Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Common variant at 16p11.2 conferring risk of psychosis


Epidemiological and genetic data support the notion that schizophrenia and bipolar disorder share genetic risk factors. In our previous genome-wide association study, meta-analysis and follow-up (totaling as many as 18 206 cases and 42 536 controls), we identified four loci showing genome-wide significant association with schizophrenia. Here we consider a mixed schizophrenia and bipolar disorder (psychosis) phenotype (addition of 7469 bipolar disorder cases, 1535 schizophrenia cases, 333 other psychosis cases, 808 unaffected family members and 46 160 controls). Combined analysis reveals a novel variant at 16p11.2 showing genome-wide significant association (rs4583255[T]; odds ratio=1.08; P=6.6 × 10−11). The new variant is located within a 593-kb region that substantially increases risk of psychosis when duplicated. In line with the association of the duplication with reduced body mass index (BMI), rs4583255[T] is also associated with lower BMI (P=0.0039 in the public GIANT consortium data set; P=0.00047 in 22 651 additional Icelanders).

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1


  1. Chubb JE, Bradshaw NJ, Soares DC, Porteous DJ, Millar JK . The DISC locus in psychiatric illness. Mol Psychiatry 2008; 13: 36–64.

    Article  CAS  PubMed  Google Scholar 

  2. Karayiorgou M, Morris MA, Morrow B, Shprintzen RJ, Goldberg R, Borrow J et al. Schizophrenia susceptibility associated with interstitial deletions of chromosome 22q11. Proc Natl Acad Sci USA 1995; 92: 7612–7616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ingason A, Rujescu D, Cichon S, Sigurdsson E, Sigmundsson T, Pietilainen OP et al. Copy number variations of chromosome 16p13.1 region associated with schizophrenia. Mol Psychiatry 2011; 16: 17–25.

    Article  CAS  PubMed  Google Scholar 

  4. International Schizophrenia Consortium. Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature 2008; 455: 237–241.

    Article  Google Scholar 

  5. Levinson DF, Duan J, Oh S, Wang K, Sanders AR, Shi J et al. Copy number variants in schizophrenia: confirmation of five previous findings and new evidence for 3q29 microdeletions and VIPR2 duplications. Am J Psychiatry 2011; 168: 302–316.

    Article  PubMed  PubMed Central  Google Scholar 

  6. McCarthy SE, Makarov V, Kirov G, Addington AM, McClellan J, Yoon S et al. Microduplications of 16p11.2 are associated with schizophrenia. Nat Genet 2009; 41: 1223–1227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mulle JG, Dodd AF, McGrath JA, Wolyniec PS, Mitchell AA, Shetty AC et al. Microdeletions of 3q29 confer high risk for schizophrenia. Am J Hum Genet 2010; 87: 229–236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rujescu D, Ingason A, Cichon S, Pietilainen OP, Barnes MR, Toulopoulou T et al. Disruption of the neurexin 1 gene is associated with schizophrenia. Hum Mol Genet 2009; 18: 988–996.

    Article  CAS  PubMed  Google Scholar 

  9. Stefansson H, Rujescu D, Cichon S, Pietilainen OP, Ingason A, Steinberg S et al. Large recurrent microdeletions associated with schizophrenia. Nature 2008; 455: 232–236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vacic V, McCarthy S, Malhotra D, Murray F, Chou HH, Peoples A et al. Duplications of the neuropeptide receptor gene VIPR2 confer significant risk for schizophrenia. Nature 2011; 471: 499–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yue WH, Wang HF, Sun LD, Tang FL, Liu ZH, Zhang HX et al. Genome-wide association study identifies a susceptibility locus for schizophrenia in Han Chinese at 11p11.2. Nat Genet 2011; 43: 1228–1231.

    Article  CAS  PubMed  Google Scholar 

  12. Williams HJ, Norton N, Dwyer S, Moskvina V, Nikolov I, Carroll L et al. Fine mapping of ZNF804A and genome-wide significant evidence for its involvement in schizophrenia and bipolar disorder. Mol Psychiatry 2011; 16: 429–441.

    Article  CAS  PubMed  Google Scholar 

  13. Vassos E, Steinberg S, Cichon S, Breen G, Sigurdsson E, Andreassen OA et al. Replication study and meta-analysis in european samples supports association of the 3p21.1 locus with bipolar disorder. Biol Psychiatry 2012; 72: 645–650.

    Article  CAS  PubMed  Google Scholar 

  14. Steinberg S, de Jong S, Andreassen OA, Werge T, Borglum AD, Mors O et al. Common variants at VRK2 and TCF4 conferring risk of schizophrenia. Hum Mol Genet 2011; 20: 4076–4081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Stefansson H, Ophoff RA, Steinberg S, Andreassen OA, Cichon S, Rujescu D et al. Common variants conferring risk of schizophrenia. Nature 2009; 460: 744–747.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Sklar P, Ripke S, Scott LJ, Andreassen OA, Cichon S, Craddock N et al. Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. Nat Genet 2011; 43: 977–983.

    Article  CAS  PubMed Central  Google Scholar 

  17. Shi Y, Li Z, Xu Q, Wang T, Li T, Shen J et al. Common variants on 8p12 and 1q24.2 confer risk of schizophrenia. Nat Genet 2011; 43: 1224–1227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shi J, Levinson DF, Duan J, Sanders AR, Zheng Y, Pe'er I et al. Common variants on chromosome 6p22.1 are associated with schizophrenia. Nature 2009; 460: 753–757.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Ripke S, Sanders AR, Kendler KS, Levinson DF, Sklar P, Holmans PA et al. Genome-wide association study identifies five new schizophrenia loci. Nat Genet 2011; 43: 969–976.

    Article  CAS  Google Scholar 

  20. Rietschel M, Mattheisen M, Degenhardt F, Kahn RS, Linszen DH, Os JV et al. Association between genetic variation in a region on chromosome 11 and schizophrenia in large samples from Europe. Mol Psychiatry 2012; 17: 906–917.

    Article  CAS  PubMed  Google Scholar 

  21. Purcell SM, Wray NR, Stone JL, Visscher PM, O'Donovan MC, Sullivan PF et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 2009; 460: 748–752.

    CAS  PubMed  Google Scholar 

  22. O'Donovan MC, Craddock N, Norton N, Williams H, Peirce T, Moskvina V et al. Identification of loci associated with schizophrenia by genome-wide association and follow-up. Nat Genet 2008; 40: 1053–1055.

    Article  CAS  PubMed  Google Scholar 

  23. McMahon FJ, Akula N, Schulze TG, Muglia P, Tozzi F, Detera-Wadleigh SD et al. Meta-analysis of genome-wide association data identifies a risk locus for major mood disorders on 3p21.1. Nat Genet 2010; 42: 128–131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hamshere ML, Walters JT, Smith R, Richards AL, Green E, Grozeva D et al. Genome-wide significant associations in schizophrenia to ITIH3/4, CACNA1C and SDCCAG8, and extensive replication of associations reported by the Schizophrenia PGC. Mol Psychiatry 2012.

  25. Ferreira MA, O'Donovan MC, Meng YA, Jones IR, Ruderfer DM, Jones L et al. Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. Nat Genet 2008; 40: 1056–1058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cichon S, Muhleisen TW, Degenhardt FA, Mattheisen M, Miro X, Strohmaier J et al. Genome-wide association study identifies genetic variation in neurocan as a susceptibility factor for bipolar disorder. Am J Hum Genet 2011; 88: 372–381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen DT, Jiang X, Akula N, Shugart YY, Wendland JR, Steele CJ et al. Genome-wide association study meta-analysis of European and Asian-ancestry samples identifies three novel loci associated with bipolar disorder. Mol Psychiatry 2011.

  28. Bergen SE, O'Dushlaine CT, Ripke S, Lee PH, Ruderfer DM, Akterin S et al. Genome-wide association study in a Swedish population yields support for greater CNV and major histocompatibility complex involvement in schizophrenia compared with bipolar disorder. Mol Psychiatry 2012; 17: 880–886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Baum AE, Akula N, Cabanero M, Cardona I, Corona W, Klemens B et al. A genome-wide association study implicates diacylglycerol kinase eta (DGKH) and several other genes in the etiology of bipolar disorder. Mol Psychiatry 2008; 13: 197–207.

    Article  CAS  PubMed  Google Scholar 

  30. Altshuler D, Daly MJ, Lander ES . Genetic mapping in human disease. Science 2008; 322: 881–888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Muhleisen TW, Mattheisen M, Strohmaier J, Degenhardt F, Priebe L, Schultz CC et al. Association between schizophrenia and common variation in neurocan (NCAN), a genetic risk factor for bipolar disorder. Schizophr Res 2012; 138: 69–73.

    Article  PubMed  Google Scholar 

  32. Williams HJ, Craddock N, Russo G, Hamshere ML, Moskvina V, Dwyer S et al. Most genome-wide significant susceptibility loci for schizophrenia and bipolar disorder reported to date cross-traditional diagnostic boundaries. Hum Mol Genet 2011; 20: 387–391.

    Article  CAS  PubMed  Google Scholar 

  33. Lichtenstein P, Yip BH, Bjork C, Pawitan Y, Cannon TD, Sullivan PF et al. Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: a population-based study. Lancet 2009; 373: 234–239.

    Article  CAS  PubMed  Google Scholar 

  34. Papiol S, Begemann M, Rosenberger A, Friedrichs H, Ribbe K, Grube S et al. A phenotype-ased genetic association study reveals the contribution of neuregulin1 gene variants to age of onset and positive symptom severity in schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2011; 156B: 340–345.

    Article  PubMed  Google Scholar 

  35. Ribbe K, Friedrichs H, Begemann M, Grube S, Papiol S, Kastner A et al. The cross-sectional GRAS sample: a comprehensive phenotypical data collection of schizophrenic patients. BMC Psychiatry 2010; 10: 91.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Colantuoni C, Lipska BK, Ye T, Hyde TM, Tao R, Leek JT et al. Temporal dynamics and genetic control of transcription in the human prefrontal cortex. Nature 2011; 478: 519–523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gibbs JR, van der Brug MP, Hernandez DG, Traynor BJ, Nalls MA, Lai SL et al. Abundant quantitative trait loci exist for DNA methylation and gene expression in human brain. PLoS Genet 2010; 6: e1000952.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Webster JA, Gibbs JR, Clarke J, Ray M, Zhang W, Holmans P et al. Genetic control of human brain transcript expression in Alzheimer disease. Am J Hum Genet 2009; 84: 445–458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dubois PC, Trynka G, Franke L, Hunt KA, Romanos J, Curtotti A et al. Multiple common variants for celiac disease influencing immune gene expression. Nat Genet 2010; 42: 295–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Saris CG, Horvath S, van Vught PW, van Es MA, Blauw HM, Fuller TF et al. Weighted gene co-expression network analysis of the peripheral blood from Amyotrophic Lateral Sclerosis patients. BMC Genomics 2009; 10: 405.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007; 81: 559–575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Emilsson V, Thorleifsson G, Zhang B, Leonardson AS, Zink F, Zhu J et al. Genetics of gene expression and its effect on disease. Nature 2008; 452: 423–428.

    Article  CAS  PubMed  Google Scholar 

  43. Weiss LA, Shen Y, Korn JM, Arking DE, Miller DT, Fossdal R et al. Association between microdeletion and microduplication at 16p11.2 and autism. N Engl J Med 2008; 358: 667–675.

    Article  CAS  PubMed  Google Scholar 

  44. Marshall CR, Noor A, Vincent JB, Lionel AC, Feuk L, Skaug J et al. Structural variation of chromosomes in autism spectrum disorder. Am J Hum Genet 2008; 82: 477–488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kumar RA, KaraMohamed S, Sudi J, Conrad DF, Brune C, Badner JA et al. Recurrent 16p11.2 microdeletions in autism. Hum Mol Genet 2008; 17: 628–638.

    Article  CAS  PubMed  Google Scholar 

  46. Shinawi M, Liu P, Kang SH, Shen J, Belmont JW, Scott DA et al. Recurrent reciprocal 16p11.2 rearrangements associated with global developmental delay, behavioural problems, dysmorphism, epilepsy, and abnormal head size. J Med Genet 2010; 47: 332–341.

    Article  CAS  PubMed  Google Scholar 

  47. Jacquemont S, Reymond A, Zufferey F, Harewood L, Walters RG, Kutalik Z et al. Mirror extreme BMI phenotypes associated with gene dosage at the chromosome 16p11.2 locus. Nature 2011; 478: 97–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Speliotes EK, Willer CJ, Berndt SI, Monda KL, Thorleifsson G, Jackson AU et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat Genet 2010; 42: 937–948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Golzio C, Willer J, Talkowski ME, Oh EC, Taniguchi Y, Jacquemont S et al. KCTD13 is a major driver of mirrored neuroanatomical phenotypes of the 16p11.2 copy number variant. Nature 2012; 485: 363–367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references


We would like to thank the subjects, their families and the recruitment centre staff. We would also like to acknowledge the help of Maria Dolores Moltó (Genetics Department, Valencia University, CIBERSAM), Eduardo Paz and Ramón Ramos-Ríos (Complexo Hospitalario de Santiago), and the contribution of Fundación Botín. This study makes use of seven external, publicly available data sets. First, it makes use of data generated by the Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) project whose principal investigators were Jeffrey A Lieberman, MD, T Scott Stroup, MD, MPH, and Joseph P McEvoy, MD. The CATIE trial was funded by a grant from the National Institute of Mental Health (N01 MH900001) along with MH074027 (PI PF Sullivan). Genotyping was funded by Eli Lilly and Company. Second, the GAIN/BiGs data sets used in this work were obtained from the database of Genotypes and Phenotypes (dbGaP) found at through dbGaP accession number phs000017.v3.p1. Third, the study uses samples genotyped using the Ilumina 550K platform by the Pritzker Consortium, supported by the Pritzker Neuropsychiatric Disorders Research Fund L.L.C. The Pritzker Consortium includes scientists at the University of Michigan (H Akil and S J Watson, Site Directors, and Michael Boehnke, lead on bipolar genotyping effort); Stanford University (Rick Myers and Alan Schatzberg, Site Directors); the University of California at Davis (Ted Jones, Site Director); the University of California at Irvine (William Bunney, Site Director); and the Weill Medical College of Cornell University (Jack Barchas, Site Director). Fourth, the work uses data from the Systematic Treatment Enhancement Program for Bipolar Disorder (STEP-BD) project, led by Gary Sachs, MD, and coordinated by Massachusetts General Hospital in Boston, MA (NIMH grant number was 2N01MH080001–001). Fifth, this study makes use of data generated by the Wellcome Trust Case–Control Consortium. A full list of the investigators who contributed to the generation of the data is available from Funding for the project was provided by the Wellcome Trust under award 076113 and 085475. Sixth, we gratefully acknowledge the resources provided by the Autism Genetic Resource Exchange (AGRE) Consortium* and the participating AGRE families. The AGRE is a program of Autism Speaks and is supported, in part, by grant 1U24MH081810 from the National Institute of Mental Health to Clara M Lajonchere (PI). Seventh, the Autism Genome Project (AGP) data sets used for the analysis described in this manuscript were obtained from dbGaP at through dbGaP accession number, phs000267.v1.p1. Submission of the data to dbGaP was provided by Dr Bernie Devlin on behalf of the AGP. Collection and submission of the data to dbGaP were supported by a grant from the Medical Research Council (G0601030) and the Wellcome Trust (075491/Z/04), Anthony P Monaco, PI, University of Oxford. This work was also supported by the European Union (grant numbers LSHM-CT-2006-037761 (Project SGENE), PIAP-GA-2008-218251 (Project PsychGene), HEALTH-F2-2009-223423 (Project PsychCNVs), HEALTH-F4-2009-242257 (Project ADAMS) and IMI-JU-NewMeds); the National Genome Research Network of the German Federal Ministry of Education and Research (BMBF) (grant numbers 01GS08144 (MooDS-Net) and 01GS08147 (NGFNplus)); the National Institute of Mental Health (R01 MH078075, and N01 MH900001, MH074027 to the Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) project); the Centre of Excellence for Complex Disease Genetics of the Academy of Finland (grant numbers 213506 and 129680); the Biocentrum Helsinki Foundation and Research Program for Molecular Medicine, Faculty of Medicine, University of Helsinki; the Stanley Medical Research Institute; the Danish Council for Strategic Research (grant number 2101-07-0059); H Lundbeck A/S; the Research Council of Norway (grant number 163070/V50); the Danish Medical Research Council; the South-East Norway Health Authority (grant number 2004-123); the Medical Research Council; Ministerio de Sanidad y Consumo, Spain (grant number PI081522 to JC); Xunta de Galicia (grant number 08CSA005208PR to A Carracedo); the Swedish Research Council; the Wellcome Trust (Wellcome Trust grants 085475/B/08/Z and 085475/Z/08/Z as part of the Wellcome Trust Case Control Consortium 2); the Max Planck Society; Saarland University (grant number T6 03 10 00–45 to CMF); the Netherlands Foundation for Brain Research (Hersenstichting) (grant number 2008(1).34 to M Poot); and Eli Lilly and Company (genotyping for CATIE and part of the TOP sample). For further acknowledgements, see the Supplementary Material.

Author information

Authors and Affiliations



Corresponding author

Correspondence to K Stefansson.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Genetic Risk and Outcome in Psychosis (GROUP)

René S. Kahn1, Don H. Linszen2, Jim van Os3, Durk Wiersma4, Richard Bruggeman4, Wiepke Cahn1, Lieuwe de Haan2, Lydia Krabbendam3 and Inez Myin-Germeys3

1Department of Psychiatry, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Postbus 85060, Utrecht, The Netherlands

2Academic Medical Centre University of Amsterdam, Department of Psychiatry, Amsterdam, NL326 Groot-Amsterdam, The Netherlands

3Maastricht University Medical Centre, South Limburg Mental Health Research and Teaching Network, 6229 HX Maastricht, The Netherlands

4University Medical Center Groningen, Department of Psychiatry, University of Groningen, PO Box 30.001, 9700 RB Groningen, The Netherlands

PowerPoint slides

Supplementary information

Wellcome Trust Case Control Consortium 2

Wellcome Trust Case Control Consortium 2

Management committee

Peter Donnelly (Chair)1,2, Ines Barroso (Deputy Chair)3, Jenefer M Blackwell4,5, Elvira Bramon6, Matthew A Brown7, Juan P Casas8, Aiden Corvin9, Panos Deloukas3, Audrey Duncanson10, Janusz Jankowski11, Hugh S Markus12, Christopher G Mathew13, Colin NA Palmer14, Robert Plomin15, Anna Rautanen1, Stephen J Sawcer16, Richard C Trembath13, Ananth C Viswanathan17 and Nicholas W Wood18

Data and analysis group

Chris C A Spencer1, Gavin Band1, Céline Bellenguez1, Colin Freeman1, Garrett Hellenthal1, Eleni Giannoulatou1, Matti Pirinen1, Richard Pearson1, Amy Strange1, Zhan Su1, Damjan Vukcevic1 and Peter Donnelly1,2

DNA, genotyping, data QC and informatics group

Cordelia Langford3, Sarah E Hunt3, Sarah Edkins3, Rhian Gwilliam3, Hannah Blackburn3, Suzannah J Bumpstead3, Serge Dronov3, Matthew Gillman3, Emma Gray3, Naomi Hammond3, Alagurevathi Jayakumar3, Owen T McCann3, Jennifer Liddle3, Simon C Potter3, Radhi Ravindrarajah3, Michelle Ricketts3, Matthew Waller3, Paul Weston3, Sara Widaa3, Pamela Whittaker3, Ines Barroso3 and Panos Deloukas3.

Publications committee

Christopher G Mathew (Chair),13 Jenefer M Blackwell4,5, Matthew A Brown7, Aiden Corvin9 and Chris C A Spencer1

1Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK

2Department of Statistics, University of Oxford, Oxford OX1 3TG, UK

3Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK

4Telethon Institute for Child Health Research, Centre for Child Health Research, University of Western Australia, 100 Roberts Road, Subiaco, Western Australia 6008, Australia

5Cambridge Institute for Medical Research, University of Cambridge School of Clinical Medicine, Cambridge CB2 0XY, UK

6Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health at the Institute of Psychiatry, King’s College London and The South London and Maudsley NHS Foundation Trust, Denmark Hill, London SE5 8AF, UK

7University of Queensland Diamantina Institute, Brisbane, Queensland, Australia

8Department of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK, and Department Epidemiology and Public Health, University College London WC1E 6BT, UK

9Neuropsychiatric Genetics Research Group, Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland

10Molecular and Physiological Sciences, The Wellcome Trust, London NW1 2BE, UK

11Department of Oncology, Old Road Campus, University of Oxford, Oxford OX3 7DQ, UK, Digestive Diseases Centre, Leicester Royal Infirmary, Leicester LE7 7HH, UK, and Centre for Digestive Diseases, Queen Mary University of London, London E1 2AD, UK

12Clinical Neurosciences, St George’s University of London, London SW17 0RE, UK

13King’s College London Dept Medical and Molecular Genetics, King’s Health Partners, Guy’s Hospital, London SE1 9RT, UK

14Biomedical Research Centre, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK

15King’s College London Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Denmark Hill, London SE5 8AF, UK

16Department of Clinical Neurosciences, University of Cambridge Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK

17NIHR Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London EC1V 2PD, UK

18Department of Molecular Neuroscience, Institute of Neurology, Queen Square, London WC1N 3BG, UK.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Steinberg, S., de Jong, S., Mattheisen, M. et al. Common variant at 16p11.2 conferring risk of psychosis. Mol Psychiatry 19, 108–114 (2014).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • association
  • bipolar disorder
  • cross-disorder
  • schizophrenia
  • 16p11.2

This article is cited by


Quick links