Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Deficient serotonin neurotransmission and depression-like serotonin biomarker alterations in tryptophan hydroxylase 2 (Tph2) loss-of-function mice

Abstract

Probably the foremost hypothesis of depression is the 5-hydroxytryptamine (5-HT, serotonin) deficiency hypothesis. Accordingly, anomalies in putative 5-HT biomarkers have repeatedly been reported in depression patients. However, whether such anomalies in fact reflect deficient central 5-HT neurotransmission remains unresolved. We employed a naturalistic model of 5-HT deficiency, the tryptophan hydroxylase 2 (Tph2) R439H knockin mouse, to address this question. We report that Tph2 knockin mice have reduced basal and stimulated levels of extracellular 5-HT (5-HTExt). Interestingly, cerebrospinal fluid (CSF) 5-hydroxyindoleacetic acid (5-HIAA) and fenfluramine-induced plasma prolactin levels are markedly diminished in the Tph2 knockin mice. These data seemingly confirm that low CSF 5-HIAA and fenfluramine-induced plasma prolactin reflects chronic, endogenous central nervous system (CNS) 5-HT deficiency. Moreover, 5-HT1A receptor agonist-induced hypothermia is blunted and frontal cortex 5-HT2A receptors are increased in the Tph2 knockin mice. These data likewise parallel core findings in depression, but are usually attributed to anomalies in the respective receptors rather than resulting from CNS 5-HT deficiency. Further, 5-HT2A receptor function is enhanced in the Tph2 knockin mice. In contrast, 5-HT1A receptor levels and G-protein coupling is normal in Tph2 knockin mice, indicating that the blunted hypothermic response relates directly to the low 5-HTExt. Thus, we show that not only low CSF 5-HIAA and a blunted fenfluramine-induced prolactin response, but also blunted 5-HT1A agonist-induced hypothermia and increased 5-HT2A receptor levels are bona fide biomarkers of chronic, endogenous 5-HT deficiency. Potentially, some of these biomarkers could identify patients likely to have 5-HT deficiency. This could have clinical research utility or even guide pharmacotherapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Coppen A . The biochemistry of affective disorders. Br J Psychiatry 1967; 113: 1237–1264.

    Article  CAS  PubMed  Google Scholar 

  2. Shaw DM, Camps FE, Eccleston EG . 5-Hydroxytryptamine in the hind-brain of depressive suicides. Br J Psychiatry 1967; 113: 1407–1411.

    Article  CAS  PubMed  Google Scholar 

  3. Lacasse JR, Leo J . Serotonin and depression: a disconnect between the advertisements and the scientific literature. PLoS Med 2005; 2: e392.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Meltzer H . Serotonergic dysfunction in depression. Br J Psychiatry Suppl 1989; 8): 25–31.

    Article  Google Scholar 

  5. Asberg M . Neurotransmitters and suicidal behavior. The evidence from cerebrospinal fluid studies. Ann NY Acad Sci 1997; 836: 158–181.

    Article  CAS  PubMed  Google Scholar 

  6. Mann JJ . Neurobiology of suicidal behaviour. Nat Rev 2003; 4: 819–828.

    Article  CAS  Google Scholar 

  7. Mann JJ, Malone KM, Psych MR, Sweeney JA, Brown RP, Linnoila M et al. Attempted suicide characteristics and cerebrospinal fluid amine metabolites in depressed inpatients. Neuropsychopharmacology 1996; 15: 576–586.

    Article  CAS  PubMed  Google Scholar 

  8. Fadda F, Cocco S, Stancampiano R . A physiological method to selectively decrease brain serotonin release. Brain Res 2000; 5: 219–222.

    CAS  Google Scholar 

  9. Carpenter LL, Anderson GM, Pelton GH, Gudin JA, Kirwin PD, Price LH et al. Tryptophan depletion during continuous CSF sampling in healthy human subjects. Neuropsychopharmacology 1998; 19: 26–35.

    Article  CAS  PubMed  Google Scholar 

  10. Coccaro EF, Kavoussi RJ, Cooper TB, Hauger R . Acute tryptophan depletion attenuates the prolactin response to d-fenfluramine challenge in healthy human subjects. Psychopharmacology 1998; 138: 9–15.

    Article  CAS  PubMed  Google Scholar 

  11. Kohmoto K, Tsunasawa S, Sakiyama F . Complete amino acid sequence of mouse prolactin. Eur J Biochem 1984; 138: 227–237.

    Article  CAS  PubMed  Google Scholar 

  12. Erhardt S, Olsson SK, Engberg G . Pharmacological manipulation of kynurenic acid: potential in the treatment of psychiatric disorders. CNS Drugs 2009; 23: 91–101.

    Article  CAS  PubMed  Google Scholar 

  13. Lin MT, Tsay HJ, Su WH, Chueh FY . Changes in extracellular serotonin in rat hypothalamus affect thermoregulatory function. Am J Physiol 1998; 274 (5 Part 2): R1260–R1267.

    CAS  PubMed  Google Scholar 

  14. Licht CL, Knudsen GM, Sharp T . Effects of the 5-HT(4) receptor agonist RS67333 and paroxetine on hippocampal extracellular 5-HT levels. Neurosci Lett 2010; 476: 58–61.

    Article  CAS  PubMed  Google Scholar 

  15. Fitzgerald P, Dinan TG . Prolactin and dopamine: what is the connection? A review article. J Psychopharmacol 2008; 22 (2 Suppl): 12–19.

    Article  PubMed  Google Scholar 

  16. Emiliano AB, Fudge JL . From galactorrhea to osteopenia: rethinking serotonin-prolactin interactions. Neuropsychopharmacology 2004; 29: 833–846.

    Article  CAS  PubMed  Google Scholar 

  17. Shapira B, Newman ME, Gelfin Y, Lerer B . Blunted temperature and cortisol responses to ipsapirone in major depression: lack of enhancement by electroconvulsive therapy. Psychoneuroendocrinology 2000; 25: 421–438.

    Article  CAS  PubMed  Google Scholar 

  18. Lesch KP . 5-HT1A receptor responsivity in anxiety disorders and depression. Prog Neuropsychopharmacol Biol Psychiatry 1991; 15: 723–733.

    Article  CAS  PubMed  Google Scholar 

  19. Cowen PJ, Power AC, Ware CJ, Anderson IM . 5-HT1A receptor sensitivity in major depression. A neuroendocrine study with buspirone. Br J Psychiatry 1994; 164: 372–379.

    Article  CAS  PubMed  Google Scholar 

  20. Pandey GN, Dwivedi Y, Rizavi HS, Ren X, Pandey SC, Pesold C et al. Higher expression of serotonin 5-HT(2A) receptors in the postmortem brains of teenage suicide victims. Am J Psychiatry 2002; 159: 419–429.

    Article  PubMed  Google Scholar 

  21. Bhagwagar Z, Hinz R, Taylor M, Fancy S, Cowen P, Grasby P . Increased 5-HT(2A) receptor binding in euthymic, medication-free patients recovered from depression: a positron emission study with [(11)C]MDL 100,907. Am J Psychiatry 2006; 163: 1580–1587.

    Article  PubMed  Google Scholar 

  22. Stanley M, Mann JJ . Increased serotonin-2 binding sites in frontal cortex of suicide victims. Lancet 1983; 1: 214–216.

    Article  CAS  PubMed  Google Scholar 

  23. Li Q, Wichems C, Heils A, Van De Kar LD, Lesch KP, Murphy DL . Reduction of 5-hydroxytryptamine (5-HT)(1A)-mediated temperature and neuroendocrine responses and 5-HT(1A) binding sites in 5-HT transporter knockout mice. J Pharmacol Exp Ther 1999; 291: 999–1007.

    CAS  PubMed  Google Scholar 

  24. Lerer B, Gelfin Y, Gorfine M, Allolio B, Lesch KP, Newman ME . 5-HT1A receptor function in normal subjects on clinical doses of fluoxetine: blunted temperature and hormone responses to ipsapirone challenge. Neuropsychopharmacology 1999; 20: 628–639.

    Article  CAS  PubMed  Google Scholar 

  25. Kitamura Y, Akiyama K, Hashimoto S, Kitagawa K, Kawasaki H, Shibata K et al. Effects of imipramine on extracellular serotonin and noradrenaline concentrations in ACTH-treated rats. Eur J Pharmacol 2007; 566: 113–116.

    Article  CAS  PubMed  Google Scholar 

  26. Ghisi V, Ramsey AJ, Masri B, Gainetdinov RR, Caron MG, Salahpour A . Reduced D2-mediated signaling activity and trans-synaptic upregulation of D1 and D2 dopamine receptors in mice overexpressing the dopamine transporter. Cell Signal 2009; 21: 87–94.

    Article  CAS  PubMed  Google Scholar 

  27. Kawai K, Yokota N, Yamawaki S . Effect of chronic tryptophan depletion on the circadian rhythm of wheel-running activity in rats. Physiol Behav 1994; 55: 1005–1013.

    Article  CAS  PubMed  Google Scholar 

  28. Compan V, Segu L, Buhot MC, Daszuta A . Differential effects of serotonin (5-HT) lesions and synthesis blockade on neuropeptide-Y immunoreactivity and 5-HT1A, 5-HT1B/1D and 5-HT2A/2C receptor binding sites in the rat cerebral cortex. Brain Res 1998; 795: 264–276.

    Article  CAS  PubMed  Google Scholar 

  29. Drevets WC, Thase ME, Moses-Kolko EL, Price J, Frank E, Kupfer DJ et al. Serotonin-1A receptor imaging in recurrent depression: replication and literature review. Nucl Med Biol 2007; 34: 865–877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Drevets WC, Frank E, Price JC, Kupfer DJ, Holt D, Greer PJ et al. PET imaging of serotonin 1A receptor binding in depression. Biol Psychiatry 1999; 46: 1375–1387.

    Article  CAS  PubMed  Google Scholar 

  31. Beaulieu JM, Zhang X, Rodriguiz RM, Sotnikova TD, Cools MJ, Wetsel WC et al. Role of GSK3 beta in behavioral abnormalities induced by serotonin deficiency. Proc Natl Acad Sci USA 2008; 105: 1333–1338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang X, Gainetdinov RR, Beaulieu JM, Sotnikova TD, Burch LH, Williams RB et al. Loss-of-function mutation in tryptophan hydroxylase-2 identified in unipolar major depression. Neuron 2005; 45: 11–16.

    Article  CAS  PubMed  Google Scholar 

  33. Franklin K, Paxinos G . The Mouse Brain in Stereotaxic Coordinates. Academic Press: San Diego, 1997.

    Google Scholar 

  34. Chaurasia CS, Muller M, Bashaw ED, Benfeldt E, Bolinder J, Bullock R et al. AAPS-FDA Workshop White Paper: microdialysis principles, application, and regulatory perspectives. J Clin Pharmacol 2007; 47: 589–603.

    Article  CAS  PubMed  Google Scholar 

  35. Rossi DV, Burke TF, McCasland M, Hensler JG . Serotonin-1A receptor function in the dorsal raphe nucleus following chronic administration of the selective serotonin reuptake inhibitor sertraline. J Neurochem 2008; 105: 1091–1099.

    Article  CAS  PubMed  Google Scholar 

  36. Jacobsen JP, Nielsen EO, Hummel R, Redrobe JP, Mirza N, Weikop P . Insensitivity of NMRI mice to selective serotonin reuptake inhibitors in the tail suspension test can be reversed by co-treatment with 5-hydroxytryptophan. Psychopharmacology 2008; 199: 137–150.

    Article  CAS  PubMed  Google Scholar 

  37. Nakagawasai O, Arai Y, Satoh SE, Satoh N, Neda M, Hozumi M et al. Monoamine oxidase and head-twitch response in mice. Mechanisms of alpha-methylated substrate derivatives. Neurotoxicology 2004; 25: 223–232.

    Article  CAS  PubMed  Google Scholar 

  38. Kung MP, Frederick D, Mu M, Zhuang ZP, Kung HF . 4-(2′-Methoxy-phenyl)-1-[2′-(n-2″-pyridinyl)-p-iodobenzamido]-ethyl- piperazine ([125I]p-MPPI) as a new selective radioligand of serotonin-1A sites in rat brain: in vitro binding and autoradiographic studies. J Pharmacol Exp Ther 1995; 272: 429–437.

    CAS  PubMed  Google Scholar 

  39. Hensler J, Durgam H . Regulation of 5-HT(1A) receptor-stimulated [35S]-GtpgammaS binding as measured by quantitative autoradiography following chronic agonist administration. Br J Pharmacol 2001; 132: 605–611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lorenzetti V, Allen NB, Fornito A, Yucel M . Structural brain abnormalities in major depressive disorder: a selective review of recent MRI studies. J Affect Disord 2009; 117: 1–17.

    Article  PubMed  Google Scholar 

  41. Borsini F, Podhorna J, Marazziti D . Do animal models of anxiety predict anxiolytic-like effects of antidepressants? Psychopharmacology 2002; 163: 121–141.

    Article  CAS  PubMed  Google Scholar 

  42. Hirano K, Kimura R, Sugimoto Y, Yamada J, Uchida S, Kato Y et al. Relationship between brain serotonin transporter binding, plasma concentration and behavioural effect of selective serotonin reuptake inhibitors. Br J Pharmacol 2005; 144: 695–702.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Kobayashi T, Hayashi E, Shimamura M, Kinoshita M, Murphy NP . Neurochemical responses to antidepressants in the prefrontal cortex of mice and their efficacy in preclinical models of anxiety-like and depression-like behavior: a comparative and correlational study. Psychopharmacology 2008; 197: 567–580.

    Article  CAS  PubMed  Google Scholar 

  44. Brown GL, Ebert MH, Goyer PF, Jimerson DC, Klein WJ, Bunney WE et al. Aggression, suicide, and serotonin: relationships to CSF amine metabolites. Am J Psychiatry 1982; 139: 741–746.

    Article  CAS  PubMed  Google Scholar 

  45. Correa H, Duval F, Mokrani M, Bailey P, Tremeau F, Staner L et al. Prolactin response to D-fenfluramine and suicidal behavior in depressed patients. Psychiatry Res 2000; 93: 189–199.

    Article  CAS  PubMed  Google Scholar 

  46. Olivier B, Zethof T, Pattij T, van Boogaert M, van Oorschot R, Leahy C et al. Stress-induced hyperthermia and anxiety: pharmacological validation. Eur J Pharmacol 2003; 463: 117–132.

    Article  CAS  PubMed  Google Scholar 

  47. Sharp T, Boothman L, Raley J, Queree P . Important messages in the ‘post’: recent discoveries in 5-HT neurone feedback control. Trends Pharmacol Sci 2007; 28: 629–636.

    Article  CAS  PubMed  Google Scholar 

  48. Haddjeri N, Blier P, de Montigny C . Long-term antidepressant treatments result in a tonic activation of forebrain 5-HT1A receptors. J Neurosci 1998; 18: 10150–10156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cowen PJ . Psychopharmacology of 5-HT(1A) receptors. Nucl Med Biol 2000; 27: 437–439.

    Article  CAS  PubMed  Google Scholar 

  50. Reith ME, Li MY, Yan QS . Extracellular dopamine, norepinephrine, and serotonin in the ventral tegmental area and nucleus accumbens of freely moving rats during intracerebral dialysis following systemic administration of cocaine and other uptake blockers. Psychopharmacology 1997; 134: 309–317.

    Article  CAS  PubMed  Google Scholar 

  51. Blier P . Crosstalk between the norepinephrine and serotonin systems and its role in the antidepressant response. J Psychiatry Neurosci 2001; 26 (Suppl): S3–S10.

    PubMed  PubMed Central  Google Scholar 

  52. Fink KB, Gothert M . 5-HT receptor regulation of neurotransmitter release. Pharmacol Rev 2007; 59: 360–417.

    Article  CAS  PubMed  Google Scholar 

  53. Allers KA, Dremencov E, Ceci A, Flik G, Ferger B, Cremers TI et al. Acute and repeated flibanserin administration in female rats modulates monoamines differentially across brain areas: a Microdialysis Study. J Sex Med 2010; 7: 1757–1767.

    Article  CAS  PubMed  Google Scholar 

  54. Delorme R, Durand CM, Betancur C, Wagner M, Ruhrmann S, Grabe HJ et al. No human tryptophan hydroxylase-2 gene R441H mutation in a large cohort of psychiatric patients and control subjects. Biol Psychiatry 2006; 60: 202–203.

    Article  CAS  PubMed  Google Scholar 

  55. Zhou Z, Roy A, Lipsky R, Kuchipudi K, Zhu G, Taubman J et al. Haplotype-based linkage of tryptophan hydroxylase 2 to suicide attempt, major depression, and cerebrospinal fluid 5-hydroxyindoleacetic acid in 4 populations. Arch Gen Psychiatry 2005; 62: 1109–1118.

    Article  CAS  PubMed  Google Scholar 

  56. Baehne CG, Ehlis AC, Plichta MM, Conzelmann A, Pauli P, Jacob C et al. Tph2 gene variants modulate response control processes in adult ADHD patients and healthy individuals. Mol Psychiatry 2009; 14: 1032–1039.

    Article  CAS  PubMed  Google Scholar 

  57. Cichon S, Winge I, Mattheisen M, Georgi A, Karpushova A, Freudenberg J et al. Brain-specific tryptophan hydroxylase 2 (TPH2): a functional Pro206Ser substitution and variation in the 5′-region are associated with bipolar affective disorder. Hum Mol Genet 2008; 17: 87–97.

    Article  CAS  PubMed  Google Scholar 

  58. Sheehan K, Lowe N, Kirley A, Mullins C, Fitzgerald M, Gill M et al. Tryptophan hydroxylase 2 (TPH2) gene variants associated with ADHD. Mol Psychiatry 2005; 10: 944–949.

    Article  CAS  PubMed  Google Scholar 

  59. Tsai SJ, Hong CJ, Liou YJ, Yu YW, Chen TJ, Hou SJ et al. Tryptophan hydroxylase 2 gene is associated with major depression and antidepressant treatment response. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33: 637–641.

    Article  CAS  PubMed  Google Scholar 

  60. Van Den Bogaert A, Sleegers K, De Zutter S, Heyrman L, Norrback KF, Adolfsson R et al. Association of brain-specific tryptophan hydroxylase, TPH2, with unipolar and bipolar disorder in a Northern Swedish, isolated population. Arch Gen Psychiatry 2006; 63: 1103–1110.

    Article  CAS  PubMed  Google Scholar 

  61. Tzvetkov MV, Brockmoller J, Roots I, Kirchheiner J . Common genetic variations in human brain-specific tryptophan hydroxylase-2 and response to antidepressant treatment. Pharmacogenet Genomics 2008; 18: 495–506.

    Article  CAS  PubMed  Google Scholar 

  62. Mann JJ, McBride PA, Malone KM, DeMeo M, Keilp J . Blunted serotonergic responsivity in depressed inpatients. Neuropsychopharmacology 1995; 13: 53–64.

    Article  CAS  PubMed  Google Scholar 

  63. Romero L, Hervas I, Artigas F . The 5-HT1A antagonist WAY-100635 selectively potentiates the presynaptic effects of serotonergic antidepressants in rat brain. Neurosci Lett 1996; 219: 123–126.

    Article  CAS  PubMed  Google Scholar 

  64. Hjorth S, Westlin D, Bengtsson HJ . WAY100635-induced augmentation of the 5-HT-elevating action of citalopram: relative importance of the dose of the 5-HT1A (auto)receptor blocker versus that of the 5-HT reuptake inhibitor. Neuropharmacology 1997; 36: 461–465.

    Article  CAS  PubMed  Google Scholar 

  65. Ishiwata T, Saito T, Hasegawa H, Yazawa T, Otokawa M, Aihara Y . Changes of body temperature and extracellular serotonin level in the preoptic area and anterior hypothalamus after thermal or serotonergic pharmacological stimulation of freely moving rats. Life Sci 2004; 75: 2665–2675.

    Article  CAS  PubMed  Google Scholar 

  66. Hillegaart V . Effects of local application of 5-HT and 8-OH-DPAT into the dorsal and median raphe nuclei on core temperature in the rat. Psychopharmacology 1991; 103: 291–296.

    Article  CAS  PubMed  Google Scholar 

  67. Richardson-Jones JW, Craige CP, Guiard BP, Stephen A, Metzger KL, Kung HF et al. 5-HT1A autoreceptor levels determine vulnerability to stress and response to antidepressants. Neuron 2010; 65: 40–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hjorth S, Sharp T . Effect of the 5-HT1A receptor agonist 8-OH-DPAT on the release of 5-HT in dorsal and median raphe-innervated rat brain regions as measured by in vivo microdialysis. Life Sci 1991; 48: 1779–1786.

    Article  CAS  PubMed  Google Scholar 

  69. Schmid CL, Raehal KM, Bohn LM . Agonist-directed signaling of the serotonin 2A receptor depends on beta-arrestin-2 interactions in vivo. Proc Natl Acad Sci USA 2008; 105: 1079–1084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Berry SA, Shah MC, Khan N, Roth BL . Rapid agonist-induced internalization of the 5-hydroxytryptamine2A receptor occurs via the endosome pathway in vitro. Mol Pharmacol 1996; 50: 306–313.

    CAS  PubMed  Google Scholar 

  71. Riad M, Zimmer L, Rbah L, Watkins KC, Hamon M, Descarries L . Acute treatment with the antidepressant fluoxetine internalizes 5-HT1A autoreceptors and reduces the in vivo binding of the PET radioligand [18F]MPPF in the nucleus raphe dorsalis of rat. J Neurosci 2004; 24: 5420–5426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Benmansour S, Cecchi M, Morilak DA, Gerhardt GA, Javors MA, Gould GG et al. Effects of chronic antidepressant treatments on serotonin transporter function, density, and mRNA level. J Neurosci 1999; 19: 10494–10501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Frazer A . Pharmacology of antidepressants. J Clin Psychopharmacol 1997; 17 (Suppl 1): 2S–18S.

    Article  CAS  PubMed  Google Scholar 

  74. Blier P, Szabo ST . Potential mechanisms of action of atypical antipsychotic medications in treatment-resistant depression and anxiety. J Clin Psychiatry 2005; 66 (Suppl 8): 30–40.

    CAS  PubMed  Google Scholar 

  75. Savelieva KV, Zhao S, Pogorelov VM, Rajan I, Yang Q, Cullinan E et al. Genetic disruption of both tryptophan hydroxylase genes dramatically reduces serotonin and affects behavior in models sensitive to antidepressants. PLoS ONE 2008; 3: e3301.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Hendricks TJ, Fyodorov DV, Wegman LJ, Lelutiu NB, Pehek EA, Yamamoto B et al. Pet-1 ETS gene plays a critical role in 5-HT neuron development and is required for normal anxiety-like and aggressive behavior. Neuron 2003; 37: 233–247.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the National Institutes of Health MH79201 and MH60451 (MGC), the NIMH Psychoactive Drug Screening Program, Contract # HHSN-271-2008-00025-C (VS). Support from the Lennon Family Foundation to MGC for the initial part of this work is also greatly appreciated. WBS was the recipient of a NRSA postdoctoral fellowship (F32-MH-083404) and BDS is the recipient of a Minority Supplement award from the National Institutes of Health (MH79201-03S1). JPRJ is the grateful recipient of an individual grant from The Lundbeck Foundation of Denmark. We thank Wendy Roberts for skillful technical assistance and Dr Thomas Cremers for advice and making the SymDAQ HPLC-MS technology available. We thank Dr Garth Brown of Perkin-Elmer and Dr Hank F Kung of the University of Pennsylvania for advice and supplying [125I]p-MPPI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M G Caron.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacobsen, J., Siesser, W., Sachs, B. et al. Deficient serotonin neurotransmission and depression-like serotonin biomarker alterations in tryptophan hydroxylase 2 (Tph2) loss-of-function mice. Mol Psychiatry 17, 694–704 (2012). https://doi.org/10.1038/mp.2011.50

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2011.50

Keywords

This article is cited by

Search

Quick links