9872.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. Canli T, Qiu M, Omura K, Congdon E, Haas BW, Amin Z et al. Neural correlates of epigenesis. Proc Natl Acad Sci USA 2006; 103: 16033–16038.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  67. Bogdan R, Williamson DE, Hariri AR . Mineralocorticoid receptor iso/val (rs5522) genotype moderates the association between prior childhood emotional neglect and amygdala reactivity. Am J Psychiatry 2012; 169: 515–522.

    PubMed  PubMed Central  Article  Google Scholar 

  68. DeRijk RH, Wust S, Meijer OC, Zennaro MC, Federenko IS, Hellhammer DH et al. A common polymorphism in the mineralocorticoid receptor modulates stress responsiveness. J Clin Endocrinol Metab 2006; 91: 5083–5089.

    CAS  Article  PubMed  Google Scholar 

  69. Lupien SJ, McEwen BS, Gunnar MR, Heim C . Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat Rev Neurosci 2009; 10: 434–445.

    CAS  Article  PubMed  Google Scholar 

  70. van Leeuwen N, Kumsta R, Entringer S, de Kloet ER, Zitman FG, DeRijk RH et al. Functional mineralocorticoid receptor (MR) gene variation influences the cortisol awakening response after dexamethasone. Psychoneuroendocrinology 2010; 35: 339–349.

    CAS  Article  PubMed  Google Scholar 

  71. Bogdan R, Perlis RH, Fagerness J, Pizzagalli DA . The impact of mineralocorticoid receptor ISO/VAL genotype (rs5522) and stress on reward learning. Genes Brain Behav 2010; 9: 658–667.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Derijk RH, van Leeuwen N, Klok MD, Zitman FG . Corticosteroid receptor-gene variants: modulators of the stress-response and implications for mental health. Eur J Pharmacol 2008; 585: 492–501.

    CAS  Article  PubMed  Google Scholar 

  73. Tottenham N, Hare TA, Millner A, Gilhooly T, Zevin JD, Casey BJ . Elevated amygdala response to faces following early deprivation. Dev Sci 2011; 14: 190–204.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  74. Maheu FS, Dozier M, Guyer AE, Mandell D, Peloso E, Poeth K et al. A preliminary study of medial temporal lobe function in youths with a history of caregiver deprivation and emotional neglect. Cogn Affect Behav Neurosci 2010; 10: 34–49.

    PubMed  PubMed Central  Article  Google Scholar 

  75. Belsky J, Jonassaint C, Pluess M, Stanton M, Brummett B, Williams R . Vulnerability genes or plasticity genes? Mol Psychiatry 2009; 14: 746–754.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  76. Eaves LJ . Genotype x environment interaction in psychopathology: fact or artifact? Twin Res Hum Genet 2006; 9: 1–8.

    Article  PubMed  Google Scholar 

  77. Kendler KS, Neale MC . Endophenotype: a conceptual analysis. Mol Psychiatry 2010; 15: 789–797.

    PubMed  PubMed Central  Article  Google Scholar 

  78. Monroe SM, Reid MW . Gene-environment interactions in depression research: genetic polymorphisms and life-stress polyprocedures. Psychol Sci 2008; 19: 947–956.

    Article  PubMed  Google Scholar 

  79. Wichers M, Schrijvers D, Geschwind N, Jacobs N, Myin-Germeys I, Thiery E et al. Mechanisms of gene-environment interactions in depression: evidence that genes potentiate multiple sources of adversity. Psychol Med 2009; 39: 1077–1086.

    CAS  Article  PubMed  Google Scholar 

  80. Ertin E, Stohs N, Kumar S, Raij A, al’Absi M, Shah S . AutoSense: unobtrusively wearable sensor suite for inferring the onset, causality, and consequences of stress in the field. Proceedings of the 9th ACM Conference on Embedded Networked Sensor Systems. ACM: Seattle, Washington, 2011, pp 274–287.

    Chapter  Google Scholar 

  81. Hankin BL, Nederhof E, Oppenheimer CW, Jenness J, Young JF, Abela JRZ et al. Differential susceptibility in youth: evidence that 5-HTTLPR x positive parenting is associated with positive affect ‘for better and worse’. Transl Psychiatry 2011; 1: e44.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  82. Hyde LW, Gorka A, Manuck SB, Hariri AR . Perceived social support moderates the link between threat-related amygdala reactivity and trait anxiety. Neuropsychologia 2011; 49: 651–656.

    Article  PubMed  Google Scholar 

  83. Tan HY, Chen Q, Sust S, Buckholtz JW, Meyers JD, Egan MF et al. Epistasis between catechol-O-methyltransferase and type II metabotropic glutamate receptor 3 genes on working memory brain function. Proc Natl Acad Sci USA 2007; 104: 12536–12541.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  84. Nicodemus KK, Kolachana BS, Vakkalanka R, Straub RE, Giegling I, Egan MF et al. Evidence for statistical epistasis between catechol-O-methyltransferase (COMT) and polymorphisms in RGS4, G72 (DAOA), GRM3, and DISC1: influence on risk of schizophrenia. Hum Genet 2007; 120: 889–906.

    CAS  Article  PubMed  Google Scholar 

  85. Honea R, Verchinski BA, Pezawas L, Kolachana BS, Callicott JH, Mattay VS et al. Impact of interacting functional variants in COMT on regional gray matter volume in human brain. Neuroimage 2009; 45: 44–51.

    Article  PubMed  Google Scholar 

  86. El-Hage W, Phillips ML, Radua J, Gohier B, Zelaya FO, Collier DA et al. Genetic modulation of neural response during working memory in healthy individuals: interaction of glucocorticoid receptor and dopaminergic genes. Mol Psychiatry (2013) 18, –; 15 November 2011; doi:10.1038/mp.2011.145.

    Article  CAS  PubMed  Google Scholar 

  87. Stelzel C, Basten U, Montag C, Reuter M, Fiebach CJ . Effects of dopamine-related gene-gene interactions on working memory component processes. Eur J Neurosci 2009; 29: 1056–1063.

    Article  PubMed  Google Scholar 

  88. Buckholtz JW, Sust S, Tan HY, Mattay VS, Straub RE, Meyer-Lindenberg A et al. fMRI evidence for functional epistasis between COMT and RGS4. Mol Psychiatry 2007; 12: 893–895, 885.

    CAS  Article  PubMed  Google Scholar 

  89. Hill WG, Goddard ME, Visscher PM . Data and theory point to mainly additive genetic variance for complex traits. PLoS Genet 2008; 4: e1000008.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  90. Purcell SM, Wray NR, Stone JL, Visscher PM, O’Donovan MC, Sullivan PF et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 2009; 460: 748–752.

    CAS  Article  PubMed  Google Scholar 

  91. Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR et al. Common SNPs explain a large proportion of the heritability for human height. Nat Genet 2010; 42: 565–569.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  92. Park JH, Wacholder S, Gail MH, Peters U, Jacobs KB, Chanock SJ et al. Estimation of effect size distribution from genome-wide association studies and implications for future discoveries. Nat Genet 2010; 42: 570–575.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  93. Gibson G . Hints of hidden heritability in GWAS. Nat Genet 2010; 42: 558–560.

    CAS  Article  PubMed  Google Scholar 

  94. Lips ES, Cornelisse LN, Toonen RF, Min JL, Hultman CM, Holmans PA et al. Functional gene group analysis identifies synaptic gene groups as risk factor for schizophrenia. Mol Psychiatry (2013) 18, –; 20 September 2011; doi:10.1038/mp.2011.117.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  95. Ruano D, Abecasis GR, Glaser B, Lips ES, Cornelisse LN, de Jong AP et al. Functional gene group analysis reveals a role of synaptic heterotrimeric G proteins in cognitive ability. Am J Hum Genet 2010; 86: 113–125.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  96. Derringer J, Krueger RF, Dick DM, Saccone S, Grucza RA, Agrawal A et al. Predicting sensation seeking from dopamine genes. A candidate-system approach. Psychol Sci 2010; 21: 1282–1290.

    PubMed  Article  Google Scholar 

  97. Hizer SE, Wright TM, Garcia DK . Genetic markers applied in regression tree prediction models. Anim Genet 2004; 35: 50–52.

    CAS  Article  PubMed  Google Scholar 

  98. Gruenewald TL, Seeman TE, Ryff CD, Karlamangla AS, Singer BH . Combinations of biomarkers predictive of later life mortality. Proc Natl Acad Sci USA 2006; 103: 14158–14163.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  99. Mitchell TM, Shinkareva SV, Carlson A, Chang KM, Malave VL, Mason RA et al. Predicting human brain activity associated with the meanings of nouns. Science 2008; 320: 1191–1195.

    CAS  Article  PubMed  Google Scholar 

  100. Hibar DP, Kohannim O, Stein JL, Chiang MC, Thompson PM . Multilocus genetic analysis of brain images. Front Genet 2: 73; doi:10.3389/fgene.2011.00073.

  101. Willeit M, Praschak-Rieder N . Imaging the effects of genetic polymorphisms on radioligand binding in the living human brain: a review on genetic neuroreceptor imaging of monoaminergic systems in psychiatry. Neuroimage 2010; 53: 878–892.

    CAS  Article  PubMed  Google Scholar 

  102. King AP, Liberzon I . Assessing the neuroendocrine stress response in the functional neuroimaging context. Neuroimage 2009; 47: 1116–1124.

    PubMed  Article  Google Scholar 

  103. Hariri AR, Holmes A . Genetics of emotional regulation: the role of the serotonin transporter in neural function. Trends Cogn Sci 2006; 10: 182–191.

    Article  PubMed  Google Scholar 

  104. Fenno L, Yizhar O, Deisseroth K . The development and application of optogenetics. Annu Rev Neurosci 2011; 34: 389–412.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  105. Holmes A . Targeted gene mutation approaches to the study of anxiety-like behavior in mice. Neurosci Biobehav Rev 2001; 25: 261–273.

    CAS  Article  PubMed  Google Scholar 

  106. Barr CS, Newman TK, Becker ML, Parker CC, Champoux M, Lesch KP et al. The utility of the non-human primate; model for studying gene by environment interactions in behavioral research. Genes Brain Behav 2003; 2: 336–340.

    CAS  Article  PubMed  Google Scholar 

  107. Bennett AJ, Lesch KP, Heils A, Long JC, Lorenz JG, Shoaf SE et al. Early experience and serotonin transporter gene variation interact to influence primate CNS function. Mol Psychiatry 2002; 7: 118–122.

    CAS  Article  PubMed  Google Scholar 

  108. Barr CS, Newman TK, Shannon C, Parker C, Dvoskin RL, Becker ML et al. Rearing condition and rh5-HTTLPR interact to influence limbic-hypothalamic-pituitary-adrenal axis response to stress in infant macaques. Biol Psychiatry 2004; 55: 733–738.

    CAS  Article  PubMed  Google Scholar 

  109. Bogdan R, Fitzgibbon H, Woolverton WL, Bethea CL, Iyo AH, Stockmeier CA et al. 5-HTTLPR genotype and gender, but not chronic fluoxetine administration, are associated with cortical TREK1 protein expression in rhesus macaques. Neurosci Lett 2011; 503: 83–86.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  110. Watson KK, Ghodasra JH, Platt ML . Serotonin transporter genotype modulates social reward and punishment in rhesus macaques. PLoS ONE 2009; 4: e4156.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  111. Canli T, Omura K, Haas BW, Fallgatter A, Constable RT, Lesch KP . Beyond affect: a role for genetic variation of the serotonin transporter in neural activation during a cognitive attention task. Proc Natl Acad Sci USA 2005; 102: 12224–12229.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  112. Pezawas L, Meyer-Lindenberg A, Drabant EM, Verchinski BA, Munoz KE, Kolachana BS et al. 5-HTTLPR polymorphism impacts human cingulate-amygdala interactions: a genetic susceptibility mechanism for depression. Nat Neurosci 2005; 8: 828–834.

    CAS  Article  PubMed  Google Scholar 

  113. Jedema HP, Gianaros PJ, Greer PJ, Kerr DD, Liu S, Higley JD et al. Cognitive impact of genetic variation of the serotonin transporter in primates is associated with differences in brain morphology rather than serotonin neurotransmission. Mol Psychiatry 2010; 15: 512–522, 446.

    CAS  Article  PubMed  Google Scholar 

  114. Oler JA, Fox AS, Shelton SE, Christian BT, Murali D, Oakes TR et al. Serotonin transporter availability in the amygdala and bed nucleus of the stria terminalis predicts anxious temperament and brain glucose metabolic activity. J Neurosci 2009; 29: 9961–9966.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  115. David SP, Murthy NV, Rabiner EA, Munafo MR, Johnstone EC, Jacob R et al. A functional genetic variation of the serotonin (5-HT) transporter affects 5-HT1A receptor binding in humans. J Neurosci 2005; 25: 2586–2590.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  116. Kim DK, Tolliver TJ, Huang SJ, Martin BJ, Andrews AM, Wichems C et al. Altered serotonin synthesis, turnover and dynamic regulation in multiple brain regions of mice lacking the serotonin transporter. Neuropharmacology 2005; 49: 798–810.

    CAS  Article  PubMed  Google Scholar 

  117. Cryan JF, Holmes A . The ascent of mouse: advances in modelling human depression and anxiety. Nat Rev Drug Discov 2005; 4: 775–790.

    CAS  Article  PubMed  Google Scholar 

  118. Berridge KC, Robinson TE, Aldridge JW . Dissecting components of reward: ‘liking’, ‘wanting’, and learning. Curr Opin Pharmacol 2009; 9: 65–73.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  119. Knutson B, Westdorp A, Kaiser E, Hommer D . FMRI visualization of brain activity during a monetary incentive delay task. Neuroimage 2000; 12: 20–27.

    CAS  Article  PubMed  Google Scholar 

  120. Pizzagalli DA, Jahn AL, O’Shea JP . Toward an objective characterization of an anhedonic phenotype: a signal-detection approach. Biol Psychiatry 2005; 57: 319–327.

    PubMed  PubMed Central  Article  Google Scholar 

  121. Zhang TY, Meaney MJ . Epigenetics and the environmental regulation of the genome and its function. Annu Rev Psychol 2010; 61: 439–466, C431–433.

    Article  PubMed  Google Scholar 

  122. Roth TL, Sweatt JD . Annual research review: epigenetic mechanisms and environmental shaping of the brain during sensitive periods of development. J Child Psychol Psychiatry 2011; 52: 398–408.

    PubMed  PubMed Central  Article  Google Scholar 

  123. Weaver IC, Cervoni N, Champagne FA, D’Alessio AC, Sharma S, Seckl JR et al. Epigenetic programming by maternal behavior. Nat Neurosci 2004; 7: 847–854.

    CAS  PubMed  Article  Google Scholar 

  124. Weaver IC . Epigenetic programming by maternal behavior and pharmacological intervention. Nature versus nurture: let's call the whole thing off. Epigenetics 2007; 2: 22–28.

    Article  PubMed  Google Scholar 

  125. Masten AS . Ordinary magic. Resilience processes in development. Am Psychol 2001; 56: 227–238.

    CAS  Article  PubMed  Google Scholar 

  126. Xin Y, Chanrion B, Liu MM, Galfalvy H, Costa R, Ilievski B et al. Genome-wide divergence of DNA methylation marks in cerebral and cerebellar cortices. PLoS ONE 2010; 5: e11357.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  127. Cichon S, Craddock N, Daly M, Faraone SV, Gejman PV, Kelsoe J et al. Genomewide association studies: history, rationale, and prospects for psychiatric disorders. Am J Psychiatry 2009; 166: 540–556.

    Article  PubMed  Google Scholar 

  128. Liu X, Akula N, Skup M, Brotman MA, Leibenluft E, McMahon FJ . A genome-wide association study of amygdala activation in youths with and without bipolar disorder. J Am Acad Child Adolesc Psychiatry 2010; 49: 33–41.

    PubMed  PubMed Central  Google Scholar 

  129. Hodgkinson CA, Enoch MA, Srivastava V, Cummins-Oman JS, Ferrier C, Iarikova P et al. Genome-wide association identifies candidate genes that influence the human electroencephalogram. Proc Natl Acad Sci USA 2010; 107: 8695–8700.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  130. Bakken TE, Bloss CS, Roddey JC, Joyner AH, Rimol LM, Djurovic S et al. Association of genetic variants on 15q12 with cortical thickness and cognition in schizophrenia. Arch Gen Psychiatry 2011; 68: 781–790.

    PubMed  PubMed Central  Article  Google Scholar 

  131. Potkin SG, Guffanti G, Lakatos A, Turner JA, Kruggel F, Fallon JH et al. Hippocampal atrophy as a quantitative trait in a genome-wide association study identifying novel susceptibility genes for Alzheimer's disease. PLoS ONE 2009; 4: e6501.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  132. Potkin SG, Turner JA, Guffanti G, Lakatos A, Fallon JH, Nguyen DD et al. A genome-wide association study of schizophrenia using brain activation as a quantitative phenotype. Schizophr Bull 2009; 35: 96–108.

    Article  PubMed  Google Scholar 

  133. Shen L, Kim S, Risacher SL, Nho K, Swaminathan S, West JD et al. Whole genome association study of brain-wide imaging phenotypes for identifying quantitative trait loci in MCI and AD: A study of the ADNI cohort. Neuroimage 2010; 53: 1051–1063.

    CAS  PubMed  Article  Google Scholar 

  134. Fornage M, Debette S, Bis JC, Schmidt H, Ikram MA, Dufouil C et al. Genome-wide association studies of cerebral white matter lesion burden: the CHARGE consortium. Ann Neurol 2011; 69: 928–939.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  135. Han MR, Schellenberg GD, Wang LS . Genome-wide association reveals genetic effects on human Abeta42 and tau protein levels in cerebrospinal fluids: a case control study. BMC Neurol 2010; 10: 90.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  136. Lohoff FW . Overview of the genetics of major depressive disorder. Curr Psychiatry Rep 2010; 12: 539–546.

    PubMed  PubMed Central  Article  Google Scholar 

  137. Goldman D, Ducci F . Deconstruction of vulnerability to complex diseases: enhanced effect sizes and power of intermediate phenotypes. ScientificWorldJournal 2007; 7: 124–130.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  138. Zuk O, Hechter E, Sunyaev SR, Lander ES . The mystery of missing heritability: genetic interactions create phantom heritability. Proc Natl Acad Sci USA 2012; 109: 1193–1198.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  139. Ege MJ, Strachan DP, Cookson WO, Moffatt MF, Gut I, Lathrop M et al. Gene-environment interaction for childhood asthma and exposure to farming in Central Europe. J Allergy Clin Immunol 2011; 127: 138–144, 144 e131–134.

    Article  PubMed  Google Scholar 

  140. Li M, Wang IX, Li Y, Bruzel A, Richards AL, Toung JM et al. Widespread RNA and DNA sequence differences in the human transcriptome. Science 2011; 333: 53–58.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  141. Hayden EC . Evidence of altered RNA stirs debate. Nature 2011; 473: 432.

    CAS  Article  PubMed  Google Scholar 

  142. Schrider DR, Gout JF, Hahn MW . Very few RNA and DNA sequence differences in the human transcriptome. PLoS ONE 2011; 6: e25842.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  143. Ju YS, Kim JI, Kim S, Hong D, Park H, Shin JY et al. Extensive genomic and transcriptional diversity identified through massively parallel DNA and RNA sequencing of eighteen Korean individuals. Nat Genet 2011; 43: 745–752.

    CAS  Article  PubMed  Google Scholar 

  144. Emilsson V, Thorleifsson G, Zhang B, Leonardson AS, Zink F, Zhu J et al. Genetics of gene expression and its effect on disease. Nature 2008; 452: 423–428.

    CAS  PubMed  Article  Google Scholar 

  145. Schadt EE, Lamb J, Yang X, Zhu J, Edwards S, Guhathakurta D et al. An integrative genomics approach to infer causal associations between gene expression and disease. Nat Genet 2005; 37: 710–717.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  146. Petretto E, Mangion J, Dickens NJ, Cook SA, Kumaran MK, Lu H et al. Heritability and tissue specificity of expression quantitative trait loci. PLoS Genet 2006; 2: e172.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  147. Goring HH, Curran JE, Johnson MP, Dyer TD, Charlesworth J, Cole SA et al. Discovery of expression QTLs using large-scale transcriptional profiling in human lymphocytes. Nat Genet 2007; 39: 1208–1216.

    PubMed  Article  CAS  Google Scholar 

  148. de Koning DJ, Haley CS . Genetical genomics in humans and model organisms. Trends Genet 2005; 21: 377–381.

    CAS  Article  PubMed  Google Scholar 

  149. Fakra E, Hyde LW, Gorka A, Fisher PM, Munoz KE, Kimak M et al. Effects of HTR1A C(-1019)G on amygdala reactivity and trait anxiety. Arch Gen Psychiatry 2009; 66: 33–40.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  150. Furmark T, Appel L, Henningsson S, Ahs F, Faria V, Linnman C et al. A link between serotonin-related gene polymorphisms, amygdala activity, and placebo-induced relief from social anxiety. J Neurosci 2008; 28: 13066–13074.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  151. Insel T, Cuthbert B, Garvey M, Heinssen R, Pine DS, Quinn K et al. Research domain criteria (RDoC): toward a new classification framework for research on mental disorders. Am J Psychiatry 2010; 167: 748–751.

    Article  PubMed  Google Scholar 

  152. Sanislow CA, Pine DS, Quinn KJ, Kozak MJ, Garvey MA, Heinssen RK et al. Developing constructs for psychopathology research: research domain criteria. J Abnorm Psychol 2010; 119: 631–639.

    Article  PubMed  Google Scholar 

  153. Preacher KJ, Hayes AF . Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behav Res Methods 2008; 40: 879–891.

    PubMed  Article  Google Scholar 

  154. Lemonde S, Turecki G, Bakish D, Du L, Hrdina PD, Bown CD et al. Impaired repression at a 5-hydroxytryptamine 1A receptor gene polymorphism associated with major depression and suicide. J Neurosci 2003; 23: 8788–8799.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  155. Parsey RV, Oquendo MA, Ogden RT, Olvet DM, Simpson N, Huang YY et al. Altered serotonin 1A binding in major depression: a [carbonyl-C-11]WAY100635 positron emission tomography study. Biol Psychiatry 2006; 59: 106–113.

    CAS  Article  PubMed  Google Scholar 

  156. Czesak M, Lemonde S, Peterson EA, Rogaeva A, Albert PR . Cell-specific repressor or enhancer activities of Deaf-1 at a serotonin 1A receptor gene polymorphism. J Neurosci 2006; 26: 1864–1871.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  157. Richardson-Jones JW, Craige CP, Guiard BP, Stephen A, Metzger KL, Kung HF et al. 5-HT1A autoreceptor levels determine vulnerability to stress and response to antidepressants. Neuron 2010; 65: 40–52.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  158. Heurteaux C, Lucas G, Guy N, El Yacoubi M, Thummler S, Peng XD et al. Deletion of the background potassium channel TREK-1 results in a depression-resistant phenotype. Nat Neurosci 2006; 9: 1134–1141.

    CAS  Article  PubMed  Google Scholar 

  159. Liou YJ, Chen TJ, Tsai SJ, Yu YW, Cheng CY, Hong CJ . Support for the involvement of the KCNK2 gene in major depressive disorder and response to antidepressant treatment. Pharmacogenet Genomics 2009; 19: 735–741.

    CAS  Article  PubMed  Google Scholar 

  160. Dillon DG, Bogdan R, Fagerness J, Holmes AJ, Perlis RH, Pizzagalli DA . Variation in TREK1 gene linked to depression-resistant phenotype is associated with potentiated neural responses to rewards in humans. Hum Brain Mapp 2010; 31: 210–221.

    PubMed  Google Scholar 

  161. Perlis RH, Moorjani P, Fagerness J, Purcell S, Trivedi MH, Fava M et al. Pharmacogenetic analysis of genes implicated in rodent models of antidepressant response: association of TREK1 and treatment resistance in the STAR(*)D study. Neuropsychopharmacology 2008; 33: 2810–2819.

    CAS  Article  PubMed  Google Scholar 

  162. Mazella J, Petrault O, Lucas G, Deval E, Beraud-Dufour S, Gandin C et al. Spadin, a sortilin-derived peptide, targeting rodent TREK-1 channels: a new concept in the antidepressant drug design. PLoS Biol 2010; 8: e1000355.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  163. Binder EB . The role of FKBP5, a co-chaperone of the glucocorticoid receptor in the pathogenesis and therapy of affective and anxiety disorders. Psychoneuroendocrinology 2009; 34 (Suppl 1): S186–S195.

    CAS  Article  PubMed  Google Scholar 

  164. Kumsta R, Moser D, Streit F, Koper JW, Meyer J, Wust S . Characterization of a glucocorticoid receptor gene (GR, NR3C1) promoter polymorphism reveals functionality and extends a haplotype with putative clinical relevance. Am J Med Genet B Neuropsychiatr Genet 2009; 150B: 476–482.

    CAS  Article  PubMed  Google Scholar 

  165. Kolber BJ, Roberts MS, Howell MP, Wozniak DF, Sands MS, Muglia LJ . Central amygdala glucocorticoid receptor action promotes fear-associated CRH activation and conditioning. Proc Natl Acad Sci USA 2008; 105: 12004–12009.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  166. Velders FP, Kuningas M, Kumari M, Dekker MJ, Uitterlinden AG, Kirschbaum C et al. Genetics of cortisol secretion and depressive symptoms: a candidate gene and genome wide association approach. Psychoneuroendocrinology 2011; 36: 1053–1061.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  167. Tyrka AR, Price LH, Gelernter J, Schepker C, Anderson GM, Carpenter LL . Interaction of childhood maltreatment with the corticotropin-releasing hormone receptor gene: effects on hypothalamic-pituitary-adrenal axis reactivity. Biol Psychiatry 2009; 66: 681–685.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Bogdan.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bogdan, R., Hyde, L. & Hariri, A. A neurogenetics approach to understanding individual differences in brain, behavior, and risk for psychopathology. Mol Psychiatry 18, 288–299 (2013). https://doi.org/10.1038/mp.2012.35

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2012.35

Keywords

  • epigenetics
  • epistasis
  • GWAS
  • GxE
  • multilocus
  • neurogenetics

Further reading

Search

Quick links