Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Expert Review
  • Published:

Modeling psychiatric disorders at the cellular and network levels

Abstract

Although psychiatric disorders such as autism spectrum disorders, schizophrenia and bipolar disorder affect a number of brain regions and produce a complex array of clinical symptoms, basic phenotypes likely exist at the level of single neurons and simple networks. Being highly heritable, it is hypothesized that these disorders are amenable to cell-based studies in vitro. Using induced pluripotent stem cell-derived neurons and/or induced neurons from fibroblasts, limitless numbers of live human neurons can now be generated from patients with a genetic background permissive to the disease state. We predict that cell-based studies will ultimately contribute to our understanding of the initiation, progression and treatment of these psychiatric disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Association AP . Diagnostic and statistical manual of mental disorders: DSM-IV. 3rd ed., rev. edn, vol. 4th ed, American Psychiatric Press: Washington, DC, 1994; 886, pp 69–70, 263, 350–359.

    Google Scholar 

  2. Di Giorgio FP, Boulting GL, Bobrowicz S, Eggan KC . Human embryonic stem cell-derived motor neurons are sensitive to the toxic effect of glial cells carrying an ALS-causing mutation. Cell Stem Cell 2008; 3: 637–648.

    Article  CAS  PubMed  Google Scholar 

  3. Marchetto MC, Muotri AR, Mu Y, Smith AM, Cezar GG, Gage FH . Non-cell-autonomous effect of human SOD1 G37R astrocytes on motor neurons derived from human embryonic stem cells. Cell Stem Cell 2008; 3: 649–657.

    Article  CAS  PubMed  Google Scholar 

  4. Ritvo ER, Freeman BJ, Mason-Brothers A, Mo A, Ritvo AM . Concordance for the syndrome of autism in 40 pairs of afflicted twins. Am J Psychiatry 1985; 142: 74–77.

    Article  CAS  PubMed  Google Scholar 

  5. Sullivan PF, Kendler KS, Neale MC . Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch Gen Psychiatry 2003; 60: 1187–1192.

    Article  PubMed  Google Scholar 

  6. Tsuang MT, Stone WS, Faraone SV . Genes, environment and schizophrenia. Br J Psychiatry Suppl 2001; 40: s18–s24.

    Article  CAS  PubMed  Google Scholar 

  7. Bottenstein JE, Sato GH . Growth of a rat neuroblastoma cell line in serum-free supplemented medium. Proc Natl Acad Sci USA 1979; 76: 514–517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Benitez-King G, Riquelme A, Ortiz-Lopez L, Berlanga C, Rodriguez-Verdugo MS, Romo F et al. A non-invasive method to isolate the neuronal linage from the nasal epithelium from schizophrenic and bipolar diseases. J Neurosci Methods 2011; 201: 35–45.

    Article  CAS  PubMed  Google Scholar 

  9. Matigian N, Abrahamsen G, Sutharsan R, Cook AL, Vitale AM, Nouwens A et al. Disease-specific, neurosphere-derived cells as models for brain disorders. Dis Model Mech 2010; 3: 785–798.

    Article  CAS  PubMed  Google Scholar 

  10. Carper RA, Moses P, Tigue ZD, Courchesne E . Cerebral lobes in autism: early hyperplasia and abnormal age effects. Neuroimage 2002; 16: 1038–1051.

    Article  PubMed  Google Scholar 

  11. Courchesne E, Karns CM, Davis HR, Ziccardi R, Carper RA, Tigue ZD et al. Unusual brain growth patterns in early life in patients with autistic disorder: an MRI study. Neurology 2001; 57: 245–254.

    Article  CAS  PubMed  Google Scholar 

  12. Hazlett HC, Poe M, Gerig G, Smith RG, Provenzale J, Ross A et al. Magnetic resonance imaging and head circumference study of brain size in autism: birth through age 2 years. Arch Gen Psychiatry 2005; 62: 1366–1376.

    Article  PubMed  Google Scholar 

  13. Courchesne E, Mouton P, Calhoun M, Semendeferi K, Ahrens-Barbeau C, Hallet M et al. Neuron number and size in prefrontal cortex of children with autism. JAMA 2011; 206: 2001–2010.

    Article  Google Scholar 

  14. Courchesne E, Press GA, Yeung-Courchesne R . Parietal lobe abnormalities detected with MR in patients with infantile autism. AJR Am J Roentgenol 1993; 160: 387–393.

    Article  CAS  PubMed  Google Scholar 

  15. Hadjikhani N, Joseph RM, Snyder J, Tager-Flusberg H . Anatomical differences in the mirror neuron system and social cognition network in autism. Cereb Cortex 2006; 16: 1276–1282.

    Article  PubMed  Google Scholar 

  16. Schmitz N, Daly E, Murphy D . Frontal anatomy and reaction time in Autism. Neurosci Lett 2007; 412: 12–17.

    Article  CAS  PubMed  Google Scholar 

  17. Brun CC, Nicolson R, Lepore N, Chou YY, Vidal CN, DeVito TJ et al. Mapping brain abnormalities in boys with autism. Hum Brain Mapp 2009; 30: 3887–3900.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Frazier TW, Hardan AY . A meta-analysis of the corpus callosum in autism. Biol Psychiatry 2009; 66: 935–941.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Raymond GV, Bauman ML, Kemper TL . Hippocampus in autism: a Golgi analysis. Acta Neuropathol 1996; 91: 117–119.

    Article  CAS  PubMed  Google Scholar 

  20. Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY . Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 1999; 23: 185–188.

    Article  CAS  PubMed  Google Scholar 

  21. Van den Veyver IB, Zoghbi HY . Methyl-CpG-binding protein 2 mutations in Rett syndrome. Curr Opin Genet Dev 2000; 10: 275–279.

    Article  CAS  PubMed  Google Scholar 

  22. Bauman ML, Kemper TL, Arin DM . Pervasive neuroanatomic abnormalities of the brain in three cases of Rett's syndrome. Neurology 1995; 45: 1581–1586.

    Article  CAS  PubMed  Google Scholar 

  23. Castren M, Tervonen T, Karkkainen V, Heinonen S, Castren E, Larsson K et al. Altered differentiation of neural stem cells in fragile X syndrome. Proc Natl Acad Sci USA 2005; 102: 17834–17839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bhattacharyya A, McMillan E, Wallace K, Tubon Jr TC, Capowski EE, Svendsen CN . Normal neurogenesis but abnormal gene expression in human Fragile X cortical progenitor cells. Stem Cells Dev 2008; 17: 107–117.

    Article  CAS  PubMed  Google Scholar 

  25. Vita A, De Peri L, Silenzi C, Dieci M . Brain morphology in first-episode schizophrenia: a meta-analysis of quantitative magnetic resonance imaging studies. Schizophr Res 2006; 82: 75–88.

    Article  CAS  PubMed  Google Scholar 

  26. Steen RG, Mull C, McClure R, Hamer RM, Lieberman JA . Brain volume in first-episode schizophrenia: systematic review and meta-analysis of magnetic resonance imaging studies. Br J Psychiatry 2006; 188: 510–518.

    Article  PubMed  Google Scholar 

  27. Wright IC, Rabe-Hesketh S, Woodruff PW, David AS, Murray RM, Bullmore ET . Meta-analysis of regional brain volumes in schizophrenia. Am J Psychiatry 2000; 157: 16–25.

    Article  CAS  PubMed  Google Scholar 

  28. Thompson PM, Vidal C, Giedd JN, Gochman P, Blumenthal J, Nicolson R et al. Mapping adolescent brain change reveals dynamic wave of accelerated gray matter loss in very early-onset schizophrenia. Proc Natl Acad Sci USA 2001; 98: 11650–11655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ellison-Wright I, Glahn DC, Laird AR, Thelen SM, Bullmore E . The anatomy of first-episode and chronic schizophrenia: an anatomical likelihood estimation meta-analysis. Am J Psychiatry 2008; 165: 1015–1023.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Rajkowska G, Selemon LD, Goldman-Rakic PS . Neuronal and glial somal size in the prefrontal cortex: a postmortem morphometric study of schizophrenia and Huntington disease. Arch Gen Psychiatry 1998; 55: 215–224.

    Article  CAS  PubMed  Google Scholar 

  31. Kolomeets NS, Orlovskaya DD, Rachmanova VI, Uranova NA . Ultrastructural alterations in hippocampal mossy fiber synapses in schizophrenia: a postmortem morphometric study. Synapse 2005; 57: 47–55.

    Article  CAS  PubMed  Google Scholar 

  32. Black JE, Kodish IM, Grossman AW, Klintsova AY, Orlovskaya D, Vostrikov V et al. Pathology of layer V pyramidal neurons in the prefrontal cortex of patients with schizophrenia. Am J Psychiatry 2004; 161: 742–744.

    Article  PubMed  Google Scholar 

  33. Selemon LD, Goldman-Rakic PS . The reduced neuropil hypothesis: a circuit based model of schizophrenia. Biol Psychiatry 1999; 45: 17–25.

    Article  CAS  PubMed  Google Scholar 

  34. Karchemskiy A, Garrett A, Howe M, Adleman N, Simeonova DI, Alegria D et al. Amygdalar, hippocampal, and thalamic volumes in youth at high risk for development of bipolar disorder. Psychiatry Res 2011; 194: 319–325.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Frazier JA, Chiu S, Breeze JL, Makris N, Lange N, Kennedy DN et al. Structural brain magnetic resonance imaging of limbic and thalamic volumes in pediatric bipolar disorder. Am J Psychiatry 2005; 162: 1256–1265.

    Article  PubMed  Google Scholar 

  36. Edmiston EE, Wang F, Kalmar JH, Womer FY, Chepenik LG, Pittman B et al. Lateral ventricle volume and psychotic features in adolescents and adults with bipolar disorder. Psychiatry Res 2011; 194: 400–402.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Rajkowska G, Halaris A, Selemon LD . Reductions in neuronal and glial density characterize the dorsolateral prefrontal cortex in bipolar disorder. Biol Psychiatry 2001; 49: 741–752.

    Article  CAS  PubMed  Google Scholar 

  38. Pantazopoulos H, Lange N, Baldessarini RJ, Berretta S . Parvalbumin neurons in the entorhinal cortex of subjects diagnosed with bipolar disorder or schizophrenia. Biol Psychiatry 2007; 61: 640–652.

    Article  CAS  PubMed  Google Scholar 

  39. Chen RZ, Akbarian S, Tudor M, Jaenisch R . Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice. Nat Genet 2001; 27: 327–331.

    Article  CAS  PubMed  Google Scholar 

  40. Kishi N, Macklis JD . MECP2 is progressively expressed in post-migratory neurons and is involved in neuronal maturation rather than cell fate decisions. Mol Cell Neurosci 2004; 27: 306–321.

    Article  CAS  PubMed  Google Scholar 

  41. Smrt RD, Eaves-Egenes J, Barkho BZ, Santistevan NJ, Zhao C, Aimone JB et al. Mecp2 deficiency leads to delayed maturation and altered gene expression in hippocampal neurons. Neurobiol Dis 2007; 27: 77–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kvajo M, McKellar H, Arguello PA, Drew LJ, Moore H, MacDermott AB et al. A mutation in mouse Disc1 that models a schizophrenia risk allele leads to specific alterations in neuronal architecture and cognition. Proc Natl Acad Sci USA 2008; 105: 7076–7081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li W, Zhou Y, Jentsch JD, Brown RA, Tian X, Ehninger D et al. Specific developmental disruption of disrupted-in-schizophrenia-1 function results in schizophrenia-related phenotypes in mice. Proc Natl Acad Sci UnSA 2007; 104: 18280–18285.

    Article  CAS  Google Scholar 

  44. Lopez-Bendito G, Cautinat A, Sanchez JA, Bielle F, Flames N, Garratt AN et al. Tangential neuronal migration controls axon guidance: a role for neuregulin-1 in thalamocortical axon navigation. Cell 2006; 125: 127–142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Krivosheya D, Tapia L, Levinson JN, Huang K, Kang Y, Hines R et al. ErbB4-neuregulin signaling modulates synapse development and dendritic arborization through distinct mechanisms. J Biol Chem 2008; 283: 32944–32956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dzirasa K, Coque L, Sidor MM, Kumar S, Dancy EA, Takahashi JS et al. Lithium ameliorates nucleus accumbens phase-signaling dysfunction in a genetic mouse model of mania. J Neurosci 2010; 30: 16314–16323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sudhof TC . Neuroligins and neurexins link synaptic function to cognitive disease. Nature 2008; 455: 903–911.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Hutsler JJ, Zhang H . Increased dendritic spine densities on cortical projection neurons in autism spectrum disorders. Brain Res 2010; 1309: 83–94.

    Article  CAS  PubMed  Google Scholar 

  49. Chapleau CA, Calfa GD, Lane MC, Albertson AJ, Larimore JL, Kudo S et al. Dendritic spine pathologies in hippocampal pyramidal neurons from Rett syndrome brain and after expression of Rett-associated MECP2 mutations. Neurobiol Dis 2009; 35: 219–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Irwin SA, Patel B, Idupulapati M, Harris JB, Crisostomo RA, Larsen BP et al. Abnormal dendritic spine characteristics in the temporal and visual cortices of patients with fragile-X syndrome: a quantitative examination. Am J Med Genet 2001; 98: 161–167.

    Article  CAS  PubMed  Google Scholar 

  51. Garey LJ, Ong WY, Patel TS, Kanani M, Davis A, Mortimer AM et al. Reduced dendritic spine density on cerebral cortical pyramidal neurons in schizophrenia. J Neurol Neurosurg Psychiatry 1998; 65: 446–453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Glantz LA, Lewis DA . Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch Gen Psychiatry 2000; 57: 65–73.

    Article  CAS  PubMed  Google Scholar 

  53. Kolomeets NS, Orlovskaya DD, Uranova NA . Decreased numerical density of CA3 hippocampal mossy fiber synapses in schizophrenia. Synapse 2007; 61: 615–621.

    Article  CAS  PubMed  Google Scholar 

  54. Asaka Y, Jugloff DG, Zhang L, Eubanks JH, Fitzsimonds RM . Hippocampal synaptic plasticity is impaired in the Mecp2-null mouse model of Rett syndrome. Neurobiol Dis 2006; 21: 217–227.

    Article  CAS  PubMed  Google Scholar 

  55. Moretti P, Levenson JM, Battaglia F, Atkinson R, Teague R, Antalffy B et al. Learning and memory and synaptic plasticity are impaired in a mouse model of Rett syndrome. J Neurosci 2006; 26: 319–327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nelson ED, Kavalali ET, Monteggia LM . MeCP2-dependent transcriptional repression regulates excitatory neurotransmission. Curr Biol 2006; 16: 710–716.

    Article  CAS  PubMed  Google Scholar 

  57. Durand CM, Perroy J, Loll F, Perrais D, Fagni L, Bourgeron T et al. SHANK3 mutations identified in autism lead to modification of dendritic spine morphology via an actin-dependent mechanism. Mol Psychiatry 2011; 17: 71–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Comery TA, Harris JB, Willems PJ, Oostra BA, Irwin SA, Weiler IJ et al. Abnormal dendritic spines in fragile X knockout mice: maturation and pruning deficits. Proc Natl Acad Sci USA 1997; 94: 5401–5404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Weiler IJ, Spangler CC, Klintsova AY, Grossman AW, Kim SH, Bertaina-Anglade V et al. Fragile X mental retardation protein is necessary for neurotransmitter-activated protein translation at synapses. Proc Natl Acad Sci USA 2004; 101: 17504–17509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Barros CS, Calabrese B, Chamero P, Roberts AJ, Korzus E, Lloyd K et al. Impaired maturation of dendritic spines without disorganization of cortical cell layers in mice lacking NRG1/ErbB signaling in the central nervous system. Proc Natl Acad Sci USA 2009; 106: 4507–4512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Pitcher GM, Beggs S, Woo RS, Mei L, Salter MW . ErbB4 is a suppressor of long-term potentiation in the adult hippocampus. Neuroreport 2008; 19: 139–143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chen YJ, Zhang M, Yin DM, Wen L, Ting A, Wang P et al. ErbB4 in parvalbumin-positive interneurons is critical for neuregulin 1 regulation of long-term potentiation. Proc Natl Acad Sci USA 2010; 107: 21818–21823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Fenelon K, Mukai J, Xu B, Hsu PK, Drew LJ, Karayiorgou M et al. Deficiency of Dgcr8, a gene disrupted by the 22q11.2 microdeletion, results in altered short-term plasticity in the prefrontal cortex. Proc Natl Acad Sci USA 2011; 108: 4447–4452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Earls LR, Bayazitov IT, Fricke RG, Berry RB, Illingworth E, Mittleman G et al. Dysregulation of presynaptic calcium and synaptic plasticity in a mouse model of 22q11 deletion syndrome. J Neurosci 2010; 30: 15843–15855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sigurdsson T, Stark KL, Karayiorgou M, Gogos JA, Gordon JA . Impaired hippocampal-prefrontal synchrony in a genetic mouse model of schizophrenia. Nature 2010; 464: 763–767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Pappas GD, Kriho V, Pesold C . Reelin in the extracellular matrix and dendritic spines of the cortex and hippocampus: a comparison between wild type and heterozygous reeler mice by immunoelectron microscopy. J Neurocytol 2001; 30: 413–425.

    Article  CAS  PubMed  Google Scholar 

  67. Mao Y, Ge X, Frank CL, Madison JM, Koehler AN, Doud MK et al. Disrupted in schizophrenia 1 regulates neuronal progenitor proliferation via modulation of GSK3beta/beta-catenin signaling. Cell 2009; 136: 1017–1031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Singh KK, Ge X, Mao Y, Drane L, Meletis K, Samuels BA et al. Dixdc1 is a critical regulator of DISC1 and embryonic cortical development. Neuron 2010; 67: 33–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Duan X, Chang JH, Ge S, Faulkner RL, Kim JY, Kitabatake Y et al. Disrupted-In-Schizophrenia 1 regulates integration of newly generated neurons in the adult brain. Cell 2007; 130: 1146–1158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Faulkner RL, Jang MH, Liu XB, Duan X, Sailor KA, Kim JY et al. Development of hippocampal mossy fiber synaptic outputs by new neurons in the adult brain. Proc Natl Acad Sci USA 2008; 105: 14157–14162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kim JY, Duan X, Liu CY, Jang MH, Guo JU, Pow-anpongkul N et al. DISC1 regulates new neuron development in the adult brain via modulation of AKT-mTOR signaling through KIAA1212. Neuron 2009; 63: 761–773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wegiel J, Kuchna I, Nowicki K, Imaki H, Marchi E, Ma SY et al. The neuropathology of autism: defects of neurogenesis and neuronal migration, and dysplastic changes. Acta Neuropathol 2010; 119: 755–770.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Rorke LB . A perspective: the role of disordered genetic control of neurogenesis in the pathogenesis of migration disorders. J Neuropathol Exp Neurol 1994; 53: 105–117.

    Article  CAS  PubMed  Google Scholar 

  74. Kamiya A, Kubo K, Tomoda T, Takaki M, Youn R, Ozeki Y et al. A schizophrenia-associated mutation of DISC1 perturbs cerebral cortex development. Nat Cell Biol 2005; 7: 1167–1178.

    Article  PubMed  CAS  Google Scholar 

  75. Just MA, Cherkassky VL, Keller TA, Minshew NJ . Cortical activation and synchronization during sentence comprehension in high-functioning autism: evidence of underconnectivity. Brain 2004; 127 (Part 8): 1811–1821.

    Article  PubMed  Google Scholar 

  76. Ruiz i Altaba A, Melton DA . Involvement of the Xenopus homeobox gene Xhox3 in pattern formation along the anterior-posterior axis. Cell 1989; 57: 317–326.

    Article  CAS  PubMed  Google Scholar 

  77. O'Brien WT, Klein PS . Validating GSK3 as an in vivo target of lithium action. Biochem Soc Trans 2009; 37 (Part 5): 1133–1138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kim WY, Zhou FQ, Zhou J, Yokota Y, Wang YM, Yoshimura T et al. Essential roles for GSK-3s and GSK-3-primed substrates in neurotrophin-induced and hippocampal axon growth. Neuron 2006; 52: 981–996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Courchesne E, Redcay E, Morgan JT, Kennedy DP . Autism at the beginning: microstructural and growth abnormalities underlying the cognitive and behavioral phenotype of autism. Dev Psychopathol 2005; 17: 577–597.

    Article  PubMed  Google Scholar 

  80. Monk CS, Peltier SJ, Wiggins JL, Weng SJ, Carrasco M, Risi S et al. Abnormalities of intrinsic functional connectivity in autism spectrum disorders. Neuroimage 2009; 47: 764–772.

    Article  PubMed  Google Scholar 

  81. Kennedy DP, Courchesne E . The intrinsic functional organization of the brain is altered in autism. Neuroimage 2008; 39: 1877–1885.

    Article  PubMed  Google Scholar 

  82. Ebisch SJ, Gallese V, Willems RM, Mantini D, Groen WB, Romani GL et al. Altered intrinsic functional connectivity of anterior and posterior insula regions in high-functioning participants with autism spectrum disorder. Hum Brain Mapp 2011; 32: 1013–1028.

    Article  PubMed  Google Scholar 

  83. Dinstein I, Pierce K, Eyler L, Solso S, Malach R, Behrmann M et al. Disrupted neural synchronization in toddlers with autism. Neuron 2011; 70: 1218–1225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kennedy DP, Courchesne E . Functional abnormalities of the default network during self- and other-reflection in autism. Soc Cogn Affect Neurosci 2008; 3: 177–190.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Yurgelun-Todd DA, Renshaw PF, Gruber SA, Ed M, Waternaux C, Cohen BM . Proton magnetic resonance spectroscopy of the temporal lobes in schizophrenics and normal controls. Schizophr Res 1996; 19: 55–59.

    Article  CAS  PubMed  Google Scholar 

  86. Yurgelun-Todd DA, Waternaux CM, Cohen BM, Gruber SA, English CD, Renshaw PF . Functional magnetic resonance imaging of schizophrenic patients and comparison subjects during word production. Am J Psychiatry 1996; 153: 200–205.

    Article  CAS  PubMed  Google Scholar 

  87. Whitfield-Gabrieli S, Thermenos HW, Milanovic S, Tsuang MT, Faraone SV, McCarley RW et al. Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first-degree relatives of persons with schizophrenia. Proc Natl Acad Sci USA 2009; 106: 1279–1284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Tan HY, Sust S, Buckholtz JW, Mattay VS, Meyer-Lindenberg A, Egan MF et al. Dysfunctional prefrontal regional specialization and compensation in schizophrenia. Am J Psychiatry 2006; 163: 1969–1977.

    Article  PubMed  Google Scholar 

  89. Bassett DS, Bullmore E, Verchinski BA, Mattay VS, Weinberger DR, Meyer-Lindenberg A . Hierarchical organization of human cortical networks in health and schizophrenia. J Neurosci 2008; 28: 9239–9248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kessler RM, Woodward ND, Riccardi P, Li R, Ansari MS, Anderson S et al. Dopamine D2 receptor levels in striatum, thalamus, substantia nigra, limbic regions, and cortex in schizophrenic subjects. Biol Psychiatry 2009; 65: 1024–1031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Owen F, Cross AJ, Crow TJ, Longden A, Poulter M, Riley GJ . Increased dopamine-receptor sensitivity in schizophrenia. Lancet 1978; 2: 223–226.

    Article  CAS  PubMed  Google Scholar 

  92. Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, Bremner JD et al. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry 1994; 51: 199–214.

    Article  CAS  PubMed  Google Scholar 

  93. Patil ST, Zhang L, Martenyi F, Lowe SL, Jackson KA, Andreev BV et al. Activation of mGlu2/3 receptors as a new approach to treat schizophrenia: a randomized Phase 2 clinical trial. Nat Med 2007; 13: 1102–1107.

    Article  CAS  PubMed  Google Scholar 

  94. Meador-Woodruff JH, Healy DJ . Glutamate receptor expression in schizophrenic brain. Brain Res Brain Res Rev 2000; 31: 288–294.

    Article  CAS  PubMed  Google Scholar 

  95. Li B, Woo RS, Mei L, Malinow R . The neuregulin-1 receptor erbB4 controls glutamatergic synapse maturation and plasticity. Neuron 2007; 54: 583–597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Stefansson H, Sigurdsson E, Steinthorsdottir V, Bjornsdottir S, Sigmundsson T, Ghosh S et al. Neuregulin 1 and susceptibility to schizophrenia. Am J Hum Genet 2002; 71: 877–892.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Dickman DK, Davis GW . The schizophrenia susceptibility gene dysbindin controls synaptic homeostasis. Science (New York, NY) 2009; 326: 1127–1130.

    Article  CAS  Google Scholar 

  98. Noutel J, Hong YK, Leu B, Kang E, Chen C . Experience-dependent retinogeniculate synapse remodeling is abnormal in MeCP2-deficient mice. Neuron 2011; 70: 35–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Dani VS, Chang Q, Maffei A, Turrigiano GG, Jaenisch R, Nelson SB . Reduced cortical activity due to a shift in the balance between excitation and inhibition in a mouse model of Rett syndrome. Proc Natl Acad Sci USA 2005; 102: 12560–12565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Penagarikano O, Abrahams BS, Herman EI, Winden KD, Gdalyahu A, Dong H et al. Absence of CNTNAP2 leads to epilepsy, neuronal migration abnormalities, and core autism-related deficits. Cell 2011; 147: 235–246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Pitcher GM, Kalia LV, Ng D, Goodfellow NM, Yee KT, Lambe EK et al. Schizophrenia susceptibility pathway neuregulin 1-ErbB4 suppresses Src upregulation of NMDA receptors. Nat Med 2011; 17: 470–478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Geyer MA, Swerdlow NR, Mansbach RS, Braff DL . Startle response models of sensorimotor gating and habituation deficits in schizophrenia. Brain Res Bull 1990; 25: 485–498.

    Article  CAS  PubMed  Google Scholar 

  103. Caine SB, Geyer MA, Swerdlow NR . Effects of D3/D2 dopamine receptor agonists and antagonists on prepulse inhibition of acoustic startle in the rat. Neuropsychopharmacology 1995; 12: 139–145.

    Article  CAS  PubMed  Google Scholar 

  104. Carlson GC, Talbot K, Halene TB, Gandal MJ, Kazi HA, Schlosser L et al. From the cover: Dysbindin-1 mutant mice implicate reduced fast-phasic inhibition as a final common disease mechanism in schizophrenia. Proc Natl Acad Sci USA 2011; 108: E962–E970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Takahashi K, Yamanaka S . Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126: 663–676.

    Article  CAS  PubMed  Google Scholar 

  106. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131: 861–872.

    Article  CAS  PubMed  Google Scholar 

  107. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S et al. Induced pluripotent stem cell lines derived from human somatic cells. Science (New York, NY) 2007; 318: 1917–1920.

    Article  CAS  Google Scholar 

  108. Tropepe V, Hitoshi S, Sirard C, Mak TW, Rossant J, van der Kooy D . Direct neural fate specification from embryonic stem cells: a primitive mammalian neural stem cell stage acquired through a default mechanism. Neuron 2001; 30: 65–78.

    Article  CAS  PubMed  Google Scholar 

  109. Watanabe K, Kamiya D, Nishiyama A, Katayama T, Nozaki S, Kawasaki H et al. Directed differentiation of telencephalic precursors from embryonic stem cells. Nat Neurosci 2005; 8: 288–296.

    Article  CAS  PubMed  Google Scholar 

  110. Kawasaki H, Mizuseki K, Nishikawa S, Kaneko S, Kuwana Y, Nakanishi S et al. Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron 2000; 28: 31–40.

    Article  CAS  PubMed  Google Scholar 

  111. Perrier AL, Tabar V, Barberi T, Rubio ME, Bruses J, Topf N et al. Derivation of midbrain dopamine neurons from human embryonic stem cells. Proc Natl Acad Sci USA 2004; 101: 12543–12548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Li XJ, Du ZW, Zarnowska ED, Pankratz M, Hansen LO, Pearce RA et al. Specification of motoneurons from human embryonic stem cells. Nat Biotechnol 2005; 23: 215–221.

    Article  PubMed  CAS  Google Scholar 

  113. Wichterle H, Lieberam I, Porter JA, Jessell TM . Directed differentiation of embryonic stem cells into motor neurons. Cell 2002; 110: 385–397.

    Article  CAS  PubMed  Google Scholar 

  114. Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Sudhof TC, Wernig M . Direct conversion of fibroblasts to functional neurons by defined factors. Nature 2010; 463: 1035–1041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Pang ZP, Yang N, Vierbuchen T, Ostermeier A, Fuentes DR, Yang TQ et al. Induction of human neuronal cells by defined transcription factors. Nature 2011; 476: 220–223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Kim J, Su SC, Wang H, Cheng AW, Cassady JP, Lodato MA et al. Functional integration of dopaminergic neurons directly converted from mouse fibroblasts. Cell Stem Cell 2011; 9: 413–419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Vrijenhoek T, Buizer-Voskamp JE, van der Stelt I, Strengman E, Sabatti C, Geurts van Kessel A et al. Recurrent CNVs disrupt three candidate genes in schizophrenia patients. Am J Hum Genet 2008; 83: 504–510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Riley B, Thiselton D, Maher BS, Bigdeli T, Wormley B, McMichael GO et al. Replication of association between schizophrenia and ZNF804A in the irish case-control study of schizophrenia sample. Mol Psychiatry 2010; 15: 29–37.

    Article  CAS  PubMed  Google Scholar 

  119. Sun G, Tomita H, Shakkottai VG, Gargus JJ . Genomic organization and promoter analysis of human KCNN3 gene. J Hum Genet 2001; 46: 463–470.

    Article  CAS  PubMed  Google Scholar 

  120. Ide M, Yamada K, Toyota T, Iwayama Y, Ishitsuka Y, Minabe Y et al. Genetic association analyses of PHOX2B and ASCL1 in neuropsychiatric disorders: evidence for association of ASCL1 with Parkinson's disease. Hum Genet 2005; 117: 520–527.

    Article  CAS  PubMed  Google Scholar 

  121. Lin M, Pedrosa E, Shah A, Hrabovsky A, Maqbool S, Zheng D et al. RNA-Seq of human neurons derived from iPS cells reveals candidate long non-coding RNAs involved in neurogenesis and neuropsychiatric disorders. PLoS One 2011; 6: e23356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Cheung AY, Horvath LM, Grafodatskaya D, Pasceri P, Weksberg R, Hotta A et al. Isolation of MECP2-null rett syndrome patient hiPS cells and isogenic controls through X-chromosome inactivation. Hum Mol Genet 2011; 20: 2103–2115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Marchetto MC, Carromeu C, Acab A, Yu D, Yeo GW, Mu Y et al. A model for neural development and treatment of rett syndrome using human induced pluripotent stem cells. Cell 2010; 143: 527–539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Ananiev G, Williams EC, Li H, Chang Q . Isogenic pairs of wild type and mutant induced pluripotent stem cell (iPSC) lines from rett syndrome patients as in vitro disease model. PLoS One 2011; 6: e25255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. O'Donnell WT, Warren ST . A decade of molecular studies of fragile X syndrome. Annu Rev Neurosci 2002; 25: 315–338.

    Article  CAS  PubMed  Google Scholar 

  126. Nichol Edamura K, Pearson CE . DNA methylation and replication: implications for the ‘deletion hotspot’ region of FMR1. Hum Genet 2005; 118: 301–304.

    Article  CAS  PubMed  Google Scholar 

  127. Urbach A, Bar-Nur O, Daley GQ, Benvenisty N . Differential modeling of fragile X syndrome by human embryonic stem cells and induced pluripotent stem cells. Cell Stem Cell 2010; 6: 407–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Sheridan SD, Theriault KM, Reis SA, Zhou F, Madison JM, Daheron L et al. Epigenetic characterization of the FMR1 gene and aberrant neurodevelopment in human induced pluripotent stem cell models of fragile x syndrome. PLoS One 2011; 6: e26203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Pasca SP, Portmann T, Voineagu I, Yazawa M, Shcheglovitov A, Pasca AM et al. Using iPSC-derived neurons to uncover cellular phenotypes associated with Timothy syndrome. Nat Med 2011; 17: 1657–1662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Yazawa M, Hsueh B, Jia X, Pasca AM, Bernstein JA, Hallmayer J et al. Using induced pluripotent stem cells to investigate cardiac phenotypes in Timothy syndrome. Nature 2011; 471: 230–234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Chiang CH, Su Y, Wen Z, Yoritomo N, Ross CA, Margolis RL et al. Integration-free induced pluripotent stem cells derived from schizophrenia patients with a DISC1 mutation. Mol Psychiatry 2011; 16: 358–360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Brennand KJ, Simone A, Jou J, Gelboin-Burkhart C, Tran N, Sangar S et al. Modelling schizophrenia using human induced pluripotent stem cells. Nature 2011; 473: 221–225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Paulsen BD, Maciel RD, Galina A, da Silveira MS, Souza CD, Drummond H et al. Altered oxygen metabolism associated to neurogenesis of induced pluripotent stem cells derived from a schizophrenic patient. Cell Transplant 2011 (e-pub ahead of print).

  134. Meechan DW, Maynard TM, Tucker ES, LaMantia AS . Three phases of DiGeorge/22q11 deletion syndrome pathogenesis during brain development: patterning, proliferation, and mitochondrial functions of 22q11 genes. Int J Dev Neurosci 2011; 29: 283–294.

    Article  CAS  PubMed  Google Scholar 

  135. Park YU, Jeong J, Lee H, Mun JY, Kim JH, Lee JS et al. Disrupted-in-schizophrenia 1 (DISC1) plays essential roles in mitochondria in collaboration with Mitofilin. Proc Natl Acad Sci USA 2010; 107: 17785–17790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Gore A, Li Z, Fung HL, Young JE, Agarwal S, Antosiewicz-Bourget J et al. Somatic coding mutations in human induced pluripotent stem cells. Nature 2011; 471: 63–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Lister R, Pelizzola M, Kida YS, Hawkins RD, Nery JR, Hon G et al. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 2011; 471: 68–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Osafune K, Caron L, Borowiak M, Martinez RJ, Fitz-Gerald CS, Sato Y et al. Marked differences in differentiation propensity among human embryonic stem cell lines. Nat Biotechnol 2008; 26: 313–315.

    Article  CAS  PubMed  Google Scholar 

  139. Hu BY, Weick JP, Yu J, Ma LX, Zhang XQ, Thomson JA et al. Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proc Natl Acad Sci USA 2010; 107: 4335–4340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The Gage Laboratory is partially funded by CIRM Grant RL1-00649-1, The Lookout and Mathers Foundation, the Helmsley Foundation as well as Sanofi-Aventis. We thank J Simon for illustrations and ML Gage for editorial comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F H Gage.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brennand, K., Simone, A., Tran, N. et al. Modeling psychiatric disorders at the cellular and network levels. Mol Psychiatry 17, 1239–1253 (2012). https://doi.org/10.1038/mp.2012.20

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2012.20

Keywords

This article is cited by

Search

Quick links