Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Hypothesis
  • Published:

Hypothesis review: are clathrin-mediated endocytosis and clathrin-dependent membrane and protein trafficking core pathophysiological processes in schizophrenia and bipolar disorder?

Abstract

Clathrin-mediated endocytosis (CME) is the best-characterized mechanism governing cellular membrane and protein trafficking. In this hypothesis review, we integrate recent evidence implicating CME and related cellular trafficking mechanisms in the pathophysiology of psychotic disorders such as schizophrenia and bipolar disorder. The evidence includes proteomic and genomic findings implicating proteins and genes of the clathrin interactome. Additionally, several important candidate genes for schizophrenia, such as dysbindin, are involved in processes closely linked to CME and membrane trafficking. We discuss that key aspects of psychosis neuropathology such as synaptic dysfunction, white matter changes and aberrant neurodevelopment are all influenced by clathrin-dependent processes, and that other cellular trafficking mechanisms previously linked to psychoses interact with the clathrin interactome in important ways. Furthermore, many antipsychotic drugs have been shown to affect clathrin-interacting proteins. We propose that the targeted pharmacological manipulation of the clathrin interactome may offer fruitful opportunities for novel treatments of schizophrenia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. van Os J, Kapur S . Schizophrenia. Lancet 2009; 374: 635–645.

    Article  CAS  PubMed  Google Scholar 

  2. Kleinman JE, Law AJ, Lipska BK, Hyde TM, Ellis JK, Harrison PJ et al. Genetic neuropathology of schizophrenia: new approaches to an old question and new uses for postmortem human brains. Biol Psychiatry 2011; 69: 140–145.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Doherty GJ, McMahon HT . Mechanisms of endocytosis. Annu Rev Biochem 2009; 78: 857–902.

    Article  CAS  PubMed  Google Scholar 

  4. Schmid EM, McMahon HT . Integrating molecular and network biology to decode endocytosis. Nature 2007; 448: 883–888.

    Article  CAS  PubMed  Google Scholar 

  5. McMahon HT, Boucrot E . Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 2011; 12: 517–533.

    Article  CAS  PubMed  Google Scholar 

  6. Zerial M, McBride H . Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2001; 2: 107–117.

    Article  CAS  PubMed  Google Scholar 

  7. Stenmark H . Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 2009; 10: 513–525.

    Article  CAS  PubMed  Google Scholar 

  8. Haucke V, Neher E, Sigrist SJ . Protein scaffolds in the coupling of synaptic exocytosis and endocytosis. Nat Rev Neurosci 2011; 12: 127–138.

    Article  CAS  PubMed  Google Scholar 

  9. Jovic M, Sharma M, Rahajeng J, Caplan S . The early endosome: a busy sorting station for proteins at the crossroads. Histol Histopathol 2010; 25: 99–112.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Luzio JP, Gray SR, Bright NA . Endosome-lysosome fusion. Biochem Soc Trans 2010; 38: 1413–1416.

    Article  CAS  PubMed  Google Scholar 

  11. Fu W, Jiang Q, Zhang C . Novel functions of endocytic player clathrin in mitosis. Cell Res 2011; doi:10.1038/cr.2011/106 (in press).

  12. Malhotra S, Kovats S, Zhang W, Coggeshall KM . B cell antigen receptor endocytosis and antigen presentation to T cells require Vav and dynamin. J Biol Chem 2009; 284: 24088–24097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shieh JC, Schaar BT, Srinivasan K, Brodsky FM, McConnell SK . Endocytosis regulates cell soma translocation and the distribution of adhesion proteins in migrating neurons. PLoS One 2011; 6: e17802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hoeller D, Volarevic S, Dikic I . Compartmentalization of growth factor receptor signalling. Curr Opin Cell Biol 2005; 17: 107–111.

    Article  CAS  PubMed  Google Scholar 

  15. Marsh M, Helenius A . Virus entry: open sesame. Cell 2006; 124: 729–740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. English JA, Dicker P, Focking M, Dunn MJ, Cotter DR . 2-D DIGE analysis implicates cytoskeletal abnormalities in psychiatric disease. Proteomics 2009; 9: 3368–3382.

    Article  CAS  PubMed  Google Scholar 

  17. Föcking M, Dicker P, English JA, Schubert KO, Dunn MJ, Cotter DR . Common proteomic changes in the hippocampus in schizophrenia and bipolar disorder and particular evidence for involvement of cornu ammonis regions 2 and 3. Arch Gen Psychiatry 2011; 68: 477–488.

    Article  PubMed  Google Scholar 

  18. Pennington K, Beasley CL, Dicker P, Fagan A, English J, Pariante CM et al. Prominent synaptic and metabolic abnormalities revealed by proteomic analysis of the dorsolateral prefrontal cortex in schizophrenia and bipolar disorder. Mol Psychiatry 2008; 13: 1102–1117.

    Article  CAS  PubMed  Google Scholar 

  19. Prabakaran S, Swatton JE, Ryan MM, Huffaker SJ, Huang JT, Griffin JL et al. Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Mol Psychiatry 2004; 9: 684–697,, 643.

    Article  CAS  PubMed  Google Scholar 

  20. Schubert KO, Föcking M, Dicker P, Dunn MJ, Cotter DR . Proteomic analysis of the basic sub-proteome (pH 6-11) in the hippocampus in schizophrenia and bipolar affective disorder. Schizophr Res 2010; 117: 372.

    Article  Google Scholar 

  21. Martins-De-Souza D, Dias-Neto E, Schmitt A, Falkai P, Gormanns P, Maccarrone G et al. Proteome analysis of schizophrenia brain tissue. World J Biol Psychiatry 2010; 11: 110–120.

    Article  PubMed  Google Scholar 

  22. Martins-de-Souza D, Gattaz WF, Schmitt A, Rewerts C, Marangoni S, Novello JC et al. Alterations in oligodendrocyte proteins, calcium homeostasis and new potential markers in schizophrenia anterior temporal lobe are revealed by shotgun proteome analysis. J Neural Transm 2009; 116: 275–289.

    Article  CAS  PubMed  Google Scholar 

  23. Ryder PV, Faundez V . Schizophrenia: the ‘BLOC’ may be in the endosomes. Sci Signal 2009; 2: pe66.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kristiansen LV, Meador-Woodruff JH . Abnormal striatal expression of transcripts encoding NMDA interacting PSD proteins in schizophrenia, bipolar disorder and major depression. Schizophr Res 2005; 78: 87–93.

    Article  PubMed  Google Scholar 

  25. McCullumsmith RE, Kristiansen LV, Beneyto M, Scarr E, Dean B, Meador-Woodruff JH . Decreased NR1, NR2A, and SAP102 transcript expression in the hippocampus in bipolar disorder. Brain Res 2007; 1127: 108–118.

    Article  CAS  PubMed  Google Scholar 

  26. Wieffer M, Maritzen T, Haucke V . SnapShot: endocytic trafficking. Cell 2009; 137: 382. e381–383.

    Article  CAS  PubMed  Google Scholar 

  27. Allen NC, Bagade S, McQueen MB, Ioannidis JP, Kavvoura FK, Khoury MJ et al. Systematic meta-analyses and field synopsis of genetic association studies in schizophrenia: the SzGene database. Nat Genet 2008; 40: 827–834.

    Article  CAS  PubMed  Google Scholar 

  28. Luan Z, Zhang Y, Lu T, Ruan Y, Zhang H, Yan J et al. Positive association of the human STON2 gene with schizophrenia. Neuroreport 2011; 22: 288–293.

    Article  CAS  PubMed  Google Scholar 

  29. Pimm J, McQuillin A, Thirumalai S, Lawrence J, Quested D, Bass N et al. The Epsin 4 gene on chromosome 5q, which encodes the clathrin-associated protein enthoprotin, is involved in the genetic susceptibility to schizophrenia. Am J Hum Genet 2005; 76: 902–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tang RQ, Zhao XZ, Shi YY, Tang W, Gu NF, Feng GY et al. Family-based association study of Epsin 4 and schizophrenia. Mol Psychiatry 2006; 11: 395–399.

    Article  CAS  PubMed  Google Scholar 

  31. Escamilla M, Lee BD, Ontiveros A, Raventos H, Nicolini H, Mendoza R et al. The epsin 4 gene is associated with psychotic disorders in families of Latin American origin. Schizophr Res 2008; 106: 253–257.

    Article  PubMed  Google Scholar 

  32. Saint-Pol A, Yélamos B, Amessou M, Mills IG, Dugast M, Tenza D et al. Clathrin adaptor epsinR is required for retrograde sorting on early endosomal membranes. Dev Cell 2004; 6: 525–538.

    Article  CAS  PubMed  Google Scholar 

  33. Wasiak S, Legendre-Guillemin V, Puertollano R, Blondeau F, Girard M, deHeuvel E et al. Enthoprotin: a novel clathrin-associated protein identified through subcellular proteomics. J Cell Biol 2002; 158: 855–862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wasiak S, Denisov AY, Han Z, Leventis PA, de Heuvel E, Boulianne GL et al. Characterization of a gamma-adaptin ear-binding motif in enthoprotin. FEBS Lett 2003; 555: 437–442.

    Article  CAS  PubMed  Google Scholar 

  35. Chen H, De Camilli P . The association of epsin with ubiquitinated cargo along the endocytic pathway is negatively regulated by its interaction with clathrin. Proc Natl Acad Sci USA 2005; 102: 2766–2771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Antonin W, Holroyd C, Fasshauer D, Pabst S, Von Mollard GF, Jahn R . A SNARE complex mediating fusion of late endosomes defines conserved properties of SNARE structure and function. EMBO J 2000; 19: 6453–6464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chidambaram S, Müllers N, Wiederhold K, Haucke V, von Mollard GF . Specific interaction between SNAREs and epsin N-terminal homology (ENTH) domains of epsin-related proteins in trans-Golgi network to endosome transport. J Biol Chem 2004; 279: 4175–4179.

    Article  CAS  PubMed  Google Scholar 

  38. Honer WG, Falkai P, Bayer TA, Xie J, Hu L, Li HY et al. Abnormalities of SNARE mechanism proteins in anterior frontal cortex in severe mental illness. Cereb Cortex 2002; 12: 349–356.

    Article  PubMed  Google Scholar 

  39. Talbot K, Eidem WL, Tinsley CL, Benson MA, Thompson EW, Smith RJ et al. Dysbindin-1 is reduced in intrinsic, glutamatergic terminals of the hippocampal formation in schizophrenia. J Clin Invest 2004; 113: 1353–1363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Weickert CS, Rothmond DA, Hyde TM, Kleinman JE, Straub RE . Reduced DTNBP1 (dysbindin-1) mRNA in the hippocampal formation of schizophrenia patients. Schizophr Res 2008; 98: 105–110.

    Article  PubMed  Google Scholar 

  41. Ji Y, Yang F, Papaleo F, Wang HX, Gao WJ, Weinberger DR et al. Role of dysbindin in dopamine receptor trafficking and cortical GABA function. Proc Natl Acad Sci USA 2009; 106: 19593–19598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. McPherson PS . Proteomic analysis of clathrin-coated vesicles. Proteomics 2010; 10: 4025–4039.

    Article  CAS  PubMed  Google Scholar 

  43. Miller SE, Collins BM, McCoy AJ, Robinson MS, Owen DJ . A SNARE-adaptor interaction is a new mode of cargo recognition in clathrin-coated vesicles. Nature 2007; 450: 570–574.

    Article  CAS  PubMed  Google Scholar 

  44. Di Pietro SM, Falcón-Pérez JM, Tenza D, Setty SR, Marks MS, Raposo G et al. BLOC-1 interacts with BLOC-2 and the AP-3 complex to facilitate protein trafficking on endosomes. Mol Biol Cell 2006; 17: 4027–4038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Salazar G, Craige B, Styers ML, Newell-Litwa KA, Doucette MM, Wainer BH et al. BLOC-1 complex deficiency alters the targeting of adaptor protein complex-3 cargoes. Mol Biol Cell 2006; 17: 4014–4026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jeans A, Malins R, Padamsey Z, Reinhart M, Emptage N . Increased expression of dysbindin-1A leads to a selective deficit in NMDA receptor signaling in the hippocampus. Neuropharmacology 2011; doi:10.1016/j.neuropharm.2011.08.007 (in press).

  47. Morris DW, Murphy K, Kenny N, Purcell SM, McGhee KA, Schwaiger S et al. Dysbindin (DTNBP1) and the biogenesis of lysosome-related organelles complex 1 (BLOC-1): main and epistatic gene effects are potential contributors to schizophrenia susceptibility. Biol Psychiatry 2008; 63: 24–31.

    Article  CAS  PubMed  Google Scholar 

  48. Boxall R, Porteous DJ, Thomson PA . DISC1 and Huntington's disease--overlapping pathways of vulnerability to neurological disorder? PLoS One 2011; 6: e16263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kvajo M, McKellar H, Gogos JA . Molecules, signaling, and schizophrenia. Curr Top Behav Neurosci 2010; 4: 629–656.

    Article  PubMed  Google Scholar 

  50. Sun T, Wu XS, Xu J, McNeil BD, Pang ZP, Yang W et al. The role of calcium/calmodulin-activated calcineurin in rapid and slow endocytosis at central synapses. J Neurosci 2010; 30: 11838–11847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Huffaker SJ, Chen J, Nicodemus KK, Sambataro F, Yang F, Mattay V et al. A primate-specific, brain isoform of KCNH2 affects cortical physiology, cognition, neuronal repolarization and risk of schizophrenia. Nat Med 2009; 15: 509–518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ramström C, Chapman H, Viitanen T, Afrasiabi E, Fox H, Kivelä J et al. Regulation of HERG (KCNH2) potassium channel surface expression by diacylglycerol. Cell Mol Life Sci 2010; 67: 157–169.

    Article  CAS  PubMed  Google Scholar 

  53. Lau CG, Zukin RS . NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders. Nat Rev Neurosci 2007; 8: 413–426.

    Article  CAS  PubMed  Google Scholar 

  54. Snyder EM, Nong Y, Almeida CG, Paul S, Moran T, Choi EY et al. Regulation of NMDA receptor trafficking by amyloid-beta. Nat Neurosci 2005; 8: 1051–1058.

    Article  CAS  PubMed  Google Scholar 

  55. Hahn CG, Wang HY, Cho DS, Talbot K, Gur RE, Berrettini WH et al. Altered neuregulin 1-erbB4 signaling contributes to NMDA receptor hypofunction in schizophrenia. Nat Med 2006; 12: 824–828.

    Article  CAS  PubMed  Google Scholar 

  56. Sawada K, Barr AM, Nakamura M, Arima K, Young CE, Dwork AJ et al. Hippocampal complexin proteins and cognitive dysfunction in schizophrenia. Arch Gen Psychiatry 2005; 62: 263–272.

    Article  CAS  PubMed  Google Scholar 

  57. Fung SJ, Sivagnanasundaram S, Weickert CS . Lack of change in markers of presynaptic terminal abundance alongside subtle reductions in markers of presynaptic terminal plasticity in prefrontal cortex of schizophrenia patients. Biol Psychiatry 2011; 69: 71–79.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Harrison PJ, Weinberger DR . Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry 2005; 10: 40–68; image 45.

    Article  CAS  PubMed  Google Scholar 

  59. Maycox PR, Kelly F, Taylor A, Bates S, Reid J, Logendra R et al. Analysis of gene expression in two large schizophrenia cohorts identifies multiple changes associated with nerve terminal function. Mol Psychiatry 2009; 14: 1083–1094.

    Article  CAS  PubMed  Google Scholar 

  60. Sorkina T, Hoover BR, Zahniser NR, Sorkin A . Constitutive and protein kinase C-induced internalization of the dopamine transporter is mediated by a clathrin-dependent mechanism. Traffic 2005; 6: 157–170.

    Article  CAS  PubMed  Google Scholar 

  61. Meisenzahl EM, Schmitt GJ, Scheuerecker J, Möller HJ . The role of dopamine for the pathophysiology of schizophrenia. Int Rev Psychiatry 2007; 19: 337–345.

    Article  CAS  PubMed  Google Scholar 

  62. Schmitt GJ, la Fougère C, Dresel S, Frodl T, Hahn K, Möller HJ et al. Dual-isotope SPECT imaging of striatal dopamine: first episode, drug naïve schizophrenic patients. Schizophr Res 2008; 101: 133–141.

    Article  CAS  PubMed  Google Scholar 

  63. Kim OJ, Gardner BR, Williams DB, Marinec PS, Cabrera DM, Peters JD et al. The role of phosphorylation in D1 dopamine receptor desensitization: evidence for a novel mechanism of arrestin association. J Biol Chem 2004; 279: 7999–8010.

    Article  CAS  PubMed  Google Scholar 

  64. Namkung Y, Dipace C, Urizar E, Javitch JA, Sibley DR . G protein-coupled receptor kinase-2 constitutively regulates D2 dopamine receptor expression and signaling independently of receptor phosphorylation. J Biol Chem 2009; 284: 34103–34115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Thompson D, Whistler JL . Trafficking properties of the d5 dopamine receptor. Traffic 2011; 12: 644–656.

    Article  CAS  PubMed  Google Scholar 

  66. Thompson D, Whistler JL . Dopamine D(3) receptors are down-regulated following heterologous endocytosis by a specific interaction with G protein-coupled receptor-associated sorting protein-1. J Biol Chem 2011; 286: 1598–1608.

    Article  CAS  PubMed  Google Scholar 

  67. Paspalas CD, Rakic P, Goldman-Rakic PS . Internalization of D2 dopamine receptors is clathrin-dependent and select to dendro-axonic appositions in primate prefrontal cortex. Eur J Neurosci 2006; 24: 1395–1403.

    Article  PubMed  Google Scholar 

  68. Coyle JT . The glutamatergic dysfunction hypothesis for schizophrenia. Harv Rev Psychiatry 1996; 3: 241–253.

    Article  CAS  PubMed  Google Scholar 

  69. Lisman JE, Coyle JT, Green RW, Javitt DC, Benes FM, Heckers S et al. Circuit-based framework for understanding neurotransmitter and risk gene interactions in schizophrenia. Trends Neurosci 2008; 31: 234–242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Scarr E, Beneyto M, Meador-Woodruff JH, Dean B . Cortical glutamatergic markers in schizophrenia. Neuropsychopharmacology 2005; 30: 1521–1531.

    Article  CAS  PubMed  Google Scholar 

  71. Harel A, Mattson MP, Yao PJ . CALM, a clathrin assembly protein, influences cell surface GluR2 abundance. Neuromolecular Med 2011; 13: 88–90.

    Article  CAS  PubMed  Google Scholar 

  72. Lewis DA . The chandelier neuron in schizophrenia. Dev Neurobiol 2011; 71: 118–127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kittler JT, Delmas P, Jovanovic JN, Brown DA, Smart TG, Moss SJ . Constitutive endocytosis of GABAA receptors by an association with the adaptin AP2 complex modulates inhibitory synaptic currents in hippocampal neurons. J Neurosci 2000; 20: 7972–7977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Behan AT, Byrne C, Dunn MJ, Cagney G, Cotter DR . Proteomic analysis of membrane microdomain-associated proteins in the dorsolateral prefrontal cortex in schizophrenia and bipolar disorder reveals alterations in LAMP, STXBP1 and BASP1 protein expression. Mol Psychiatry 2009; 14: 601–613.

    Article  CAS  PubMed  Google Scholar 

  75. Castillo MA, Ghose S, Tamminga CA, Ulery-Reynolds PG . Deficits in syntaxin 1 phosphorylation in schizophrenia prefrontal cortex. Biol Psychiatry 2010; 67: 208–216.

    Article  CAS  PubMed  Google Scholar 

  76. Barakauskas VE, Beasley CL, Barr AM, Ypsilanti AR, Li HY, Thornton AE et al. A novel mechanism and treatment target for presynaptic abnormalities in specific striatal regions in schizophrenia. Neuropsychopharmacology 2010; 35: 1226–1238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Harrison PJ, Eastwood SL . Preferential involvement of excitatory neurons in medial temporal lobe in schizophrenia. Lancet 1998; 352: 1669–1673.

    Article  CAS  PubMed  Google Scholar 

  78. Pfeiffer SE, Warrington AE, Bansal R . The oligodendrocyte and its many cellular processes. Trends Cell Biol 1993; 3: 191–197.

    Article  CAS  PubMed  Google Scholar 

  79. Anitei M, Pfeiffer SE . Myelin biogenesis: sorting out protein trafficking. Curr Biol 2006; 16: R418–R421.

    Article  CAS  PubMed  Google Scholar 

  80. Winterstein C, Trotter J, Krämer-Albers EM . Distinct endocytic recycling of myelin proteins promotes oligodendroglial membrane remodeling. J Cell Sci 2008; 121 (Pt 6): 834–842.

    Article  CAS  PubMed  Google Scholar 

  81. Davis KL, Stewart DG, Friedman JI, Buchsbaum M, Harvey PD, Hof PR et al. White matter changes in schizophrenia: evidence for myelin-related dysfunction. Arch Gen Psychiatry 2003; 60: 443–456.

    Article  PubMed  Google Scholar 

  82. Lecuit T, Pilot F . Developmental control of cell morphogenesis: a focus on membrane growth. Nat Cell Biol 2003; 5: 103–108.

    Article  CAS  PubMed  Google Scholar 

  83. Park M, Salgado JM, Ostroff L, Helton TD, Robinson CG, Harris KM et al. Plasticity-induced growth of dendritic spines by exocytic trafficking from recycling endosomes. Neuron 2006; 52: 817–830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Shirane M, Nakayama KI . Protrudin induces neurite formation by directional membrane trafficking. Science 2006; 314: 818–821.

    Article  CAS  PubMed  Google Scholar 

  85. Alberts P, Galli T . The cell outgrowth secretory endosome (COSE): a specialized compartment involved in neuronal morphogenesis. Biol Cell 2003; 95: 419–424.

    Article  CAS  PubMed  Google Scholar 

  86. Arantes RM, Andrews NW . A role for synaptotagmin VII-regulated exocytosis of lysosomes in neurite outgrowth from primary sympathetic neurons. J Neurosci 2006; 26: 4630–4637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tojima T, Itofusa R, Kamiguchi H . Asymmetric clathrin-mediated endocytosis drives repulsive growth cone guidance. Neuron 2010; 66: 370–377.

    Article  CAS  PubMed  Google Scholar 

  88. Weinberger DR . Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 1987; 44: 660–669.

    Article  CAS  PubMed  Google Scholar 

  89. Owen MJ, O’Donovan MC, Thapar A, Craddock N . Neurodevelopmental hypothesis of schizophrenia. Br J Psychiatry 2011; 198: 173–175.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Delay J, Deniker P . 38 cas de psychoses traits par la cure prolongee et continue de 4500 RP. Paper presented at: Renus du 1eme Congres des Alienistes et Neurologistes de Langue Francaise,1952; Luxembourg, July 21-27.

  91. Rodemer C, Haucke V . Clathrin/AP-2-dependent endocytosis: a novel playground for the pharmacological toolbox? Handb Exp Pharmacol 2008; 186: 105–122.

    Article  CAS  Google Scholar 

  92. Wang LH, Rothberg KG, Anderson RG . Mis-assembly of clathrin lattices on endosomes reveals a regulatory switch for coated pit formation. J Cell Biol 1993; 123: 1107–1117.

    Article  CAS  PubMed  Google Scholar 

  93. Masri B, Salahpour A, Didriksen M, Ghisi V, Beaulieu JM, Gainetdinov RR et al. Antagonism of dopamine D2 receptor/beta-arrestin 2 interaction is a common property of clinically effective antipsychotics. Proc Natl Acad Sci USA 2008; 105: 13656–13661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Beaulieu JM, Sotnikova TD, Marion S, Lefkowitz RJ, GainetdiRR, Caron MG . An Akt/beta-arrestin 2/PP2A signaling complex mediates dopaminergic neurotransmission and behavior. Cell 2005; 122: 261–273.

    Article  CAS  PubMed  Google Scholar 

  95. Vickery RG, von Zastrow M . Distinct dynamin-dependent and -independent mechanisms target structurally homologous dopamine receptors to different endocytic membranes. J Cell Biol 1999; 144: 31–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Urban JD, Vargas GA, von Zastrow M, Mailman RB . Aripiprazole has functionally selective actions at dopamine D2 receptor-mediated signaling pathways. Neuropsychopharmacology 2007; 32: 67–77.

    Article  CAS  PubMed  Google Scholar 

  97. Schloesser RJ, Huang J, Klein PS, Manji HK . Cellular plasticity cascades in the pathophysiology and treatment of bipolar disorder. Neuropsychopharmacology 2008; 33: 110–133.

    Article  CAS  PubMed  Google Scholar 

  98. Chuang DM, Manji HK . In search of the Holy Grail for the treatment of neurodegenerative disorders: has a simple cation been overlooked? Biol Psychiatry 2007; 62: 4–6.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Beaulieu JM, Marion S, Rodriguiz RM, Medvedev IO, Sotnikova TD, Ghisi V et al. A beta-arrestin 2 signaling complex mediates lithium action on behavior. Cell 2008; 132: 125–136.

    Article  CAS  PubMed  Google Scholar 

  100. Rossi M, Munarriz ER, Bartesaghi S, Milanese M, Dinsdale D, Guerra-Martin MA et al. Desmethylclomipramine induces the accumulation of autophagy markers by blocking autophagic flux. J Cell Sci 2009; 122 (Pt 18): 3330–3339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Amminger GP, Schäfer MR, Papageorgiou K, Klier CM, Cotton SM, Harrigan SM et al. Long-chain omega-3 fatty acids for indicated prevention of psychotic disorders: a randomized, placebo-controlled trial. Arch Gen Psychiatry 2010; 67: 146–154.

    Article  CAS  PubMed  Google Scholar 

  102. Hedelin M, Löf M, Olsson M, Lewander T, Nilsson B, Hultman CM et al. Dietary intake of fish, omega-3, omega-6 polyunsaturated fatty acids and vitamin D and the prevalence of psychotic-like symptoms in a cohort of 33 000 women from the general population. BMC Psychiatry 2010; 10: 38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ben Gedalya T, Loeb V, Israeli E, Altschuler Y, Selkoe DJ, Sharon R . Alpha-synuclein and polyunsaturated fatty acids promote clathrin-mediated endocytosis and synaptic vesicle recycling. Traffic 2009; 10: 218–234.

    Article  CAS  PubMed  Google Scholar 

  104. Chernomordik LV, Leikina E, Frolov V, Bronk P, Zimmerberg J . An early stage of membrane fusion mediated by the low pH conformation of influenza hemagglutinin depends upon membrane lipids. J Cell Biol 1997; 136: 81–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. English JA, Pennington K, Dunn MJ, Cotter DR . The neuroproteomics of schizophrenia. Biol Psychiatry 2011; 69: 163–172.

    Article  CAS  PubMed  Google Scholar 

  106. Lichtenstein P, Yip BH, Bjork C, Pawitan Y, Cannon TD, Sullivan PF et al. Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: a population-based study. Lancet 2009; 373: 234–239.

    Article  CAS  PubMed  Google Scholar 

  107. Owen MJ, Craddock N, O’Donovan MC . Suggestion of roles for both common and rare risk variants in genome-wide studies of schizophrenia. Arch Gen Psychiatry 2010; 67: 667–673.

    Article  CAS  PubMed  Google Scholar 

  108. Rosenblatt A, Leroi I . Neuropsychiatry of Huntington's disease and other basal ganglia disorders. Psychosomatics 2000; 41: 24–30.

    Article  CAS  PubMed  Google Scholar 

  109. Pal A, Severin F, Lommer B, Shevchenko A, Zerial M . Huntingtin-HAP40 complex is a novel Rab5 effector that regulates early endosome motility and is up-regulated in Huntington's disease. J Cell Biol 2006; 172: 605–618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wu F, Yao PJ . Clathrin-mediated endocytosis and Alzheimer's disease: an update. Ageing Res Rev 2009; 8: 147–149.

    Article  CAS  PubMed  Google Scholar 

  111. Kyriazis GA, Wei Z, Vandermey M, Jo DG, Xin O, Mattson MP et al. Numb endocytic adapter proteins regulate the transport and processing of the amyloid precursor protein in an isoform-dependent manner: implications for Alzheimer disease pathogenesis. J Biol Chem 2008; 283: 25492–25502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Schjeide BM, Schnack C, Lambert JC, Lill CM, Kirchheiner J, Tumani H et al. The role of clusterin, complement receptor 1, and phosphatidylinositol binding clathrin assembly protein in Alzheimer disease risk and cerebrospinal fluid biomarker levels. Arch Gen Psychiatry 2011; 68: 207–213.

    Article  CAS  PubMed  Google Scholar 

  113. Jin J, Li GJ, Davis J, Zhu D, Wang Y, Pan C et al. Identification of novel proteins associated with both alpha-synuclein and DJ-1. Mol Cell Proteomics 2007; 6: 845–859.

    Article  CAS  PubMed  Google Scholar 

  114. Hutagalung AH, Novick PJ . Role of Rab GTPases in membrane traffic and cell physiology. Physiol Rev 2011; 91: 119–149.

    Article  CAS  PubMed  Google Scholar 

  115. Verhoeven K, De Jonghe P, Coen K, Verpoorten N, Auer-Grumbach M, Kwon JM et al. Mutations in the small GTP-ase late endosomal protein RAB7 cause Charcot-Marie-Tooth type 2B neuropathy. Am J Hum Genet 2003; 72: 722–727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Tanabe K, Takei K . Dynamic instability of microtubules requires dynamin 2 and is impaired in a Charcot-Marie-Tooth mutant. J Cell Biol 2009; 185: 939–948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Erez H, Malkinson G, Prager-Khoutorsky M, De Zeeuw CI, Hoogenraad CC, Spira ME . Formation of microtubule-based traps controls the sorting and concentration of vesicles to restricted sites of regenerating neurons after axotomy. J Cell Biol 2007; 176: 497–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Giannandrea M, Bianchi V, Mignogna ML, Sirri A, Carrabino S, D’Elia E et al. Mutations in the small GTPase gene RAB39B are responsible for X-linked mental retardation associated with autism, epilepsy, and macrocephaly. Am J Hum Genet 2010; 86: 185–195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Scarr E, Gray L, Keriakous D, Robinson PJ, Dean B . Increased levels of SNAP-25 and synaptophysin in the dorsolateral prefrontal cortex in bipolar I disorder. Bipolar Disord 2006; 8: 133–143.

    Article  CAS  PubMed  Google Scholar 

  120. Bitoun M, Durieux AC, Prudhon B, Bevilacqua JA, Herledan A, Sakanyan V et al. Dynamin 2 mutations associated with human diseases impair clathrin-mediated receptor endocytosis. Hum Mutat 2009; 30: 1419–1427.

    Article  CAS  PubMed  Google Scholar 

  121. Toyooka K, Iritani S, Makifuchi T, Shirakawa O, Kitamura N, Maeda K et al. Selective reduction of a PDZ protein, SAP-97, in the prefrontal cortex of patients with chronic schizophrenia. J Neurochem 2002; 83: 797–806.

    Article  CAS  PubMed  Google Scholar 

  122. Mulle JG, Dodd AF, McGrath JA, Wolyniec PS, Mitchell AA, Shetty AC et al. Microdeletions of 3q29 confer high risk for schizophrenia. Am J Hum Genet 2010; 87: 229–236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Cheng MC, Lu CL, Luu SU, Tsai HM, Hsu SH, Chen TT et al. Genetic and functional analysis of the DLG4 gene encoding the post-synaptic density protein 95 in schizophrenia. PLoS One 2010; 5: e15107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Hattori K, Fukuzako H, Hashiguchi T, Hamada S, Murata Y, Isosaka T et al. Decreased expression of Fyn protein and disbalanced alternative splicing patterns in platelets from patients with schizophrenia. Psychiatry Res 2009; 168: 119–128.

    Article  CAS  PubMed  Google Scholar 

  125. Braithwaite SP, Adkisson M, Leung J, Nava A, Masterson B, Urfer R et al. Regulation of NMDA receptor trafficking and function by striatal-enriched tyrosine phosphatase (STEP). Eur J Neurosci 2006; 23: 2847–2856.

    Article  PubMed  Google Scholar 

  126. Stefansson H, Sigurdsson E, Steinthorsdottir V, Bjornsdottir S, Sigmundsson T, Ghosh S et al. Neuregulin 1 and susceptibility to schizophrenia. Am J Hum Genet 2002; 71: 877–892.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Gu Z, Jiang Q, Fu AK, Ip NY, Yan Z . Regulation of NMDA receptors by neuregulin signaling in prefrontal cortex. J Neurosci 2005; 25: 4974–4984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Mabb AM, Ehlers MD . Ubiquitination in postsynaptic function and plasticity. Annu Rev Cell Dev Biol 2010; 26: 179–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Vawter MP, Barrett T, Cheadle C, Sokolov BP, Wood 3rd WH, Donovan DM et al. Application of cDNA microarrays to examine gene expression differences in schizophrenia. Brain Res Bull 2001; 55: 641–650.

    Article  CAS  PubMed  Google Scholar 

  130. Vawter MP, Thatcher L, Usen N, Hyde TM, Kleinman JE, Freed WJ . Reduction of synapsin in the hippocampus of patients with bipolar disorder and schizophrenia. Mol Psychiatry 2002; 7: 571–578.

    Article  CAS  PubMed  Google Scholar 

  131. Middleton FA, Mirnics K, Pierri JN, Lewis DA, Levitt P . Gene expression profiling reveals alterations of specific metabolic pathways in schizophrenia. J Neurosci 2002; 22: 2718–2729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Konradi C, Eaton M, MacDonald ML, Walsh J, Benes FM, Heckers S . Molecular evidence for mitochondrial dysfunction in bipolar disorder. Arch Gen Psychiatry 2004; 61: 300–308.

    Article  CAS  PubMed  Google Scholar 

  133. Altar CA, Jurata LW, Charles V, Lemire A, Liu P, Bukhman Y et al. Deficient hippocampal neuron expression of proteasome, ubiquitin, and mitochondrial genes in multiple schizophrenia cohorts. Biol Psychiatry 2005; 58: 85–96.

    Article  CAS  PubMed  Google Scholar 

  134. Chu TT, Liu Y, Kemether E . Thalamic transcriptome screening in three psychiatric states. J Hum Genet 2009; 54: 665–675.

    Article  CAS  PubMed  Google Scholar 

  135. Bousman CA, Chana G, Glatt SJ, Chandler SD, May T, Lohr J et al. Positive symptoms of psychosis correlate with expression of ubiquitin proteasome genes in peripheral blood. Am J Med Genet B Neuropsychiatr Genet 2010; 153B: 1336–1341.

    Article  PubMed  Google Scholar 

  136. Beck KA, Keen JH . Interaction of phosphoinositide cycle intermediates with the plasma membrane-associated clathrin assembly protein AP-2. J Biol Chem 1991; 266: 4442–4447.

    CAS  PubMed  Google Scholar 

  137. Haucke V . Phosphoinositide regulation of clathrin-mediated endocytosis. Biochem Soc Trans 2005; 33 (Pt 6): 1285–1289.

    Article  CAS  PubMed  Google Scholar 

  138. Jost M, Simpson F, Kavran JM, Lemmon MA, Schmid SL . Phosphatidylinositol-4,5-bisphosphate is required for endocytic coated vesicle formation. Curr Biol 1998; 8: 1399–1402.

    Article  CAS  PubMed  Google Scholar 

  139. Krauss M, Kinuta M, Wenk MR, De Camilli P, Takei K, Haucke V . ARF6 stimulates clathrin/AP-2 recruitment to synaptic membranes by activating phosphatidylinositol phosphate kinase type Igamma. J Cell Biol 2003; 162: 113–124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Varnai P, Thyagarajan B, Rohacs T, Balla T . Rapidly inducible changes in phosphatidylinositol 4,5-bisphosphate levels influence multiple regulatory functions of the lipid in intact living cells. J Cell Biol 2006; 175: 377–382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Padrón D, Wang YJ, Yamamoto M, Yin H, Roth MG . Phosphatidylinositol phosphate 5-kinase Ibeta recruits AP-2 to the plasma membrane and regulates rates of constitutive endocytosis. J Cell Biol 2003; 162: 693–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Clague MJ, Urbé S, de Lartigue J . Phosphoinositides and the endocytic pathway. Exp Cell Res 2009; 315: 1627–1631.

    Article  CAS  PubMed  Google Scholar 

  143. Kim HJ, Thayer SA . Lithium increases synapse formation between hippocampal neurons by depleting phosphoinositides. Mol Pharmacol 2009; 75: 1021–1030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Walsh T, McClellan JM, McCarthy SE, Addington AM, Pierce SB, Cooper GM et al. Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science 2008; 320: 539–543.

    Article  CAS  PubMed  Google Scholar 

  145. Allen JA, Halverson-Tamboli RA, Rasenick MM . Lipid raft microdomains and neurotransmitter signalling. Nat Rev Neurosci 2007; 8: 128–140.

    Article  CAS  PubMed  Google Scholar 

  146. Allen JA, Yadav PN, Setola V, Roth BL . The schizophrenia risk gene CAV1 is both pro-psychotic and required for antipsychotic drug activity at 5-HT2A serotonin receptors in vivo. In: Advancing Drug Discovery for Schizophrenia, Abstract Book. The New York Academy of Sciences: New York, 2011: 21.

    Google Scholar 

  147. Newell-Litwa K, Salazar G, Smith Y, Faundez V . Roles of BLOC-1 and adaptor protein-3 complexes in cargo sorting to synaptic vesicles. Mol Biol Cell 2009; 20: 1441–1453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Setty SR, Tenza D, Truschel ST, Chou E, Sviderskaya EV, Theos AC et al. BLOC-1 is required for cargo-specific sorting from vacuolar early endosomes toward lysosome-related organelles. Mol Biol Cell 2007; 18: 768–780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Casas S, Casini P, Piquer S, Altirriba J, Soty M, Cadavez L et al. BACE2 plays a role in the insulin receptor trafficking in pancreatic ß-cells. Am J Physiol Endocrinol Metab 2010; 299: E1087–E1095.

    Article  CAS  PubMed  Google Scholar 

  150. Galletta BJ, Mooren OL, Cooper JA . Actin dynamics and endocytosis in yeast and mammals. Curr Opin Biotechnol 2010; 21: 604–610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Edwards AM, Isserlin R, Bader GD, Frye SV, Willson TM, Yu FH . Too many roads not taken. Nature 2011; 470: 163–165.

    Article  CAS  PubMed  Google Scholar 

  152. Levin Y, Wang L, Schwarz E, Koethe D, Leweke FM, Bahn S . Global proteomic profiling reveals altered proteomic signature in schizophrenia serum. Mol Psychiatry 2010; 15: 1088–1100.

    Article  CAS  PubMed  Google Scholar 

  153. Garrick MD, Garrick LM . Cellular iron transport. Biochim Biophys Acta 2009; 1790: 309–325.

    Article  CAS  PubMed  Google Scholar 

  154. Macia E, Ehrlich M, Massol R, Boucrot E, Brunner C, Kirchhausen T . Dynasore, a cell-permeable inhibitor of dynamin. Dev Cell 2006; 10: 839–850.

    Article  CAS  PubMed  Google Scholar 

  155. Clarke MC, Tanskanen A, Huttunen M, Whittaker JC, Cannon M . Evidence for an interaction between familial liability and prenatal exposure to infection in the causation of schizophrenia. Am J Psychiatry 2009; 166: 1025–1030.

    Article  PubMed  Google Scholar 

  156. O’Callaghan E, Sham P, Takei N, Glover G, Murray RM . Schizophrenia after prenatal exposure to 1957 A2 influenza epidemic. Lancet 1991; 337: 1248–1250.

    Article  PubMed  Google Scholar 

  157. Abbott A . Schizophrenia: the drug deadlock. Nature 2010; 468: 158–159.

    Article  CAS  PubMed  Google Scholar 

  158. The Lancet. Where will new drugs come from? Lancet 2011; 377: 97.

  159. Chan MK, Tsang TM, Harris LW, Guest PC, Holmes E, Bahn S . Evidence for disease and antipsychotic medication effects in post-mortem brain from schizophrenia patients. Mol Psychiatry 2010; doi:10.1038/mp.2010.100 (in press).

    Article  CAS  PubMed  Google Scholar 

  160. Zhou Y, Wang J, Wang K, Li S, Song X, Ye Y et al. Association analysis between the rs11136000 single nucleotide polymorphism in clusterin gene, rs3851179 single nucleotide polymorphism in clathrin assembly lymphoid myeloid protein gene and the patients with schizophrenia in the Chinese population. DNA Cell Biol 2010; 29: 745–751.

    Article  CAS  PubMed  Google Scholar 

  161. Smalla KH, Mikhaylova M, Sahin J, Bernstein HG, Bogerts B, Schmitt A et al. A comparison of the synaptic proteome in human chronic schizophrenia and rat ketamine psychosis suggest that prohibitin is involved in the synaptic pathology of schizophrenia. Mol Psychiatry 2008; 13: 878–896.

    Article  CAS  PubMed  Google Scholar 

  162. Vine AE, McQuillin A, Bass NJ, Pereira A, Kandaswamy R, Robinson M et al. No evidence for excess runs of homozygosity in bipolar disorder. Psychiatr Genet 2009; 19: 165–170.

    Article  PubMed  Google Scholar 

  163. Clark D, Dedova I, Cordwell S, Matsumoto I . A proteome analysis of the anterior cingulate cortex gray matter in schizophrenia. Mol Psychiatry 2006; 11: 459–470, 423.

    Article  CAS  PubMed  Google Scholar 

  164. Martins-de-Souza D, Gattaz WF, Schmitt A, Maccarrone G, Hunyadi-Gulyás E, Eberlin MN et al. Proteomic analysis of dorsolateral prefrontal cortex indicates the involvement of cytoskeleton, oligodendrocyte, energy metabolism and new potential markers in schizophrenia. J Psychiatr Res 2009; 43: 978–986.

    Article  PubMed  Google Scholar 

  165. Amar S, Shaltiel G, Mann L, Shamir A, Dean B, Scarr E et al. Possible involvement of post-dopamine D2 receptor signalling components in the pathophysiology of schizophrenia. Int J Neuropsychopharmacol 2008; 11: 197–205.

    Article  CAS  PubMed  Google Scholar 

  166. Ikeda M, Ozaki N, Suzuki T, Kitajima T, Yamanouchi Y, Kinoshita Y et al. Possible association of beta-arrestin 2 gene with methamphetamine use disorder, but not schizophrenia. Genes Brain Behav 2007; 6: 107–112.

    Article  CAS  PubMed  Google Scholar 

  167. Margolis RL, Abraham MR, Gatchell SB, Li SH, Kidwai AS, Breschel TS et al. cDNAs with long CAG trinucleotide repeats from human brain. Hum Genet 1997; 100: 114–122.

    Article  CAS  PubMed  Google Scholar 

  168. Passos Gregorio S, Gattaz WF, Tavares H, Kieling C, Timm S, Wang AG et al. Analysis of coding-polymorphisms in NOTCH-related genes reveals NUMBL poly-glutamine repeat to be associated with schizophrenia in Brazilian and Danish subjects. Schizophr Res 2006; 88: 275–282.

    Article  PubMed  Google Scholar 

  169. Potash JB, Buervenich S, Cox NJ, Zandi PP, Akula N, Steele J et al. Gene-based SNP mapping of a psychotic bipolar affective disorder linkage region on 22q12.3: association with HMG2L1 and TOM1. Am J Med Genet B Neuropsychiatr Genet 2008; 147B: 59–67.

    Article  CAS  PubMed  Google Scholar 

  170. Saito T, Guan F, Papolos DF, Wolyniec PS, Mitchell AA, Shetty AC et al. Mutation analysis of SYNJ1: a possible candidate gene for chromosome 21q22-linked bipolar disorder. Mol Psychiatry 2001; 6: 387–395.

    Article  CAS  PubMed  Google Scholar 

  171. Stopkova P, Vevera J, Paclt I, Zukov I, Lachman HM . Analysis of SYNJ1, a candidate gene for 21q22 linked bipolar disorder: a replication study. Psychiatry Res 2004; 127: 157–161.

    Article  CAS  PubMed  Google Scholar 

  172. Sivagnanasundaram S, Crossett B, Dedova I, Cordwell S, Matsumoto I . Abnormal pathways in the genu of the corpus callosum in schizophrenia pathogenesis: a proteome study. Proteomics Clin Appl 2007; 1: 1291–1305.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to acknowledge technical support by Peter Knief, PhD and Megan Ramsey. KOS is supported by a Molecular Medicine Ireland Clinician Scientist Fellowship. This work was supported by Molecular Medicine Ireland, Science Foundation Ireland, NARSAD, and the Stanley Medical Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D R Cotter.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schubert, K., Föcking, M., Prehn, J. et al. Hypothesis review: are clathrin-mediated endocytosis and clathrin-dependent membrane and protein trafficking core pathophysiological processes in schizophrenia and bipolar disorder?. Mol Psychiatry 17, 669–681 (2012). https://doi.org/10.1038/mp.2011.123

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2011.123

Keywords

This article is cited by

Search

Quick links