Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Chromaffin cells: the peripheral brain

Abstract

Chromaffin cells probably are the most intensively studied of the neural crest derivates. They are closely related to the nervous system, share with neurons some fundamental mechanisms and thus were the ideal model to study the basic mechanisms of neurobiology for many years. The lessons we have learned from chromaffin cell biology as a peripheral model for the brain and brain diseases pertain more than ever to the cutting edge research in neurobiology. Here, we highlight how studying this cell model can help unravel the basic mechanisms of cell renewal and regeneration both in the central nervous system (CNS) and neuroendocrine tissue and also can help in designing new strategies for regenerative therapies of the CNS.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1

References

  1. Helle KB, Reed RK, Ehrhart M, Aunis D, Hogue AR . Chromogranin A: osmotically active fragments and their susceptibility to proteolysis during lysis of the bovine chromaffin granules. Acta Physiol Scand 1990; 138: 565–574.

    CAS  Article  Google Scholar 

  2. Thiele C, Hannah MJ, Fahrenholz F, Huttner WB . Cholesterol binds to synaptophysin and is required for biogenesis of synaptic vesicles. Nat Cell Biol 2000; 2: 42–49.

    CAS  Article  Google Scholar 

  3. Winkler H . The adrenal chromaffin granule: a model for large dense core vesicles of endocrine and nervous tissue. J Anat 1993; 183 (Part 2): 237–252.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Díaz-Vera J, Morales YG, Hernandez-Fernaud JR, Camacho M, Montesinos MS, Calegari F et al. Chromogranin B gene ablation reduces the catecholamine cargo and decelerates exocytosis in chromaffin secretory vesicles. J Neurosci 2010; 30: 950–957.

    Article  Google Scholar 

  5. Stevens DR, Schirra C, Becherer U, Rettig J . Vesicle pools: lessons from adrenal chromaffin cells. Front Synaptic Neurosci 2011; 3: 2.

    CAS  Article  Google Scholar 

  6. Negri L, Melchiorri P, Höckfelt T, Nisticò G . In Memory of Vittorio Erspamer. Exorma Pub. Co.: Rome, 2009.

  7. Greene LA, Tischler AS . Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci USA 1976; 73: 2424–2428.

    CAS  Article  Google Scholar 

  8. Miele E, Rubin RP . Secretion of adrenaline and noradrenaline from the perfused cat adrenal gland. Br J Pharmacol 1968; 34: 691P.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Miele E . Effect of metoclopramide and structurally related agents on the catecholamine secretion of the perfused cat adrenal medulla. Farmaco Prat 1970; 25: 383–392.

    CAS  PubMed  Google Scholar 

  10. Drucker-Colin R, Verdugo-Diaz L . Cell transplantation for Parkinson's disease: present status. Cell Mol Neurobiol 2004; 24: 301–316.

    CAS  Article  Google Scholar 

  11. Fernandez-Espejo E, Armengol JA, Flores JA, Galan-Rodriguez B, Ramiro S . Cells of the sympathoadrenal lineage: biological properties as donor tissue for cell-replacement therapies for Parkinson's disease. Brain Res Brain Res Rev 2005; 49: 343–354.

    CAS  Article  Google Scholar 

  12. Quinn NP . The clinical application of cell grafting techniques in patients with Parkinson's disease. Prog Brain Res 1990; 82: 619–625.

    CAS  Article  Google Scholar 

  13. Vrezas I, Willenberg HS, Mansmann G, Hiroi N, Fritzen R, Bornstein SR . Ectopic adrenocorticotropin (ACTH) and corticotropin-releasing hormone (CRH) production in the adrenal gland: basic and clinical aspects. Microsc Res Tech 2003; 61: 308–314.

    CAS  Article  Google Scholar 

  14. Bornstein SR, Schuppenies A, Wong ML, Licinio J . Approaching the shared biology of obesity and depression: the stress axis as the locus of gene-environment interactions. Mol Psychiatry 2006; 11: 892–902.

    CAS  Article  Google Scholar 

  15. Haase M, Willenberg HS, Bornstein SR . Update on the corticomedullary interaction in the adrenal gland. Endocr Dev 2011; 20: 28–37.

    CAS  Article  Google Scholar 

  16. Bornstein SR, Tian H, Haidan A, Bottner A, Hiroi N, Eisenhofer G et al. Deletion of tyrosine hydroxylase gene reveals functional interdependence of adrenocortical and chromaffin cell system in vivo. Proc Natl Acad Sci USA 2000; 97: 14742–14747.

    CAS  Article  Google Scholar 

  17. Ehrhart-Bornstein M, Hinson JP, Bornstein SR, Scherbaum WA, Vinson GP . Intraadrenal interactions in the regulation of adrenocortical steroidogenesis. Endocr Rev 1998; 19: 101–143.

    CAS  Article  Google Scholar 

  18. Yao M, Schulkin J, Denver RJ . Evolutionarily conserved glucocorticoid regulation of corticotropin-releasing factor expression. Endocrinology 2008; 149: 2352–2360.

    CAS  Article  Google Scholar 

  19. Ziegler CG, Langbein H, Krug AW, Ludwig B, Eisenhofer G, Ehrhart-Bornstein M et al. Direct effect of dehydroepiandrosterone sulfate (DHEAS) on PC-12 cell differentiation processes. Mol Cell Endocrinol 2011; 336: 149–155.

    CAS  Article  Google Scholar 

  20. Miele E, Rosati P, Gargiulo G, Anania V . Effect of adrenal steroidogenesis inhibition by aminoglutethimide on the catecholamine content and on the adrenaline- and noradrenaline-storing cells pattern of the rat adrenal medulla. Arch Int Pharmacodyn Ther 1972; 196 (Suppl 196): 309.

    Google Scholar 

  21. Miele E . Effects of steroidogenesis inhibition or stimulation on the catecholamine content and on responsiveness of the cat adrenal medulla. Pharmacol Res Comm 1969; 1: 369–379.

    CAS  Article  Google Scholar 

  22. Lu L, Shimizu T, Nakamura K, Yokotani K . Brain neuronal/inducible nitric oxide synthases and cyclooxygenase-1 are involved in the bombesin-induced activation of central adrenomedullary outflow in rats. Eur J Pharmacol 2008; 590: 177–184.

    CAS  Article  Google Scholar 

  23. Levi-Montalcini R, Calissano P . The nerve-growth factor. Sci Am 1979; 240: 68–77.

    CAS  Article  Google Scholar 

  24. Bornstein SR, Yoshida-Hiroi M, Sotiriou S, Levine M, Hartwig HG, Nussbaum RL et al. Impaired adrenal catecholamine system function in mice with deficiency of the ascorbic acid transporter (SVCT2). FASEB J 2003; 17: 1928–1930.

    CAS  Article  Google Scholar 

  25. Unsicker K, Krisch B, Otten U, Thoenen H . Nerve growth factor-induced fiber outgrowth from isolated rat adrenal chromaffin cells: impairment by glucocorticoids. Proc Natl Acad Sci USA 1978; 75: 3498–3502.

    CAS  Article  Google Scholar 

  26. Aloe L, Levi-Montalcini R . Nerve growth factor-induced transformation of immature chromaffin cells in vivo into sympathetic neurons: effect of antiserum to nerve growth factor. Proc Natl Acad Sci USA 1979; 76: 1246–1250.

    CAS  Article  Google Scholar 

  27. Krieglstein K, Unsicker K . Proteins from chromaffin granules promote survival of dorsal root ganglionic neurons: comparison with neurotrophins. Brain Res Dev Brain Res 1996; 93: 10–17.

    CAS  Article  Google Scholar 

  28. Matrone C, Di LA, Meli G, D'Aguanno S, Severini C, Ciotti MT et al. Activation of the amyloidogenic route by NGF deprivation induces apoptotic death in PC12 cells. J Alzheimers Dis 2008; 13: 81–96.

    CAS  Article  Google Scholar 

  29. Matrone C, Marolda R, Ciafre S, Ciotti MT, Mercanti D, Calissano P . Tyrosine kinase nerve growth factor receptor switches from prosurvival to proapoptotic activity via Abeta-mediated phosphorylation. Proc Natl Acad Sci USA 2009; 106: 11358–11363.

    CAS  Article  Google Scholar 

  30. Shimoke K, Sasaya H, Ikeuchi T . Analysis of the role of nerve growth factor in promoting cell survival during endoplasmic reticulum stress in PC12 cells. Methods Enzymol 2011; 490: 53–70.

    CAS  Article  Google Scholar 

  31. Ravni A, Bourgault S, Lebon A, Chan P, Galas L, Fournier A et al. The neurotrophic effects of PACAP in PC12 cells: control by multiple transduction pathways. J Neurochem 2006; 98: 321–329.

    CAS  Article  Google Scholar 

  32. Suk K, Park JH, Lee WH . Neuropeptide PACAP inhibits hypoxic activation of brain microglia: a protective mechanism against microglial neurotoxicity in ischemia. Brain Res 2004; 1026: 151–156.

    CAS  Article  Google Scholar 

  33. Sun L, Guo C, Liu D, Zhao Y, Zhang Y, Song Z et al. Protective effects of bone morphogenetic protein 7 against amyloid-beta induced neurotoxicity in PC12 cells. Neuroscience 2011; 184: 151–163.

    CAS  Article  Google Scholar 

  34. Sun ZP, Gong L, Huang SH, Geng Z, Cheng L, Chen ZY . Intracellular trafficking and secretion of cerebral dopamine neurotrophic factor in neurosecretory cells. J Neurochem 2011; 117: 121–132.

    CAS  Article  Google Scholar 

  35. Licinio J, Dong C, Wong ML . Novel sequence variations in the brain-derived neurotrophic factor gene and association with major depression and antidepressant treatment response. Arch Gen Psychiatry 2009; 66: 488–497.

    CAS  Article  Google Scholar 

  36. Tan Y, Duan J, Li Y, Cai W . Effects of citalopram on serum deprivation induced PC12 cell apoptosis and BDNF expression. Pharmazie 2010; 65: 845–848.

    CAS  PubMed  Google Scholar 

  37. Ehrhart-Bornstein M, Vukicevic V, Chung KF, Ahmad M, Bornstein SR . Chromaffin progenitor cells from the adrenal medulla. Cell Mol Neurobiol 2010; 30: 1417–1423.

    Article  Google Scholar 

  38. Chung KF, Sicard F, Vukicevic V, Hermann A, Storch A, Huttner WB et al. Isolation of neural crest derived chromaffin progenitors from adult adrenal medulla. Stem Cells 2009; 27: 2602–2613.

    CAS  Article  Google Scholar 

  39. Ehrhart-Bornstein M, Chung KF, Vukicevic V, Bornstein SR . Is there a role for chromaffin progenitor cells in neurodegenerative diseases? Mol Psychiatry 2009; 14: 1–4.

    CAS  Article  Google Scholar 

  40. Perez-Alvarez A, Hernandez-Vivanco A, Albillos A . Past, present and future of human chromaffin cells: role in physiology and therapeutics. Cell Mol Neurobiol 2010; 30: 1407–1415.

    CAS  Article  Google Scholar 

  41. Lindvall O, Kokaia Z . Prospects of stem cell therapy for replacing dopamine neurons in Parkinson's disease. Trends Pharmacol Sci 2009; 30: 260–267.

    CAS  Article  Google Scholar 

  42. Louvi A, Artavanis-Tsakonas S . Notch signalling in vertebrate neural development. Nat Rev Neurosci 2006; 7: 93–102.

    CAS  Article  Google Scholar 

  43. Yoon K, Gaiano N . Notch signaling in the mammalian central nervous system: insights from mouse mutants. Nat Neurosci 2005; 8: 709–715.

    CAS  Article  Google Scholar 

  44. Vialli M, Erspamer V . Ricerche sul secreto delle cellule enterocromaffini. Boll Soc Med Chir 1937; 27: 81–99.

    Google Scholar 

  45. Erspamer V, Asero B . Identification of enteramine, the specific hormone of the enterochromaffin cell system, as 5-hydroxytryptamine. Nature 1952; 169: 800–801.

    CAS  Article  Google Scholar 

  46. Amin AH, Crawford TB, Gaddum JH . The distribution of substance P and 5-hydroxytryptamine in the central nervous system of the dog. J Physiol 1954; 126: 596–618.

    CAS  Article  Google Scholar 

  47. Tischler AS . Chromaffin cells as models of endocrine cells and neurons. Ann N Y Acad Sci 2002; 971: 366–370.

    Article  Google Scholar 

  48. Androutsellis-Theotokis A, Rueger MA, Park DM, Mkhikian H, Korb E, Poser SW et al. Targeting neural precursors in the adult brain rescues injured dopamine neurons. Proc Natl Acad Sci USA 2009; 106: 13570–13575.

    CAS  Article  Google Scholar 

  49. Androutsellis-Theotokis A, Leker RR, Soldner F, Hoeppner DJ, Ravin R, Poser SW et al. Notch signalling regulates stem cell numbers in vitro and in vivo. Nature 2006; 442: 823–826.

    CAS  Article  Google Scholar 

  50. Androutsellis-Theotokis A, Rueger MA, Mkhikian H, Korb E, McKay RD . Signaling pathways controlling neural stem cells slow progressive brain disease. Cold Spring Harb Symp Quant Biol 2008; 73: 403–410.

    CAS  Article  Google Scholar 

  51. Androutsellis-Theotokis A, Walbridge S, Park DM, Lonser RR, McKay RD . Cholera toxin regulates a signaling pathway critical for the expansion of neural stem cell cultures from the fetal and adult rodent brains. PLoS One 2010; 5: e10841.

    Article  Google Scholar 

  52. Androutsellis-Theotokis A, Rueger MA, Park DM, Boyd JD, Padmanabhan R, Campanati L et al. Angiogenic factors stimulate growth of adult neural stem cells. PLoS One 2010; 5: e9414.

    Article  Google Scholar 

  53. Kohn A . Über die Nebenniere. Prag med Wochenschrift 1898; 23: 193–195.

    Google Scholar 

  54. Kohn A . Das chromaffine Gewebe. Ergebn Anat Entwickl-Gesch 1902; 12: 253–348.

    Google Scholar 

  55. Kohn A . Die Paraganglien. Arch Mikr Anat 1903; 62: 263–365.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants of the Deutsche Forschungsgemeinschaft: KFO 252/1 (SRB, MEB, AAT, GE), SFB 655 (MEB, SRB) and the Center for Regenerative Therapies Dresden Cluster of Excellence to (SRB, MEB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S R Bornstein.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bornstein, S., Ehrhart-Bornstein, M., Androutsellis-Theotokis, A. et al. Chromaffin cells: the peripheral brain. Mol Psychiatry 17, 354–358 (2012). https://doi.org/10.1038/mp.2011.176

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2011.176

Keywords

  • adrenal medulla
  • neurobiology
  • neuronal differentiation
  • stem cells

Further reading

Search

Quick links