Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Little things on which happiness depends: microRNAs as novel therapeutic targets for the treatment of anxiety and depression

Abstract

Anxiety and depression are devastating mental illnesses that are a significant public health concern. Selective serotonin-reuptake inhibitors are the first-line treatment strategy for these disorders, which despite being a significant advantage over older treatments, are hampered by a limited efficacy in a significant subset of patients, delayed onset of action and side effects that affect compliance. Thus, there is much impetus to develop novel therapeutic strategies. However, this goal can only be rationally realised with a better understanding of the molecular pathophysiology of these disorders. MicroRNAs (miRNAs) are a newly discovered class of gene-expression regulators that may represent a novel class of therapeutic targets to treat a variety of disorders including psychiatric diseases. miRNAs are heavily involved in regulating many physiological processes including those fundamental to the functioning of the central nervous system. Evidence collected to date has already demonstrated that miRNA-expression levels are altered in patients suffering from depression and anxiety and in pre-clinical models of psychological stress. Furthermore, increasing evidence suggests that psychoactive agents including antidepressants and mood stabilisers utilise miRNAs as downstream effectors. Altering miRNA levels has been shown to alter behaviour in a therapeutically desirable manner in pre-clinical models. This review aims to outline the evidence collected to date demonstrating miRNAs role in anxiety and depression, the potential advantages of targeting these small RNA molecules as well as some of the hurdles that will have to be overcome to fully exploit their therapeutic potential.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Kessler RC, Berglund P, Demler O, Jin R, Koretz D, Merikangas KR et al. The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R). JAMA 2003; 289: 3095–3105.

    PubMed  Google Scholar 

  2. Cryan JF, O'Leary OF . Neuroscience. A glutamate pathway to faster-acting antidepressants? Science 2010; 329: 913–914.

    Article  CAS  PubMed  Google Scholar 

  3. Lucki I, O'Leary OF . Distinguishing roles for norepinephrine and serotonin in the behavioral effects of antidepressant drugs. J Clin Psychiat 2004; 65 (Suppl 4): 11–24.

    CAS  Google Scholar 

  4. Berton O, Nestler EJ . New approaches to antidepressant drug discovery: beyond monoamines. Nat Rev Neurosci 2006; 7: 137–151.

    Article  CAS  PubMed  Google Scholar 

  5. Wong ML, Licinio J . From monoamines to genomic targets: a paradigm shift for drug discovery in depression. Nat Rev 2004; 3: 136–151.

    CAS  Google Scholar 

  6. Machado-Vieira R, Salvadore G, Luckenbaugh DA, Manji HK, Zarate Jr CA . Rapid onset of antidepressant action: a new paradigm in the research and treatment of major depressive disorder. J Clin Psychiat 2008; 69: 946–958.

    Article  Google Scholar 

  7. Fava M . Diagnosis and definition of treatment-resistant depression. Biol Psychiat 2003; 53: 649–659.

    Article  PubMed  Google Scholar 

  8. Dinan TG . A rational approach to the non-responding depressed patient. Int Clin Psychopharmacol 1993; 8: 221–223.

    Article  CAS  PubMed  Google Scholar 

  9. Hu XH, Bull SA, Hunkeler EM, Ming E, Lee JY, Fireman B et al. Incidence and duration of side effects and those rated as bothersome with selective serotonin reuptake inhibitor treatment for depression: patient report versus physician estimate. J Clin Psychiat 2004; 65: 959–965.

    Article  CAS  Google Scholar 

  10. Burrows GD, Maguire KP, Norman TR . Antidepressant efficacy and tolerability of the selective norepinephrine reuptake inhibitor reboxetine: a review. J Clin Psychiat 1998; 59 (Suppl 14): 4–7.

    CAS  Google Scholar 

  11. Nutt DJ . Overview of diagnosis and drug treatments of anxiety disorders. CNS Spectr 2005; 10: 49–56.

    Article  PubMed  Google Scholar 

  12. Nutt DJ, Malizia AL . New insights into the role of the GABA(A)-benzodiazepine receptor in psychiatric disorder. Br J Psychiatry 2001; 179: 390–396.

    Article  CAS  PubMed  Google Scholar 

  13. Cryan JF, Sweeney FF . The age of anxiety: role of animal models of anxiolytic action in drug discovery. Brit J Pharmacol 2011; 164: 1129–1161.

    Article  CAS  Google Scholar 

  14. Baldwin DS, Anderson IM, Nutt DJ, Bandelow B, Bond A, Davidson JR et al. Evidence-based guidelines for the pharmacological treatment of anxiety disorders: recommendations from the British Association for Psychopharmacology. J Psychopharmacol 2005; 19: 567–596.

    Article  CAS  PubMed  Google Scholar 

  15. Manji HK, Quiroz JA, Sporn J, Payne JL, Denicoff K, N AG et al. Enhancing neuronal plasticity and cellular resilience to develop novel, improved therapeutics for difficult-to-treat depression. Biol Psychiat 2003; 53: 707–742.

    Article  CAS  PubMed  Google Scholar 

  16. Mathew SJ, Manji HK, Charney DS . Novel drugs and therapeutic targets for severe mood disorders. Neuropsychopharmacology 2008; 33: 2080–2092.

    Article  CAS  PubMed  Google Scholar 

  17. Germain A, Kupfer DJ . Circadian rhythm disturbances in depression. Hum Psychopharm 2008; 23: 571–585.

    Article  Google Scholar 

  18. Souetre E, Salvati E, Belugou JL, Pringuey D, Candito M, Krebs B et al. Circadian rhythms in depression and recovery: evidence for blunted amplitude as the main chronobiological abnormality. Psychiat Res 1989; 28: 263–278.

    Article  CAS  Google Scholar 

  19. de Bodinat C, Guardiola-Lemaitre B, Mocaer E, Renard P, Munoz C, Millan MJ . Agomelatine, the first melatonergic antidepressant: discovery, characterization and development. Nat Rev 2010; 9: 628–642.

    CAS  Google Scholar 

  20. Srinivasan V, Pandi-Perumal SR, Trakht I, Spence DW, Hardeland R, Poeggeler B et al. Pathophysiology of depression: role of sleep and the melatonergic system. Psychiat Res 2009; 165: 201–214.

    Article  CAS  Google Scholar 

  21. O'Connor RM, Cryan JF . Role of metabotropic glutamate receptors in CNS disorders. In: Siehler S, Milligan G (eds). G Protein-Coupled Receptors: Structure, Signaling, and Physiology. Cambridge University Press: New York, 2010, pp 321–379.

    Chapter  Google Scholar 

  22. Cryan JF, Dev KK . The glutamatergic system as a potential therapeutic target for the treatment of anxiety disorders. In: Blanchard RJ, Blanchard DC, Griebel G, Nutt DJ (eds). Handbook of Anxiety and Fear. Elsevier: Amsterdam, 2008.

    Google Scholar 

  23. Swanson CJ, Bures M, Johnson MP, Linden AM, Monn JA, Schoepp DD . Metabotropic glutamate receptors as novel targets for anxiety and stress disorders. Nat Rev 2005; 4: 131–144.

    CAS  Google Scholar 

  24. Zarate Jr CA, Payne JL, Quiroz J, Sporn J, Denicoff KK, Luckenbaugh D et al. An open-label trial of riluzole in patients with treatment-resistant major depression. Am J Psychiat 2004; 161: 171–174.

    Article  PubMed  Google Scholar 

  25. Zarate Jr CA, Quiroz JA, Singh JB, Denicoff KD, De Jesus G, Luckenbaugh DA et al. An open-label trial of the glutamate-modulating agent riluzole in combination with lithium for the treatment of bipolar depression. Biol Psychiat 2005; 57: 430–432.

    Article  CAS  PubMed  Google Scholar 

  26. Hill MN, Gorzalka BB . The endocannabinoid system and the treatment of mood and anxiety disorders. CNS Neurol Disord Drug Targets 2009; 8: 451–458.

    Article  CAS  PubMed  Google Scholar 

  27. File SE . NKP608, an NK1 receptor antagonist, has an anxiolytic action in the social interaction test in rats. Psychopharmacology 2000; 152: 105–109.

    Article  CAS  PubMed  Google Scholar 

  28. Broqua P, Wettstein JG, Rocher MN, Gauthier-Martin B, Junien JL . Behavioral effects of neuropeptide Y receptor agonists in the elevated plus-maze and fear-potentiated startle procedures. Behav Pharmacol 1995; 6: 215–222.

    Article  CAS  PubMed  Google Scholar 

  29. Heilig M, McLeod S, Brot M, Heinrichs SC, Menzaghi F, Koob GF et al. Anxiolytic-like action of neuropeptide Y: mediation by Y1 receptors in amygdala, and dissociation from food intake effects. Neuropsychopharmacology 1993; 8: 357–363.

    Article  CAS  PubMed  Google Scholar 

  30. Heilig M, Soderpalm B, Engel JA, Widerlov E . Centrally administered neuropeptide Y (NPY) produces anxiolytic-like effects in animal anxiety models. Psychopharmacology 1989; 98: 524–529.

    Article  CAS  PubMed  Google Scholar 

  31. Cryan JF, Holmes A . The ascent of mouse: advances in modelling human depression and anxiety. Nat Rev 2005; 4: 775–790.

    CAS  Google Scholar 

  32. Lee RC, Feinbaum RL, Ambros V . The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993; 75: 843–854.

    Article  CAS  PubMed  Google Scholar 

  33. Wightman B, Ha I, Ruvkun G . Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 1993; 75: 855–862.

    Article  CAS  PubMed  Google Scholar 

  34. Barbato C, Giorgi C, Catalanotto C, Cogoni C . Thinking about RNA? MicroRNAs in the brain. Mamm Genome 2008; 19: 541–551.

    Article  CAS  PubMed  Google Scholar 

  35. Dinan TG . MicroRNAs as a target for novel antipsychotics: a systematic review of an emerging field. Int J Neuropsychopharmacol 2010; 13: 395–404.

    Article  CAS  PubMed  Google Scholar 

  36. Gao FB . Posttranscriptional control of neuronal development by microRNA networks. Trends Neurosci 2008; 31: 20–26.

    Article  CAS  PubMed  Google Scholar 

  37. Satterlee JS, Barbee S, Jin P, Krichevsky A, Salama S, Schratt G et al. Noncoding RNAs in the brain. J Neurosci 2007; 27: 11856–11859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. O'Connell RM, Rao DS, Chaudhuri AA, Baltimore D . Physiological and pathological roles for microRNAs in the immune system. Nat Rev Immunol 2010; 10: 111–122.

    Article  CAS  PubMed  Google Scholar 

  39. Miller BH, Wahlestedt C . MicroRNA dysregulation in psychiatric disease. Brain Res 2010; 1338: 89–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Leung AK, Sharp PA . MicroRNA functions in stress responses. Mol Cell 2010; 40: 205–215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wiemer EA . The role of microRNAs in cancer: no small matter. Eur J Cancer 2007; 43: 1529–1544.

    Article  CAS  PubMed  Google Scholar 

  42. da Costa Martins PA, Leptidis S, Salic K, De Windt LJ . MicroRNA regulation in cardiovascular disease. Curr Drug Targets 2010; 11: 900–906.

    Article  CAS  PubMed  Google Scholar 

  43. Filipowicz W, Bhattacharyya SN, Sonenberg N . Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 2008; 9: 102–114.

    Article  CAS  PubMed  Google Scholar 

  44. Novina CD, Sharp PA . The RNAi revolution. Nature 2004; 430: 161–164.

    Article  CAS  PubMed  Google Scholar 

  45. Place RF, Li LC, Pookot D, Noonan EJ, Dahiya R . MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc Natl Acad Sci USA 2008; 105: 1608–1613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T . Identification of novel genes coding for small expressed RNAs. Science 2001; 294: 853–858.

    Article  CAS  PubMed  Google Scholar 

  47. Lau NC, Lim LP, Weinstein EG, Bartel DP . An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 2001; 294: 858–862.

    Article  CAS  PubMed  Google Scholar 

  48. Bartel DP . MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116: 281–297.

    Article  CAS  PubMed  Google Scholar 

  49. Marco A, Hui JH, Ronshaugen M, Griffiths-Jones S . Functional shifts in insect microRNA evolution. Genome Biol Evol 2010; 2: 686–696.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Krichevsky AM, King KS, Donahue CP, Khrapko K, Kosik KS . A microRNA array reveals extensive regulation of microRNAs during brain development. RNA 2003; 9: 1274–1281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T . Identification of tissue-specific microRNAs from mouse. Curr Biol 2002; 12: 735–739.

    Article  CAS  PubMed  Google Scholar 

  52. Podolska A, Kaczkowski B, Kamp Busk P, Sokilde R, Litman T, Fredholm M et al. MicroRNA expression profiling of the porcine developing brain. PloS One 2011; 6: e14494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lim LP, Lau NC, Weinstein EG, Abdelhakim A, Yekta S, Rhoades MW et al. The microRNAs of Caenorhabditis elegans. Gene Dev 2003; 17: 991–1008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Davis BN, Hata A . Regulation of microRNA biogenesis: a miRiad of mechanisms. Cell Commun Signal 2009; 7: 18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kim VN, Han J, Siomi MC . Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 2009; 10: 126–139.

    Article  CAS  PubMed  Google Scholar 

  56. Winter J, Jung S, Keller S, Gregory RI, Diederichs S . Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 2009; 11: 228–234.

    Article  CAS  PubMed  Google Scholar 

  57. Zeng Y, Cullen BR . Sequence requirements for micro RNA processing and function in human cells. RNA 2003; 9: 112–123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lee Y, Jeon K, Lee JT, Kim S, Kim VN . MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 2002; 21: 4663–4670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ . miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 2006; 34 (Database Issue): D140–D144.

    Article  CAS  PubMed  Google Scholar 

  60. Yi R, Qin Y, Macara IG, Cullen BR . Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Gene Dev 2003; 17: 3011–3016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U . Nuclear export of microRNA precursors. Science 2004; 303: 95–98.

    Article  CAS  PubMed  Google Scholar 

  62. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 2003; 425: 415–419.

    Article  CAS  PubMed  Google Scholar 

  63. Grishok A, Pasquinelli AE, Conte D, Li N, Parrish S, Ha I et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 2001; 106: 23–34.

    Article  CAS  PubMed  Google Scholar 

  64. Hutvagner G, McLachlan J, Pasquinelli AE, Balint E, Tuschl T, Zamore PD . A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 2001; 293: 834–838.

    Article  CAS  PubMed  Google Scholar 

  65. Ketting RF, Fischer SE, Bernstein E, Sijen T, Hannon GJ, Plasterk RH . Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Gene Dev 2001; 15: 2654–2659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Khvorova A, Reynolds A, Jayasena SD . Functional siRNAs and miRNAs exhibit strand bias. Cell 2003; 115: 209–216.

    Article  CAS  PubMed  Google Scholar 

  67. Liu J, Carmell MA, Rivas FV, Marsden CG, Thomson JM, Song JJ et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science 2004; 305: 1437–1441.

    Article  CAS  PubMed  Google Scholar 

  68. Meister G, Landthaler M, Patkaniowska A, Dorsett Y, Teng G, Tuschl T . Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 2004; 15: 185–197.

    Article  CAS  PubMed  Google Scholar 

  69. Doench JG, Petersen CP, Sharp PA . siRNAs can function as miRNAs. Gene Dev 2003; 17: 438–442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hutvagner G, Zamore PD . A microRNA in a multiple-turnover RNAi enzyme complex. Science 2002; 297: 2056–2060.

    Article  CAS  PubMed  Google Scholar 

  71. Zhou R, Yuan P, Wang Y, Hunsberger JG, Elkahloun A, Wei Y et al. Evidence for selective microRNAs and their effectors as common long-term targets for the actions of mood stabilizers. Neuropsychopharmacology 2009; 34: 1395–1405.

    Article  CAS  PubMed  Google Scholar 

  72. Roth BL, Sheffler DJ, Kroeze WK . Magic shotguns versus magic bullets: selectively non-selective drugs for mood disorders and schizophrenia. Nat Rev 2004; 3: 353–359.

    CAS  Google Scholar 

  73. Betel D, Wilson M, Gabow A, Marks DS, Sander C . The microRNA.org resource: targets and expression. Nucleic Acids Res 2008; 36 (Database Issue): D149–D153.

    CAS  PubMed  Google Scholar 

  74. Doench JG, Sharp PA . Specificity of microRNA target selection in translational repression. Gene Dev 2004; 18: 504–511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Flynt AS, Lai EC . Biological principles of microRNA-mediated regulation: shared themes amid diversity. Nat Rev Genet 2008; 9: 831–842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB . Prediction of mammalian microRNA targets. Cell 2003; 115: 787–798.

    Article  CAS  PubMed  Google Scholar 

  77. Linsen SE, Tops BB, Cuppen E . miRNAs: small changes, widespread effects. Cell Res 2008; 18: 1157–1159.

    Article  CAS  PubMed  Google Scholar 

  78. Bartel DP . MicroRNAs: target recognition and regulatory functions. Cell 2009; 136: 215–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Giraldez AJ, Cinalli RM, Glasner ME, Enright AJ, Thomson JM, Baskerville S et al. MicroRNAs regulate brain morphogenesis in zebrafish. 2005; 308: 833–838.

  80. Kim J, Inoue K, Ishii J, Vanti WB, Voronov SV, Murchison E et al. A microRNA feedback circuit in midbrain dopamine neurons. Science 2007; 317: 1220–1224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Barbato C, Ciotti MT, Serafino A, Calissano P, Cogoni C . Dicer expression and localization in post-mitotic neurons. Brain Res 2007; 1175: 17–27.

    Article  CAS  PubMed  Google Scholar 

  82. Schaefer A, O'Carroll D, Tan CL, Hillman D, Sugimori M, Llinas R et al. Cerebellar neurodegeneration in the absence of microRNAs. J Exp Med 2007; 204: 1553–1558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Dupret D, Revest JM, Koehl M, Ichas F, De Giorgi F, Costet P et al. Spatial relational memory requires hippocampal adult neurogenesis. PloS One 2008; 3: e1959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Dupret D, Fabre A, Dobrossy MD, Panatier A, Rodriguez JJ, Lamarque S et al. Spatial learning depends on both the addition and removal of new hippocampal neurons. PLoS Biol 2007; 5: e214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Deng W, Aimone JB, Gage FH . New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nat Rev Neurosci 2010; 11: 339–350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Eisch AJ, Cameron HA, Encinas JM, Meltzer LA, Ming GL, Overstreet-Wadiche LS . Adult neurogenesis, mental health, and mental illness: hope or hype? J Neurosci 2008; 28: 11785–11791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Cheng LC, Pastrana E, Tavazoie M, Doetsch F . miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat Neurosci 2009; 12: 399–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Szulwach KE, Li X, Smrt RD, Li Y, Luo Y, Lin L et al. Cross talk between microRNA and epigenetic regulation in adult neurogenesis. J Cell Biol 2010; 189: 127–141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Sahay A, Hen R . Adult hippocampal neurogenesis in depression. Nat Neurosci 2007; 10: 1110–1115.

    Article  CAS  PubMed  Google Scholar 

  90. Baudry A, Mouillet-Richard S, Launay JM, Kellermann O . New views on antidepressant action. Curr Opin Neurobiol 2011 (in press).

  91. Jin P, Zarnescu DC, Ceman S, Nakamoto M, Mowrey J, Jongens TA et al. Biochemical and genetic interaction between the fragile X mental retardation protein and the microRNA pathway. Nat Neurosci 2004; 7: 113–117.

    Article  CAS  PubMed  Google Scholar 

  92. Ashraf SI, McLoon AL, Sclarsic SM, Kunes S . Synaptic protein synthesis associated with memory is regulated by the RISC pathway in Drosophila. Cell 2006; 124: 191–205.

    Article  CAS  PubMed  Google Scholar 

  93. Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, Kiebler M et al. A brain-specific microRNA regulates dendritic spine development. Nature 2006; 439: 283–289.

    Article  CAS  PubMed  Google Scholar 

  94. Siegel G, Obernosterer G, Fiore R, Oehmen M, Bicker S, Christensen M et al. A functional screen implicates microRNA-138-dependent regulation of the depalmitoylation enzyme APT1 in dendritic spine morphogenesis. Nat Cell Biol 2009; 11: 705–716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lugli G, Torvik VI, Larson J, Smalheiser NR . Expression of microRNAs and their precursors in synaptic fractions of adult mouse forebrain. J Neurochem 2008; 106: 650–661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Charney DS, Manji HK . Life stress, genes, and depression: multiple pathways lead to increased risk and new opportunities for intervention. Sci STKE 2004; 2004: re5.

    PubMed  Google Scholar 

  97. Cavazzana-Calvo M, Thrasher A, Mavilio F . The future of gene therapy. Nature 2004; 427: 779–781.

    Article  CAS  PubMed  Google Scholar 

  98. Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G, Gross F, Yvon E, Nusbaum P et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 2000; 288: 669–672.

    Article  CAS  PubMed  Google Scholar 

  99. Aiuti A, Slavin S, Aker M, Ficara F, Deola S, Mortellaro A et al. Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science 2002; 296: 2410–2413.

    Article  CAS  PubMed  Google Scholar 

  100. Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003; 302: 415–419.

    Article  CAS  PubMed  Google Scholar 

  101. Baum C, Dullmann J, Li Z, Fehse B, Meyer J, Williams DA et al. Side effects of retroviral gene transfer into hematopoietic stem cells. Blood 2003; 101: 2099–2114.

    Article  CAS  PubMed  Google Scholar 

  102. Fischer A, Cavazzana-Calvo M . Gene therapy of inherited diseases. Lancet 2008; 371: 2044–2047.

    Article  PubMed  Google Scholar 

  103. Maguire AM, Simonelli F, Pierce EA, Pugh Jr EN, Mingozzi F, Bennicelli J et al. Safety and efficacy of gene transfer for Leber's congenital amaurosis. New Engl J Med 2008; 358: 2240–2248.

    Article  CAS  PubMed  Google Scholar 

  104. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC . Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998; 391: 806–811.

    Article  CAS  PubMed  Google Scholar 

  105. Elsabahy M, Nazarali A, Foldvari M . Non-viral nucleic acid delivery: key challenges and future directions. Curr Drug Deliv 2011; 8: 235–244.

    Article  CAS  PubMed  Google Scholar 

  106. Morozumi T, Uenishi H . Polymorphism distribution and structural conservation in RNA-sensing Toll-like receptors 3, 7, and 8 in pigs. Biochimica et Biophysica Acta 2009; 1790: 267–274.

    Article  CAS  PubMed  Google Scholar 

  107. Geisbert TW, Lee AC, Robbins M, Geisbert JB, Honko AN, Sood V et al. Postexposure protection of non-human primates against a lethal Ebola virus challenge with RNA interference: a proof-of-concept study. Lancet 2010; 375: 1896–1905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Yokota T, Iijima S, Kubodera T, Ishii K, Katakai Y, Ageyama N et al. Efficient regulation of viral replication by siRNA in a non-human primate surrogate model for hepatitis C. Biochem Biophys Res Commun 2007; 361: 294–300.

    Article  CAS  PubMed  Google Scholar 

  109. Tang Q, Li B, Woodle M, Lu PY . Application of siRNA against SARS in the rhesus macaque model. Methods Mol Biol 2008; 442: 139–158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Esquela-Kerscher A, Trang P, Wiggins JF, Patrawala L, Cheng A, Ford L et al. The let-7 microRNA reduces tumor growth in mouse models of lung cancer. Cell Cycle 2008; 7: 759–764.

    Article  CAS  PubMed  Google Scholar 

  111. Kumar MS, Erkeland SJ, Pester RE, Chen CY, Ebert MS, Sharp PA et al. Suppression of non-small cell lung tumor development by the let-7 microRNA family. Proc Natl Acad Sci USA 2008; 105: 3903–3908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Trang P, Medina PP, Wiggins JF, Ruffino L, Kelnar K, Omotola M et al. Regression of murine lung tumors by the let-7 microRNA. Oncogene 2010; 29: 1580–1587.

    Article  CAS  PubMed  Google Scholar 

  113. Thum T, Gross C, Fiedler J, Fischer T, Kissler S, Bussen M et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 2008; 456: 980–984.

    Article  CAS  PubMed  Google Scholar 

  114. Mattes J, Collison A, Plank M, Phipps S, Foster PS . Antagonism of microRNA-126 suppresses the effector function of TH2 cells and the development of allergic airways disease. Proc Natl Acad Sci USA 2009; 106: 18704–18709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Elmen J, Lindow M, Schutz S, Lawrence M, Petri A, Obad S et al. LNA-mediated microRNA silencing in non-human primates. Nature 2008; 452: 896–899.

    Article  CAS  PubMed  Google Scholar 

  116. Lanford RE, Hildebrandt-Eriksen ES, Petri A, Persson R, Lindow M, Munk ME et al. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 2010; 327: 198–201.

    Article  CAS  PubMed  Google Scholar 

  117. Braasch DA, Paroo Z, Constantinescu A, Ren G, Oz OK, Mason RP et al. Biodistribution of phosphodiester and phosphorothioate siRNA. Bioorg Med Chem Lett 2004; 14: 1139–1143.

    Article  CAS  PubMed  Google Scholar 

  118. Thakker DR, Hoyer D, Cryan JF . Interfering with the brain: use of RNA interference for understanding the pathophysiology of psychiatric and neurological disorders. Pharmacol Therapeut 2006; 109: 413–438.

    Article  CAS  Google Scholar 

  119. O'Brien FE, Dinan TG, Griffin BT, Cryan JF . Interactions between antidepressants and P-glycoprotein at the blood-brain barrier: clinical significance of in vitro and in vivo findings. Brit J Pharmacol 2011 (in press).

  120. Nielsen TT, Marion I, Hasholt L, Lundberg C . Neuron-specific RNA interference using lentiviral vectors. J Gene Med 2009; 11: 559–569.

    Article  CAS  PubMed  Google Scholar 

  121. Love TM, Moffett HF, Novina CD . Not miR-ly small RNAs: big potential for microRNAs in therapy. J Allergy Clin Immunol 2008; 121: 309–319.

    Article  CAS  PubMed  Google Scholar 

  122. Guo J, Fisher KA, Darcy R, Cryan JF, O'Driscoll C . Therapeutic targeting in the silent era: advances in non-viral siRNA delivery. Mol Biosyst 2010; 6: 1143–1161.

    CAS  PubMed  Google Scholar 

  123. Thomas CE, Ehrhardt A, Kay MA . Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 2003; 4: 346–358.

    Article  CAS  PubMed  Google Scholar 

  124. Gao K, Huang L . Nonviral methods for siRNA delivery. Mol Pharm 2009; 6: 651–658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Krack P, Hariz MI, Baunez C, Guridi J, Obeso JA . Deep brain stimulation: from neurology to psychiatry? Trends Neurosci 2010; 33: 474–484.

    Article  CAS  PubMed  Google Scholar 

  126. Denys D, Mantione M . Deep brain stimulation in obsessive-compulsive disorder. Prog Brain Res 2009; 175: 419–427.

    Article  PubMed  Google Scholar 

  127. Mayberg HS . Targeted electrode-based modulation of neural circuits for depression. J Clin Invest 2009; 119: 717–725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Mukherji S, Ebert MS, Zheng GX, Tsang JS, Sharp PA, van Oudenaarden A . MicroRNAs can generate thresholds in target gene expression. Nat Genet 2011; 43: 854–859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Soutschek J, Akinc A, Bramlage B, Charisse K, Constien R, Donoghue M et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 2004; 432: 173–178.

    Article  CAS  PubMed  Google Scholar 

  130. Fendt M, Schmid S, Thakker DR, Jacobson LH, Yamamoto R, Mitsukawa K et al. mGluR7 facilitates extinction of aversive memories and controls amygdala plasticity. Mol Psychiat 2008; 13: 970–979.

    Article  CAS  Google Scholar 

  131. Hoyer D, Thakker DR, Natt F, Maier R, Huesken D, Muller M et al. Global down-regulation of gene expression in the brain using RNA interference, with emphasis on monoamine transporters and GPCRs: implications for target characterization in psychiatric and neurological disorders. J Recept Signal Transduct Res 2006; 26: 527–547.

    Article  CAS  PubMed  Google Scholar 

  132. Thakker DR, Natt F, Husken D, Maier R, Muller M, van der Putten H et al. Neurochemical and behavioral consequences of widespread gene knockdown in the adult mouse brain by using nonviral RNA interference. Proc Natl Acad Sci USA 2004; 101: 17270–17275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Thakker DR, Natt F, Husken D, van der Putten H, Maier R, Hoyer D et al. siRNA-mediated knockdown of the serotonin transporter in the adult mouse brain. Mol Psychiat 2005; 10: 782, .

    Article  CAS  Google Scholar 

  134. Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M et al. Silencing of microRNAs in vivo with ‘antagomirs’. Nature 2005; 438: 685–689.

    Article  CAS  PubMed  Google Scholar 

  135. Hollander JA, Im HI, Amelio AL, Kocerha J, Bali P, Lu Q et al. Striatal microRNA controls cocaine intake through CREB signalling. Nature 2010; 466: 197–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Im HI, Hollander JA, Bali P, Kenny PJ . MeCP2 controls BDNF expression and cocaine intake through homeostatic interactions with microRNA-212. Nat Neurosci 2010; 13: 1120–1127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Xia H, Mao Q, Paulson HL, Davidson BL . siRNA-mediated gene silencing in vitro and in vivo. Nat Biotechnol 2002; 20: 1006–1010.

    Article  CAS  PubMed  Google Scholar 

  138. Paul CP, Good PD, Winer I, Engelke DR . Effective expression of small interfering RNA in human cells. Nat Biotechnol 2002; 20: 505–508.

    Article  CAS  PubMed  Google Scholar 

  139. Baudry A, Mouillet-Richard S, Schneider B, Launay JM, Kellermann O . miR-16 targets the serotonin transporter: a new facet for adaptive responses to antidepressants. Science 2010; 329: 1537–1541.

    Article  CAS  PubMed  Google Scholar 

  140. Cohen S, Janicki-Deverts D, Miller GE . Psychological stress and disease. JAMA 2007; 298: 1685–1687.

    Article  CAS  PubMed  Google Scholar 

  141. Seckl JR . Glucocorticoids, developmental ‘programming’ and the risk of affective dysfunction. Prog Brain Res 2008; 167: 17–34.

    Article  CAS  PubMed  Google Scholar 

  142. Caldji C, Francis D, Sharma S, Plotsky PM, Meaney MJ . The effects of early rearing environment on the development of GABAA and central benzodiazepine receptor levels and novelty-induced fearfulness in the rat. Neuropsychopharmacology 2000; 22: 219–229.

    Article  CAS  PubMed  Google Scholar 

  143. Jacobson LH, Cryan JF . Feeling strained? Influence of genetic background on depression-related behavior in mice: a review. Behav Genet 2007; 37: 171–213.

    Article  CAS  PubMed  Google Scholar 

  144. Nemeroff CB . Neurobiological consequences of childhood trauma. J Clin Psychiat 2004; 65 (Suppl 1): 18–28.

    CAS  Google Scholar 

  145. Michaels CC, Holtzman SG . Enhanced sensitivity to naltrexone-induced drinking suppression of fluid intake and sucrose consumption in maternally separated rats. Pharmacol Biochem Be 2007; 86: 784–796.

    Article  CAS  Google Scholar 

  146. Meerson A, Cacheaux L, Goosens KA, Sapolsky RM, Soreq H, Kaufer D . Changes in brain microRNAs contribute to cholinergic stress reactions. J Mol Neurosci 2010; 40: 47–55.

    Article  CAS  PubMed  Google Scholar 

  147. Rinaldi A, Vincenti S, De Vito F, Bozzoni I, Oliverio A, Presutti C et al. Stress induces region specific alterations in microRNAs expression in mice. Behav Brain Res 2010; 208: 265–269.

    Article  CAS  PubMed  Google Scholar 

  148. Dwivedi Y, Mondal AC, Rizavi HS, Shukla PK, Pandey GN . Single and repeated stress-induced modulation of phospholipase C catalytic activity and expression: role in LH behavior. Neuropsychopharmacology 2005; 30: 473–483.

    Article  CAS  PubMed  Google Scholar 

  149. Murakami S, Imbe H, Morikawa Y, Kubo C, Senba E . Chronic stress, as well as acute stress, reduces BDNF mRNA expression in the rat hippocampus but less robustly. Neurosci Res 2005; 53: 129–139.

    Article  CAS  PubMed  Google Scholar 

  150. McDougall SJ, Widdop RE, Lawrence AJ . Differential gene expression in WKY and SHR brain following acute and chronic air-puff stress. Brain Res 2005; 133: 329–336.

    CAS  Google Scholar 

  151. Romeo RD, Ali FS, Karatsoreos IN, Bellani R, Chhua N, Vernov M et al. Glucocorticoid receptor mRNA expression in the hippocampal formation of male rats before and after pubertal development in response to acute or repeated stress. Neuroendocrinology 2008; 87: 160–167.

    Article  CAS  PubMed  Google Scholar 

  152. Pournajafi-Nazarloo H, Partoo L, Sanzenbacher L, Paredes J, Hashimoto K, Azizi F et al. Stress differentially modulates mRNA expression for corticotrophin-releasing hormone receptors in hypothalamus, hippocampus and pituitary of prairie voles. Neuropeptides 2009; 43: 113–123.

    Article  CAS  PubMed  Google Scholar 

  153. Gosselin RD, O'Connor RM, Tramullas M, Julio-Pieper M, Dinan TG, Cryan JF . Riluzole normalizes early-life stress-induced visceral hypersensitivity in rats: role of spinal glutamate reuptake mechanisms. Gastroenterology 2010; 138: 2418–2425.

    Article  CAS  PubMed  Google Scholar 

  154. O'Mahony S, Chua AS, Quigley EM, Clarke G, Shanahan F, Keeling PW et al. Evidence of an enhanced central 5HT response in irritable bowel syndrome and in the rat maternal separation model. Neurogastroenterol Motil 2008; 20: 680–688.

    Article  CAS  PubMed  Google Scholar 

  155. Clarke AS, Hedeker DR, Ebert MH, Schmidt DE, McKinney WT, Kraemer GW . Rearing experience and biogenic amine activity in infant rhesus monkeys. Biol Psychiat 1996; 40: 338–352.

    Article  CAS  PubMed  Google Scholar 

  156. Uchida S, Hara K, Kobayashi A, Funato H, Hobara T, Otsuki K et al. Early life stress enhances behavioral vulnerability to stress through the activation of REST4-mediated gene transcription in the medial prefrontal cortex of rodents. J Neurosci 2010; 30: 15007–15018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Conaco C, Otto S, Han JJ, Mandel G . Reciprocal actions of REST and a microRNA promote neuronal identity. Proc Natl Acad Sci USA 2006; 103: 2422–2427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Otto SJ, McCorkle SR, Hover J, Conaco C, Han JJ, Impey S et al. A new binding motif for the transcriptional repressor REST uncovers large gene networks devoted to neuronal functions. J Neurosci 2007; 27: 6729–6739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Uchida S, Nishida A, Hara K, Kamemoto T, Suetsugi M, Fujimoto M et al. Characterization of the vulnerability to repeated stress in Fischer 344 rats: possible involvement of microRNA-mediated down-regulation of the glucocorticoid receptor. Eur J Neurosci 2008; 27: 2250–2261.

    Article  PubMed  Google Scholar 

  160. Wu HH, Wang S . Strain differences in the chronic mild stress animal model of depression. Behav Brain Res 2010; 213: 94–102.

    Article  PubMed  Google Scholar 

  161. Shepard JD, Myers DA . Strain differences in anxiety-like behavior: association with corticotropin-releasing factor. Behav Brain Res 2008; 186: 239–245.

    Article  CAS  PubMed  Google Scholar 

  162. Dwivedi Y, Mondal AC, Shukla PK, Rizavi HS, Lyons J . Altered protein kinase a in brain of learned helpless rats: effects of acute and repeated stress. Biol Psychiat 2004; 56: 30–40.

    Article  CAS  PubMed  Google Scholar 

  163. Greenwood BN, Fleshner M . Exercise, learned helplessness, and the stress-resistant brain. Neuromolecular Med 2008; 10: 81–98.

    Article  CAS  PubMed  Google Scholar 

  164. Willner P . Animal models of depression: validity and applications. Adv Biochem Psychopharmacol 1995; 49: 19–41.

    CAS  PubMed  Google Scholar 

  165. Seligman ME, Maier SF . Failure to escape traumatic shock. J Exp Psychol 1967; 74: 1–9.

    Article  CAS  PubMed  Google Scholar 

  166. Vollmayr B, Bachteler D, Vengeliene V, Gass P, Spanagel R, Henn F . Rats with congenital learned helplessness respond less to sucrose but show no deficits in activity or learning. Behav Brain Res 2004; 150: 217–221.

    Article  CAS  PubMed  Google Scholar 

  167. Kohen R, Kirov S, Navaja GP, Happe HK, Hamblin MW, Snoddy JR et al. Gene expression profiling in the hippocampus of learned helpless and nonhelpless rats. Pharmacogenomics J 2005; 5: 278–291.

    Article  CAS  PubMed  Google Scholar 

  168. Smalheiser NR, Lugli G, Rizavi HS, Zhang H, Torvik VI, Pandey GN et al. MicroRNA expression in rat brain exposed to repeated inescapable shock: differential alterations in learned helplessness vs. non-learned helplessness. Int J Neuropsychopharmacol 2011; 14: 1–11.

    Article  CAS  Google Scholar 

  169. Alberini CM . Transcription factors in long-term memory and synaptic plasticity. Physiol Rev 2009; 89: 121–145.

    Article  CAS  PubMed  Google Scholar 

  170. Barco A, Pittenger C, Kandel ER . CREB, memory enhancement and the treatment of memory disorders: promises, pitfalls and prospects. Expert Opin Ther Targets 2003; 7: 101–114.

    Article  CAS  PubMed  Google Scholar 

  171. Mayr B, Montminy M . Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol 2001; 2: 599–609.

    Article  CAS  PubMed  Google Scholar 

  172. Song L, Che W, Min-Wei W, Murakami Y, Matsumoto K . Impairment of the spatial learning and memory induced by learned helplessness and chronic mild stress. Pharmacol Biochem Be 2006; 83: 186–193.

    Article  CAS  Google Scholar 

  173. Meshorer E, Bryk B, Toiber D, Cohen J, Podoly E, Dori A et al. SC35 promotes sustainable stress-induced alternative splicing of neuronal acetylcholinesterase mRNA. Mol Psychiat 2005; 10: 985–997.

    Article  CAS  Google Scholar 

  174. de Kloet ER, Fitzsimons CP, Datson NA, Meijer OC, Vreugdenhil E . Glucocorticoid signaling and stress-related limbic susceptibility pathway: about receptors, transcription machinery and microRNA. Brain Res 2009; 1293: 129–141.

    Article  CAS  PubMed  Google Scholar 

  175. Xu Y, Liu H, Li F, Sun N, Ren Y, Liu Z et al. A polymorphism in the microRNA-30e precursor associated with major depressive disorder risk and P300 waveform. J Affect Disord 2010; 127: 332–336.

    Article  CAS  PubMed  Google Scholar 

  176. Wu F, Zhu S, Ding Y, Beck WT, Mo YY . MicroRNA-mediated regulation of Ubc9 expression in cancer cells. Clin Cancer Res 2009; 15: 1550–1557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Xu Y, Li F, Zhang B, Zhang K, Zhang F, Huang X et al. MicroRNAs and target site screening reveals a pre-microRNA-30e variant associated with schizophrenia. Schizophr Res 2010; 119: 219–227.

    Article  PubMed  Google Scholar 

  178. Perkins DO, Jeffries CD, Jarskog LF, Thomson JM, Woods K, Newman MA et al. microRNA expression in the prefrontal cortex of individuals with schizophrenia and schizoaffective disorder. Genome Biol 2007; 8: R27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Kennaway DJ . Clock genes at the heart of depression. J Psychopharmacol 2010; 24 (2 Suppl): 5–14.

    Article  CAS  PubMed  Google Scholar 

  180. Monteleone P, Maj M . The circadian basis of mood disorders: recent developments and treatment implications. Eur Neuropsychopharmacol 2008; 18: 701–711.

    Article  CAS  PubMed  Google Scholar 

  181. Saus E, Soria V, Escaramis G, Vivarelli F, Crespo JM, Kagerbauer B et al. Genetic variants and abnormal processing of pre-miR-182, a circadian clock modulator, in major depression patients with late insomnia. Hum Mol Genet 2010; 19: 4017–4025.

    Article  CAS  PubMed  Google Scholar 

  182. Serretti A, Benedetti F, Mandelli L, Lorenzi C, Pirovano A, Colombo C et al. Genetic dissection of psychopathological symptoms: insomnia in mood disorders and CLOCK gene polymorphism. Am J Med Genet B Neuropsychiatr Genet 2003; 121B: 35–38.

    Article  PubMed  Google Scholar 

  183. Benedetti F, Dallaspezia S, Fulgosi MC, Lorenzi C, Serretti A, Barbini B et al. Actimetric evidence that CLOCK 3111 T/C SNP influences sleep and activity patterns in patients affected by bipolar depression. Am J Med Genet B Neuropsychiatr Genet 2007; 144B: 631–635.

    Article  CAS  PubMed  Google Scholar 

  184. Serretti A, Cusin C, Benedetti F, Mandelli L, Pirovano A, Zanardi R et al. Insomnia improvement during antidepressant treatment and CLOCK gene polymorphism. Am J Med Genet B Neuropsychiatr Genet 2005; 137B: 36–39.

    Article  PubMed  Google Scholar 

  185. O'Connor RM, O'Leary OF, Dinan A, Gokul A, Dinan TG, Cryan JF . Stress-induced alterations in hippocampal and amygdalar microRNAs: effects of lithium. Eur Neuropsychopharm 2010; 20: S166–S167.

    Article  Google Scholar 

  186. Li MD, van der Vaart AD . MicroRNAs in addiction: adaptation's middlemen? Mol Psychiat 2011; 16: 1159–1168.

    Article  CAS  Google Scholar 

  187. Walker MW, Wolinsky TD, Jubian V, Chandrasena G, Zhong H, Huang X et al. The novel neuropeptide Y Y5 receptor antagonist Lu AA33810 [N-[[trans-4-[(4,5-dihydro[1]benzothiepino[5,4-d]thiazol-2-yl)amino]cycloh exyl]methyl]-methanesulfonamide] exerts anxiolytic- and antidepressant-like effects in rat models of stress sensitivity. J Pharmacol Exp Ther 2009; 328: 900–911.

    Article  CAS  PubMed  Google Scholar 

  188. Muinos-Gimeno M, Guidi M, Kagerbauer B, Martin-Santos R, Navines R, Alonso P et al. Allele variants in functional microRNA target sites of the neurotrophin-3 receptor gene (NTRK3) as susceptibility factors for anxiety disorders. Hum Mutat 2009; 30: 1062–1071.

    Article  CAS  PubMed  Google Scholar 

  189. Muinos-Gimeno M, Espinosa-Parrilla Y, Guidi M, Kagerbauer B, Sipila T, Maron E et al. Human microRNAs miR-22, miR-138-2, miR-148a, and miR-488 are associated with panic disorder and regulate several anxiety candidate genes and related pathways. Biol Psychiat 2011; 69: 526–533.

    Article  CAS  PubMed  Google Scholar 

  190. Maron E, Hettema JM, Shlik J . Advances in molecular genetics of panic disorder. Mol Psychiat 2010; 15: 681–701.

    Article  CAS  Google Scholar 

  191. Hornsey H, Banerjee S, Zeitlin H, Robertson M . The prevalence of Tourette syndrome in 13-14-year-olds in mainstream schools. J Child Psychol Psychiat 2001; 42: 1035–1039.

    Article  CAS  PubMed  Google Scholar 

  192. Robertson MM . Diagnosing Tourette syndrome: is it a common disorder? J Psychosom Res 2003; 55: 3–6.

    Article  PubMed  Google Scholar 

  193. Kurlan R, Como PG, Miller B, Palumbo D, Deeley C, Andresen EM et al. The behavioral spectrum of tic disorders: a community-based study. Neurology 2002; 59: 414–420.

    Article  CAS  PubMed  Google Scholar 

  194. Abelson JF, Kwan KY, O'Roak BJ, Baek DY, Stillman AA, Morgan TM et al. Sequence variants in SLITRK1 are associated with Tourette's syndrome. Science 2005; 310: 317–320.

    Article  CAS  PubMed  Google Scholar 

  195. Herry C, Ferraguti F, Singewald N, Letzkus JJ, Ehrlich I, Luthi A . Neuronal circuits of fear extinction. Eur J Neurosci 2010; 31: 599–612.

    Article  PubMed  Google Scholar 

  196. Hefner K, Whittle N, Juhasz J, Norcross M, Karlsson RM, Saksida LM et al. Impaired fear extinction learning and cortico-amygdala circuit abnormalities in a common genetic mouse strain. J Neurosci 2008; 28: 8074–8085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Lin Q, Wei W, Coelho CM, Li X, Baker-Andresen D, Dudley K et al. The brain-specific microRNA miR-128b regulates the formation of fear-extinction memory. Nat Neurosci 2011; 14: 1115–1117.

    Article  CAS  PubMed  Google Scholar 

  198. Cryan JF, Markou A, Lucki I . Assessing antidepressant activity in rodents: recent developments and future needs. Trends Pharmacol Sci 2002; 23: 238–245.

    Article  CAS  PubMed  Google Scholar 

  199. McLeod BW, Hayman ML, Purcell AL, Marcus JS, Veitenheimer E . The ‘real world’ utility of miRNA patents: lessons learned from expressed sequence tags. Nat Biotechnol 2011; 29: 129–133.

    Article  CAS  PubMed  Google Scholar 

  200. Wilde O . The nightingale and the rose. The Happy Prince and Other Tales. Roberts Brothers: Boston, Massachusetts, 1888.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J F Cryan.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

O'Connor, R., Dinan, T. & Cryan, J. Little things on which happiness depends: microRNAs as novel therapeutic targets for the treatment of anxiety and depression. Mol Psychiatry 17, 359–376 (2012). https://doi.org/10.1038/mp.2011.162

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2011.162

Keywords

This article is cited by

Search

Quick links