Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Neutral antagonism at the cannabinoid 1 receptor: a safer treatment for obesity

Abstract

Obesity is a global problem with often strong neurobiological underpinnings. The cannabinoid 1 receptor (CB1R) was put forward as a promising drug target for antiobesity medication. However, the first marketed CB1R antagonist/inverse agonist rimonabant was discontinued, as its use was occasionally associated with negative affect and suicidality. In artificial cell systems, CB1Rs can become constitutively active in the absence of ligands. Here, we show that such constitutive CB1R activity also regulates GABAergic and glutamatergic neurotransmission in the ventral tegmental area and basolateral amygdala, regions which regulate motivation and emotions. We show that CB1R inverse agonists like rimonabant suppress the constitutive CB1R activity in such regions, and cause anxiety and reduced motivation for reward. The neutral CB1R antagonist NESS0327 does not suppress constitutive activity and lacks these negative effects. Importantly, however, both rimonabant and NESS0327 equally reduce weight gain and food intake. Together, these findings suggest that neutral CB1R antagonists can treat obesity efficiently and more safely than inverse agonists.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Hotamisligil GS . Inflammation and metabolic disorders. Nature 2006; 444: 860–867.

    Article  CAS  PubMed  Google Scholar 

  2. World-Health-Organization. Obesity: preventing and managing the global epidemic. Report of a WHO consultation. World Health Organ Tech Rep Ser 2000; 894, i-xii, 1–253.

    Google Scholar 

  3. Berthoud HR, Lenard NR, Shin AC . Food reward, hyperphagia, and obesity. Am J Physiol Regul Integr Comp Physiol 2011; 300: R1266–R1277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Adan RAH, Vanderschuren LJMJ, La Fleur SE . Anti-obesity drugs and neural circuits of feeding. Trends Pharmacol Sci 2008; 29: 208–217.

    Article  CAS  PubMed  Google Scholar 

  5. Halford JC, Boyland EJ, Blundell JE, Kirkham TC, Harrold JA . Pharmacological management of appetite expression in obesity. Nat Rev Endocrinol 2010; 6: 255–269.

    Article  CAS  PubMed  Google Scholar 

  6. Wadden TA, Butryn ML, Wilson C . Lifestyle modification for the management of obesity. Gastroenterology 2007; 132: 2226–2238.

    Article  PubMed  Google Scholar 

  7. Le Foll B, Gorelick DA, Goldberg SR . The future of endocannabinoid-oriented clinical research after CB1 antagonists. Psychopharmacology (Berl) 2009; 205: 171–174.

    Article  CAS  Google Scholar 

  8. Di Marzo V, Goparaju SK, Wang L, Liu J, Batkai S, Jarai Z et al. Leptin-regulated endocannabinoids are involved in maintaining food intake. Nature 2001; 410: 822–825.

    Article  CAS  PubMed  Google Scholar 

  9. Di Marzo V, Ligresti A, Cristino L . The endocannabinoid system as a link between homoeostatic and hedonic pathways involved in energy balance regulation. Int J Obes (Lond) 2009; 33 (Suppl 2): S18–S24.

    Article  CAS  Google Scholar 

  10. Di Marzo V, Matias I . Endocannabinoid control of food intake and energy balance. Nat Neurosci 2005; 8: 585–589.

    Article  CAS  PubMed  Google Scholar 

  11. Christensen R, Kristensen PK, Bartels EM, Bliddal H, Astrup A . Efficacy and safety of the weight-loss drug rimonabant: a meta-analysis of randomised trials. Lancet 2007; 370: 1706–1713.

    Article  CAS  PubMed  Google Scholar 

  12. Lazary J, Juhasz G, Hunyady L, Bagdy G . Personalized medicine can pave the way for the safe use of CB1 receptor antagonists. Trends Pharmacol Sci 2011; 32: 270–280.

    Article  CAS  PubMed  Google Scholar 

  13. Nissen SE, Nicholls SJ, Wolski K, Rodes-Cabau J, Cannon CP, Deanfield JE et al. Effect of rimonabant on progression of atherosclerosis in patients with abdominal obesity and coronary artery disease: the STRADIVARIUS randomized controlled trial. JAMA 2008; 299: 1547–1560.

    Article  CAS  PubMed  Google Scholar 

  14. Pan X, Ikeda SR, Lewis DL . SR 141716A acts as an inverse agonist to increase neuronal voltage-dependent Ca2+ currents by reversal of tonic CB1 cannabinoid receptor activity. Mol Pharmacol 1998; 54: 1064–1072.

    Article  CAS  PubMed  Google Scholar 

  15. Canals M, Milligan G . Constitutive activity of the cannabinoid CB1 receptor regulates the function of co-expressed Mu opioid receptors. J Biol Chem 2008; 283: 11424–11434.

    Article  CAS  PubMed  Google Scholar 

  16. Pertwee RG . Inverse agonism and neutral antagonism at cannabinoid CB1 receptors. Life Sci 2005; 76: 1307–1324.

    Article  CAS  PubMed  Google Scholar 

  17. Sink KS, McLaughlin PJ, Wood JAT, Brown C, Fan P, Vemuri VK et al. The novel cannabinoid CB1 receptor neutral antagonist AM4113 suppresses food intake and food-reinforced behavior but does not induce signs of nausea in rats. Neuropsychopharmacology 2008; 33: 946–955.

    Article  CAS  PubMed  Google Scholar 

  18. Salamone JD, McLaughlin PJ, Sink K, Makriyannis A, Parker LA . Cannabinoid CB1 receptor inverse agonists and neutral antagonists: effects on food intake, food-reinforced behavior and food aversions. Physiol Behav 2007; 91: 383–388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sink KS, Segovia KN, Sink J, Randall PA, Collins LE, Correa M et al. Potential anxiogenic effects of cannabinoid CB1 receptor antagonists/inverse agonsits in rats: comparisons between AM4113, AM251, and the benzodiazepine inverse agonist FG-7142. Eur Neuropsychopharmacol 2010; 20: 112–122.

    Article  CAS  PubMed  Google Scholar 

  20. Ruiu S, Pinna GA, Marchese G, Mussinu JM, Saba P, Tambaro S et al. Synthesis and characterization of NESS 0327: a novel putative antagonist of the CB1 cannabinoid receptor. J Pharmacol Exp Ther 2003; 306: 363–370.

    Article  CAS  PubMed  Google Scholar 

  21. Tambaro S, Mongeau R, Dessi C, Pani L, Ruiu S . Modulation of ATP-mediated contractions of the rat vas deferens through presynaptic cannabinoid receptors. Eur J Pharmacol 2005; 525: 150–153.

    Article  CAS  PubMed  Google Scholar 

  22. Dunlop BW, Nemeroff CB . The role of dopamine in the pathophysiology of depression. Arch Gen Psychiatry 2007; 64: 327–337.

    Article  CAS  PubMed  Google Scholar 

  23. Nestler EJ, Carlezon WA . The mesolimbic dopamine reward circuit in depression. Biol Psychiatry 2006; 59: 1151–1159.

    Article  CAS  PubMed  Google Scholar 

  24. Zweifel LS, Fadok JP, Argilli E, Garelick MG, Jones GL, Dickerson TM et al. Activation of dopamine neurons is critical for aversive conditioning and prevention of generalized anxiety. Nat Neurosci 2011; 14: 620–626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tye KM, Prakash R, Kim SY, Fenno LE, Grosenick L, Zarabi H et al. Amygdala circuitry mediating reversible and bidirectional control of anxiety. Nature 2011; 471: 358–362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wallace TL, Stellitano KE, Neve RL, Duman RS . Effects of cyclic adenosine monophosphate response element binding protein overexpression in the basolateral amygdala on behavioral models of depression and anxiety. Biol Psychiatry 2004; 56: 151–160.

    Article  CAS  PubMed  Google Scholar 

  27. de Rover M, Meye FJ, Ramakers GM . Presynaptic metabotropic glutamate receptors regulate glutamatergic input to dopamine neurons in the ventral tegmental area. Neuroscience 2008; 154: 1318–1323.

    Article  CAS  PubMed  Google Scholar 

  28. Mathon DS, Lesscher HM, Gerrits MA, Kamal A, Pintar JE, Schuller AG et al. Increased gabaergic input to ventral tegmental area dopaminergic neurons associated with decreased cocaine reinforcement in mu-opioid receptor knockout mice. Neuroscience 2005; 130: 359–367.

    Article  CAS  PubMed  Google Scholar 

  29. Trezza V, Baarendse PJ, Vanderschuren LJ . Prosocial effects of nicotine and ethanol in adolescent rats through partially dissociable neurobehavioral mechanisms. Neuropsychopharmacology 2009; 34: 2560–2573.

    Article  CAS  PubMed  Google Scholar 

  30. Brussaard AB, Kits KS, de Vlieger TA . Postsynaptic mechanism of depression of GABAergic synapses by oxytocin in the supraoptic nucleus of immature rat. J Physiol 1996; 497 (Pt 2): 495–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ikemoto S, Wise RA . Mapping of chemical trigger zones for reward. Neuropharmacology 2004; 47 (Suppl 1): 190–201.

    Article  CAS  PubMed  Google Scholar 

  32. McBride WJ, Murphy JM, Ikemoto S . Localization of brain reinforcement mechanisms: intracranial self-administration and intracranial place-conditioning studies. Behav Brain Res 1999; 101: 129–152.

    Article  CAS  PubMed  Google Scholar 

  33. Fields HL, Hjelmstad GO, Margolis EB, Nicola SM . Ventral tegmental area neurons in learned appetitive behavior and positive reinforcement. Annu Rev Neurosci 2007; 30: 289–316.

    Article  CAS  PubMed  Google Scholar 

  34. Treadway MT, Zald DH . Reconsidering anhedonia in depression: lessons from translational neuroscience. Neurosci Biobehav Rev 2011; 35: 537–555.

    Article  PubMed  Google Scholar 

  35. Matyas F, Urban GM, Watanabe M, Mackie K, Zimmer A, Freund TF et al. Identification of the sites of 2-arachidonoylglycerol synthesis and action imply retrograde endocannabinoid signaling at both GABAergic and glutamatergic synapses in the ventral tegmental area. Neuropharmacology 2008; 54: 95–107.

    Article  CAS  PubMed  Google Scholar 

  36. Szabo B, Siemes S, Wallmichrath I . Inhibition of GABAergic neurotransmission in the ventral tegmental area by cannabinoids. Eur J Neurosci 2002; 15: 2057–2061.

    Article  PubMed  Google Scholar 

  37. Hájos N, Freund TF . Pharmacological separation of cannabinoid sensitive receptors on hippocampal excitatory and inhibitory fibers. Neuropharmacology 2002; 43: 503–510.

    Article  PubMed  Google Scholar 

  38. Lan R, Liu Q, Fan P, Lin S, Fernando SR, MacCallion D et al. Structure-activity relationships of pyrazole derivatives as cannabinoid receptor antagonists. J Med Chem 1999; 42: 769–776.

    Article  CAS  PubMed  Google Scholar 

  39. Kathuria S, Gaetani S, Fegley D, Valino F, Duranti A, Tontini A et al. Modulation of anxiety through blockade of anandamide hydrolysis. Nat Med 2003; 9: 76–81.

    Article  CAS  PubMed  Google Scholar 

  40. Makara JK, Mor M, Fegley D, Szabo SI, Kathuria S, Astarita G et al. Selective inhibition of 2-AG hydrolysis enhances endocannabinoid signaling in hippocampus. Nat Neurosci 2005; 8: 1139–1141.

    Article  CAS  PubMed  Google Scholar 

  41. Walker DL, Davis M . The role of amygdala glutamate receptors in fear learning, fear-potentiated startle, and extinction. Pharmacol Biochem Behav 2002; 71: 379–392.

    Article  CAS  PubMed  Google Scholar 

  42. Domenici MR, Azad SC, Marsicano G, Schierloh A, Wotjak CT, Dodt HU et al. Cannabinoid receptor type 1 located on presynaptic terminals of principal neurons in the forebrain controls glutamatergic synaptic transmission. J Neurosci 2006; 26: 5794–5799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kirkham TC, Williams CM, Fezza F, Di Marzo V . Endocannabinoid levels in rat limbic forebrain and hypothalamus in relation to fasting, feeding and satiation: stimulation of eating by 2-arachidonoyl glycerol. Br J Pharmacol 2002; 136: 550–557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rumsfeld JS, Nallamothu BK . The hope and fear of rimonabant. JAMAA 2008; 299: 1601–1602.

    Article  CAS  Google Scholar 

  45. Murray EA, Wise SP, Drevets WC . Localization of dysfunction in major depressive disorder: prefrontal cortex and amygdala. Biol Psychiatry 2011; 69: e43–e54.

    Article  PubMed  Google Scholar 

  46. Marsicano G, Wotjak CT, Azad SC, Bisogno T, Rammes G, Cascio MG et al. The endogenous cannabinoid system controls extinction of aversive memories. Nature 2002; 418: 530–534.

    Article  CAS  PubMed  Google Scholar 

  47. Orio L, Edwards S, George O, Parsons LH, Koob GF . A role for the endocannabinoid system in the increased motivation for cocaine in extended-access conditions. J Neurosci 2009; 29: 4846–4857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. McGlinchey JB, Zimmerman M, Young D, Chelminski I . Diagnosing major depressive disorder VIII: are some symptoms better than others? J Nerv Ment Dis 2006; 194: 785–790.

    Article  PubMed  Google Scholar 

  49. McLaughlin PJ, Winston K, Swezey L, Wisniecki A, Aberman J, Tardif DJ et al. The cannabinoid CB1 antagonists SR 141716A and AM 251 suppress food intake and the food-reinforced behavior in a variety of tasks in rats. Behav Pharmacol 2007; 14: 583–588.

    Article  Google Scholar 

  50. Hentges ST, Low MJ, Williams JT . Differential regulation of synaptic inputs by constitutively released endocannabinoids and exogenous cannabinoids. J Neurosci 2005; 25: 9746–9751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sinnayah P, Jobst EE, Rathner JA, Caldera-Siu AD, Tonelli-Lemos L, Eusterbrock AJ et al. Feeding induced by cannabinoids is mediated independently of the melanocortin system. PLoS One 2008; 3: e2202.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Top Institute Pharma (D1-105) for funding this project. We also thank the NIMH Chemical Synthesis and Drug Supply Program for supplying rimonabant for the purposes of this study. Finally, we would like to thank Prof Ad IJzerman, Prof Bert Leufkens, Dr Mario van der Stelt and Dr Lex van der Ploeg for helpful suggestions on the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R A H Adan.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meye, F., Trezza, V., Vanderschuren, L. et al. Neutral antagonism at the cannabinoid 1 receptor: a safer treatment for obesity. Mol Psychiatry 18, 1294–1301 (2013). https://doi.org/10.1038/mp.2012.145

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2012.145

Keywords

This article is cited by

Search

Quick links