Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Feature Review
  • Published:

Epigenetic regulation of the BDNF gene: implications for psychiatric disorders

Abstract

Abnormal brain-derived neurotrophic factor (BDNF) signaling seems to have a central role in the course and development of various neurological and psychiatric disorders. In addition, positive effects of psychotropic drugs are known to activate BDNF-mediated signaling. Although the BDNF gene has been associated with several diseases, molecular mechanisms other than functional genetic variations can impact on the regulation of BDNF gene expression and lead to disturbed BDNF signaling and associated pathology. Thus, epigenetic modifications, representing key mechanisms by which environmental factors induce enduring changes in gene expression, are suspected to participate in the onset of various psychiatric disorders. More specifically, various environmental factors, particularly when occurring during development, have been claimed to produce long-lasting epigenetic changes at the BDNF gene, thereby affecting availability and function of the BDNF protein. Such stabile imprints on the BDNF gene might explain, at least in part, the delayed efficacy of treatments as well as the high degree of relapses observed in psychiatric disorders. Moreover, BDNF gene has a complex structure displaying differential exon regulation and usage, suggesting a subcellular- and brain region-specific distribution. As such, developing drugs that modify epigenetic regulation at specific BDNF exons represents a promising strategy for the treatment of psychiatric disorders. Here, we present an overview of the current literature on epigenetic modifications at the BDNF locus in psychiatric disorders and related animal models.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Leibrock J, Lottspeich F, Hohn A, Hofer M, Hengerer B, Masiakowski P et al. Molecular cloning and expression of brain-derived neurotrophic factor. Nature 1989; 341: 149–152.

    Article  CAS  PubMed  Google Scholar 

  2. Casaccia-Bonnefil P, Carter BD, Dobrowsky RT, Chao MV . Death of oligodendrocytes mediated by the interaction of nerve growth factor with its receptor p75. Nature 1996; 383: 716–719.

    Article  CAS  PubMed  Google Scholar 

  3. DeFreitas MF, McQuillen PS, Shatz CJ . A novel p75NTR signaling pathway promotes survival, not death, of immunopurified neocortical subplate neurons. J Neurosci 2001; 21: 5121–5129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chao MV . Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat Rev Neurosci 2003; 4: 299–309.

    Article  CAS  PubMed  Google Scholar 

  5. Kalcheim C, Barde YA, Thoenen H, Le Douarin NM . In vivo effect of brain-derived neurotrophic factor on the survival of developing dorsal root ganglion cells. Embo J 1987; 6: 2871–2873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Klein R, Smeyne RJ, Wurst W, Long LK, Auerbach BA, Joyner AL et al. Targeted disruption of the trkB neurotrophin receptor gene results in nervous system lesions and neonatal death. Cell 1993; 75: 113–122.

    Article  CAS  PubMed  Google Scholar 

  7. Pezet S, Malcangio M . Brain-derived neurotrophic factor as a drug target for CNS disorders. Expert Opin Ther Targets 2004; 8: 391–399.

    Article  CAS  PubMed  Google Scholar 

  8. Huang EJ, Reichardt LF . Trk receptors: roles in neuronal signal transduction. Annu Rev Biochem 2003; 72: 609–642.

    Article  CAS  PubMed  Google Scholar 

  9. Qian X, Riccio A, Zhang Y, Ginty DD . Identification and characterization of novel substrates of Trk receptors in developing neurons. Neuron 1998; 21: 1017–1029.

    Article  CAS  PubMed  Google Scholar 

  10. Atwal JK, Massie B, Miller FD, Kaplan DR . The TrkB-Shc site signals neuronal survival and local axon growth via MEK and P13-kinase. Neuron 2000; 27: 265–277.

    Article  CAS  PubMed  Google Scholar 

  11. Minichiello L, Calella AM, Medina DL, Bonhoeffer T, Klein R, Korte M . Mechanism of TrkB-mediated hippocampal long-term potentiation. Neuron 2002; 36: 121–137.

    Article  CAS  PubMed  Google Scholar 

  12. Jeanneteau F, Deinhardt K, Miyoshi G, Bennett AM, Chao MV . The MAP kinase phosphatase MKP-1 regulates BDNF-induced axon branching. Nat Neurosci 2010; 13: 1373–1379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ernfors P, Kucera J, Lee KF, Loring J, Jaenisch R . Studies on the physiological role of brain-derived neurotrophic factor and neurotrophin-3 in knockout mice. Int J Dev Biol 1995; 39: 799–807.

    CAS  PubMed  Google Scholar 

  14. Mao LM, Fibuch EE, Wang JQ . Decoding BDNF-LTP coupling in cocaine addiction. Neuron 2010; 67: 679–681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bekinschtein P, Cammarota M, Katche C, Slipczuk L, Rossato JI, Goldin A et al. BDNF is essential to promote persistence of long-term memory storage. Proc Natl Acad Sci USA 2008; 105: 2711–2716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pencea V, Bingaman KD, Wiegand SJ, Luskin MB . Infusion of brain-derived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, and hypothalamus. J Neurosci 2001; 21: 6706–6717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Greenberg ME, Xu B, Lu B, Hempstead BL . New insights in the biology of BDNF synthesis and release: implications in CNS function. J Neurosci 2009; 29: 12764–12767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Martinowich K, Manji H, Lu B . New insights into BDNF function in depression and anxiety. Nat Neurosci 2007; 10: 1089–1093.

    Article  CAS  PubMed  Google Scholar 

  19. Roth TL, Sweatt JD . Epigenetic marking of the BDNF gene by early-life adverse experiences. Horm Behav 2010; 59: 315–320.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Felsenfeld G, Groudine M . Controlling the double helix. Nature 2003; 421: 448–453.

    Article  PubMed  CAS  Google Scholar 

  21. Klose RJ, Bird AP . Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci 2006; 31: 89–97.

    Article  CAS  PubMed  Google Scholar 

  22. Timmusk T, Palm K, Metsis M, Reintam T, Paalme V, Saarma M et al. Multiple promoters direct tissue-specific expression of the rat BDNF gene. Neuron 1993; 10: 475–489.

    Article  CAS  PubMed  Google Scholar 

  23. Aid T, Kazantseva A, Piirsoo M, Palm K, Timmusk T . Mouse and rat BDNF gene structure and expression revisited. J Neurosci Res 2007; 85: 525–535.

    Article  CAS  PubMed  Google Scholar 

  24. Pruunsild P, Kazantseva A, Aid T, Palm K, Timmusk T . Dissecting the human BDNF locus: bidirectional transcription, complex splicing, and multiple promoters. Genomics 2007; 90: 397–406.

    Article  CAS  PubMed  Google Scholar 

  25. Liu QR, Lu L, Zhu XG, Gong JP, Shaham Y, Uhl GR . Rodent BDNF genes, novel promoters, novel splice variants, and regulation by cocaine. Brain Res 2006; 1067: 1–12.

    Article  CAS  PubMed  Google Scholar 

  26. Liu QR, Walther D, Drgon T, Polesskaya O, Lesnick TG, Strain KJ et al. Human brain derived neurotrophic factor (BDNF) genes, splicing patterns, and assessments of associations with substance abuse and Parkinson's disease. Am J Med Genet B Neuropsychiatr Genet 2005; 134B: 93–103.

    Article  PubMed  Google Scholar 

  27. Aoyama M, Asai K, Shishikura T, Kawamoto T, Miyachi T, Yokoi T et al. Human neuroblastomas with unfavorable biologies express high levels of brain-derived neurotrophic factor mRNA and a variety of its variants. Cancer Lett 2001; 164: 51–60.

    Article  CAS  PubMed  Google Scholar 

  28. Marini AM, Jiang X, Wu X, Tian F, Zhu D, Okagaki P et al. Role of brain-derived neurotrophic factor and NF-kappaB in neuronal plasticity and survival: From genes to phenotype. Restor Neurol Neurosci 2004; 22: 121–130.

    CAS  PubMed  Google Scholar 

  29. An JJ, Gharami K, Liao GY, Woo NH, Lau AG, Vanevski F et al. Distinct role of long 3′ UTR BDNF mRNA in spine morphology and synaptic plasticity in hippocampal neurons. Cell 2008; 134: 175–187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Timmusk T, Metsis M . Regulation of BDNF promoters in the rat hippocampus. Neurochem Int 1994; 25: 11–15.

    Article  CAS  PubMed  Google Scholar 

  31. Lau AG, Irier HA, Gu J, Tian D, Ku L, Liu G et al. Distinct 3′UTRs differentially regulate activity-dependent translation of brain-derived neurotrophic factor (BDNF). Proc Natl Acad Sci USA 2010; 107: 15945–15950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dias BG, Banerjee SB, Duman RS, Vaidya VA . Differential regulation of brain derived neurotrophic factor transcripts by antidepressant treatments in the adult rat brain. Neuropharmacology 2003; 45: 553–563.

    Article  CAS  PubMed  Google Scholar 

  33. Tian F, Marini AM, Lipsky RH . NMDA receptor activation induces differential epigenetic modification of Bdnf promoters in hippocampal neurons. Amino Acids 2010; 38: 1067–1074.

    Article  CAS  PubMed  Google Scholar 

  34. Wong J, Hyde TM, Cassano HL, Deep-Soboslay A, Kleinman JE, Weickert CS . Promoter specific alterations of brain-derived neurotrophic factor mRNA in schizophrenia. Neuroscience 2010; 169: 1071–1084.

    Article  CAS  PubMed  Google Scholar 

  35. Barker PA . Whither proBDNF? Nat Neurosci 2009; 12: 105–106.

    Article  CAS  PubMed  Google Scholar 

  36. Pang PT, Teng HK, Zaitsev E, Woo NT, Sakata K, Zhen S et al. Cleavage of proBDNF by tPA/plasmin is essential for long-term hippocampal plasticity. Science 2004; 306: 487–491.

    Article  CAS  PubMed  Google Scholar 

  37. Lu B, Pang PT, Woo NH . The yin and yang of neurotrophin action. Nat Rev Neurosci 2005; 6: 603–614.

    Article  CAS  PubMed  Google Scholar 

  38. Jia Y, Gall CM, Lynch G . Presynaptic BDNF promotes postsynaptic long-term potentiation in the dorsal striatum. J Neurosci 2010; 30: 14440–14445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tang S, Machaalani R, Waters KA . Immunolocalization of pro- and mature-brain derived neurotrophic factor (BDNF) and receptor TrkB in the human brainstem and hippocampus. Brain Res 2010; 1354: 1–14.

    Article  CAS  PubMed  Google Scholar 

  40. Chiaruttini C, Vicario A, Li Z, Baj G, Braiuca P, Wu Y et al. Dendritic trafficking of BDNF mRNA is mediated by translin and blocked by the G196A (Val66Met) mutation. Proc Natl Acad Sci USA 2009; 106: 16481–16486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Egan MF, Kojima M, Callicott JH, Goldberg TE, Kolachana BS, Bertolino A et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 2003; 112: 257–269.

    Article  CAS  PubMed  Google Scholar 

  42. Chen ZY, Jing D, Bath KG, Ieraci A, Khan T, Siao CJ et al. Genetic variant BDNF (Val66Met) polymorphism alters anxiety-related behavior. Science 2006; 314: 140–143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rybakowski JK . BDNF gene: functional Val66Met polymorphism in mood disorders and schizophrenia. Pharmacogenomics 2008; 9: 1589–1593.

    Article  CAS  PubMed  Google Scholar 

  44. Chen WG, Chang Q, Lin Y, Meissner A, West AE, Griffith EC et al. Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2. Science 2003; 302: 885–889.

    Article  CAS  PubMed  Google Scholar 

  45. Ma DK, Jang MH, Guo JU, Kitabatake Y, Chang ML, Pow-Anpongkul N et al. Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis. Science 2009; 323: 1074–1077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tsankova N, Renthal W, Kumar A, Nestler EJ . Epigenetic regulation in psychiatric disorders. Nat Rev Neurosci 2007; 8: 355–367.

    Article  CAS  PubMed  Google Scholar 

  47. Klose R, Bird A . Molecular biology. MeCP2 repression goes nonglobal. Science 2003; 302: 793–795.

    Article  CAS  PubMed  Google Scholar 

  48. Im HI, Hollander JA, Bali P, Kenny PJ . MeCP2 controls BDNF expression and cocaine intake through homeostatic interactions with microRNA-212. Nat Neurosci 2010; 13: 1120–1127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Martinowich K, Hattori D, Wu H, Fouse S, He F, Hu Y et al. DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science 2003; 302: 890–893.

    Article  CAS  PubMed  Google Scholar 

  50. West AE, Chen WG, Dalva MB, Dolmetsch RE, Kornhauser JM, Shaywitz AJ et al. Calcium regulation of neuronal gene expression. Proc Natl Acad Sci USA 2001; 98: 11024–11031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tao X, West AE, Chen WG, Corfas G, Greenberg ME . A calcium-responsive transcription factor, CaRF, that regulates neuronal activity-dependent expression of BDNF. Neuron 2002; 33: 383–395.

    Article  CAS  PubMed  Google Scholar 

  52. Chan HM, La Thangue NB . p300/CBP proteins: HATs for transcriptional bridges and scaffolds. J Cell Sci 2001; 114 (Part 13): 2363–2373.

    CAS  PubMed  Google Scholar 

  53. Caspi A, Moffitt TE . Gene-environment interactions in psychiatry: joining forces with neuroscience. Nat Rev Neurosci 2006; 7: 583–590.

    Article  CAS  PubMed  Google Scholar 

  54. Migliore L, Coppede F . Genetics, environmental factors and the emerging role of epigenetics in neurodegenerative diseases. Mutat Res 2009; 667: 82–97.

    Article  CAS  PubMed  Google Scholar 

  55. Duman RS, Monteggia LM . A neurotrophic model for stress-related mood disorders. Biol Psychiatry 2006; 59: 1116–1127.

    Article  CAS  PubMed  Google Scholar 

  56. Roceri M, Cirulli F, Pessina C, Peretto P, Racagni G, Riva MA . Postnatal repeated maternal deprivation produces age-dependent changes of brain-derived neurotrophic factor expression in selected rat brain regions. Biol Psychiatry 2004; 55: 708–714.

    Article  CAS  PubMed  Google Scholar 

  57. Roceri M, Hendriks W, Racagni G, Ellenbroek BA, Riva MA . Early maternal deprivation reduces the expression of BDNF and NMDA receptor subunits in rat hippocampus. Mol Psychiatry 2002; 7: 609–616.

    Article  CAS  PubMed  Google Scholar 

  58. Nair A, Vadodaria KC, Banerjee SB, Benekareddy M, Dias BG, Duman RS et al. Stressor-specific regulation of distinct brain-derived neurotrophic factor transcripts and cyclic AMP response element-binding protein expression in the postnatal and adult rat hippocampus. Neuropsychopharmacology 2007; 32: 1504–1519.

    Article  CAS  PubMed  Google Scholar 

  59. Chen LY, Rex CS, Pham DT, Lynch G, Gall CM . BDNF signaling during learning is regionally differentiated within hippocampus. J Neurosci 2010; 30: 15097–15101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bramham CR, Messaoudi E . BDNF function in adult synaptic plasticity: the synaptic consolidation hypothesis. Prog Neurobiol 2005; 76: 99–125.

    Article  CAS  PubMed  Google Scholar 

  61. Takei S, Morinobu S, Yamamoto S, Fuchikami M, Matsumoto T, Yamawaki S . Enhanced hippocampal BDNF/TrkB signaling in response to fear conditioning in an animal model of posttraumatic stress disorder. J Psychiatr Res 2010.

  62. Peters J, Dieppa-Perea LM, Melendez LM, Quirk GJ . Induction of fear extinction with hippocampal-infralimbic BDNF. Science 2010; 328: 1288–1290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Soliman F, Glatt CE, Bath KG, Levita L, Jones RM, Pattwell SS et al. A genetic variant BDNF polymorphism alters extinction learning in both mouse and human. Science 2010; 327: 863–866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chhatwal JP, Stanek-Rattiner L, Davis M, Ressler KJ . Amygdala BDNF signaling is required for consolidation but not encoding of extinction. Nat Neurosci 2006; 9: 870–872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Choi DC, Maguschak KA, Ye K, Jang SW, Myers KM, Ressler KJ . Prelimbic cortical BDNF is required for memory of learned fear but not extinction or innate fear. Proc Natl Acad Sci USA 2010; 107: 2675–2680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ou LC, Gean PW . Transcriptional regulation of brain-derived neurotrophic factor in the amygdala during consolidation of fear memory. Mol Pharmacol 2007; 72: 350–358.

    Article  CAS  PubMed  Google Scholar 

  67. Bredy TW, Wu H, Crego C, Zellhoefer J, Sun YE, Barad M . Histone modifications around individual BDNF gene promoters in prefrontal cortex are associated with extinction of conditioned fear. Learn Mem 2007; 14: 268–276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lubin FD, Roth TL, Sweatt JD . Epigenetic regulation of BDNF gene transcription in the consolidation of fear memory. J Neurosci 2008; 28: 10576–10586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Levenson JM, Roth TL, Lubin FD, Miller CA, Huang IC, Desai P et al. Evidence that DNA (cytosine-5) methyltransferase regulates synaptic plasticity in the hippocampus. J Biol Chem 2006; 281: 15763–15773.

    Article  CAS  PubMed  Google Scholar 

  70. Munoz PC, Aspe MA, Contreras LS, Palacios AG . Correlations of recognition memory performance with expression and methylation of brain-derived neurotrophic factor in rats. Biol Res 2010; 43: 251–258.

    Article  CAS  PubMed  Google Scholar 

  71. Sheline YI, Gado MH, Kraemer HC . Untreated depression and hippocampal volume loss. Am J Psychiatry 2003; 160: 1516–1518.

    Article  PubMed  Google Scholar 

  72. Sen S, Duman R, Sanacora G . Serum brain-derived neurotrophic factor, depression, and antidepressant medications: meta-analyses and implications. Biol Psychiatry 2008; 64: 527–532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Molendijk ML, Bus BA, Spinhoven P, Penninx BW, Kenis G, Prickaerts J et al. Serum levels of brain-derived neurotrophic factor in major depressive disorder: state-trait issues, clinical features and pharmacological treatment. Mol Psychiatry 2010.

  74. Dwivedi Y, Rizavi HS, Conley RR, Roberts RC, Tamminga CA, Pandey GN . Altered gene expression of brain-derived neurotrophic factor and receptor tyrosine kinase B in postmortem brain of suicide subjects. Arch Gen Psychiatry 2003; 60: 804–815.

    Article  CAS  PubMed  Google Scholar 

  75. Chen B, Dowlatshahi D, MacQueen GM, Wang JF, Young LT . Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication. Biol Psychiatry 2001; 50: 260–265.

    Article  CAS  PubMed  Google Scholar 

  76. Gourley SL, Kiraly DD, Howell JL, Olausson P, Taylor JR . Acute hippocampal brain-derived neurotrophic factor restores motivational and forced swim performance after corticosterone. Biol Psychiatry 2008; 64: 884–890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Vollmayr B, Faust H, Lewicka S, Henn FA . Brain-derived-neurotrophic-factor (BDNF) stress response in rats bred for learned helplessness. Mol Psychiatry 2001; 6: 471–474, 358.

    Article  CAS  PubMed  Google Scholar 

  78. Taliaz D, Stall N, Dar DE, Zangen A . Knockdown of brain-derived neurotrophic factor in specific brain sites precipitates behaviors associated with depression and reduces neurogenesis. Mol Psychiatry 2010; 15: 80–92.

    Article  CAS  PubMed  Google Scholar 

  79. Shirayama Y, Chen AC, Nakagawa S, Russell DS, Duman RS . Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J Neurosci 2002; 22: 3251–3261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Monteggia LM, Barrot M, Powell CM, Berton O, Galanis V, Gemelli T et al. Essential role of brain-derived neurotrophic factor in adult hippocampal function. Proc Natl Acad Sci USA 2004; 101: 10827–10832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Nibuya M, Morinobu S, Duman RS . Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neurosci 1995; 15: 7539–7547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Tsankova NM, Berton O, Renthal W, Kumar A, Neve RL, Nestler EJ . Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat Neurosci 2006; 9: 519–525.

    Article  CAS  PubMed  Google Scholar 

  83. Onishchenko N, Karpova N, Sabri F, Castren E, Ceccatelli S . Long-lasting depression-like behavior and epigenetic changes of BDNF gene expression induced by perinatal exposure to methylmercury. J Neurochem 2008; 106: 1378–1387.

    Article  CAS  PubMed  Google Scholar 

  84. Koob GF, Volkow ND . Neurocircuitry of addiction. Neuropsychopharmacology 2010; 35: 217–238.

    Article  PubMed  Google Scholar 

  85. Russo SJ, Mazei-Robison MS, Ables JL, Nestler EJ . Neurotrophic factors and structural plasticity in addiction. Neuropharmacology 2009; 56: 73–82.

    Article  CAS  PubMed  Google Scholar 

  86. Lobo MK, Covington 3rd HE, Chaudhury D, Friedman AK, Sun H, Damez-Werno D et al. Cell type-specific loss of BDNF signaling mimics optogenetic control of cocaine reward. Science 2010; 330: 385–390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Guillin O, Diaz J, Carroll P, Griffon N, Schwartz JC, Sokoloff P . BDNF controls dopamine D3 receptor expression and triggers behavioural sensitization. Nature 2001; 411: 86–89.

    Article  CAS  PubMed  Google Scholar 

  88. Numan S, Lane-Ladd SB, Zhang L, Lundgren KH, Russell DS, Seroogy KB et al. Differential regulation of neurotrophin and trk receptor mRNAs in catecholaminergic nuclei during chronic opiate treatment and withdrawal. J Neurosci 1998; 18: 10700–10708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Filip M, Faron-Gorecka A, Kusmider M, Golda A, Frankowska M, Dziedzicka-Wasylewska M . Alterations in BDNF and trkB mRNAs following acute or sensitizing cocaine treatments and withdrawal. Brain Res 2006; 1071: 218–225.

    Article  CAS  PubMed  Google Scholar 

  90. Lu H, Cheng PL, Lim BK, Khoshnevisrad N, Poo MM . Elevated BDNF after cocaine withdrawal facilitates LTP in medial prefrontal cortex by suppressing GABA inhibition. Neuron 2010; 67: 821–833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Graham DL, Edwards S, Bachtell RK, DiLeone RJ, Rios M, Self DW . Dynamic BDNF activity in nucleus accumbens with cocaine use increases self-administration and relapse. Nat Neurosci 2007; 10: 1029–1037.

    Article  CAS  PubMed  Google Scholar 

  92. Vargas-Perez H, Ting AKR, Walton CH, Hansen DM, Razavi R, Clarke L et al. Ventral tegmental area BDNF induces an opiate-dependent-like reward state in naive rats. Science 2009; 324: 1732–1734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Grimm JW, Lu L, Hayashi T, Hope BT, Su TP, Shaham Y . Time-dependent increases in brain-derived neurotrophic factor protein levels within the mesolimbic dopamine system after withdrawal from cocaine: implications for incubation of cocaine craving. J Neurosci 2003; 23: 742–747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kumar A, Choi KH, Renthal W, Tsankova NM, Theobald DE, Truong HT et al. Chromatin remodeling is a key mechanism underlying cocaine-induced plasticity in striatum. Neuron 2005; 48: 303–314.

    Article  CAS  PubMed  Google Scholar 

  95. Chen ES, Ernst C, Turecki G . The epigenetic effects of antidepressant treatment on human prefrontal cortex BDNF expression. Int J Neuropsychopharmacol 2010; 14: 1–3.

    Google Scholar 

  96. Keller S, Sarchiapone M, Zarrilli F, Videtic A, Ferraro A, Carli V et al. Increased BDNF promoter methylation in the Wernicke area of suicide subjects. Arch Gen Psychiatry 2010; 67: 258–267.

    Article  CAS  PubMed  Google Scholar 

  97. Mill J, Tang T, Kaminsky Z, Khare T, Yazdanpanah S, Bouchard L et al. Epigenomic profiling reveals DNA-methylation changes associated with major psychosis. Am J Hum Genet 2008; 82: 696–711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Toledo-Rodriguez M, Lotfipour S, Leonard G, Perron M, Richer L, Veillette S et al. Maternal smoking during pregnancy is associated with epigenetic modifications of the brain-derived neurotrophic factor-6 exon in adolescent offspring. Am J Med Genet B Neuropsychiatr Genet 2010.

  99. Wang L, Lv Z, Hu Z, Sheng J, Hui B, Sun J et al. Chronic cocaine-induced H3 acetylation and transcriptional activation of CaMKIIalpha in the nucleus accumbens is critical for motivation for drug reinforcement. Neuropsychopharmacology 2010; 35: 913–928.

    Article  CAS  PubMed  Google Scholar 

  100. Sadri-Vakili G, Kumaresan V, Schmidt HD, Famous KR, Chawla P, Vassoler FM et al. Cocaine-induced chromatin remodeling increases brain-derived neurotrophic factor transcription in the rat medial prefrontal cortex, which alters the reinforcing efficacy of cocaine. J Neurosci 2010; 30: 11735–11744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Cleck JN, Ecke LE, Blendy JA . Endocrine and gene expression changes following forced swim stress exposure during cocaine abstinence in mice. Psychopharmacology (Berl) 2008; 201: 15–28.

    Article  CAS  Google Scholar 

  102. Ho BC, Andreasen NC, Dawson JD, Wassink TH . Association between brain-derived neurotrophic factor Val66Met gene polymorphism and progressive brain volume changes in schizophrenia. Am J Psychiatry 2007; 164: 1890–1899.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Weickert CS, Hyde TM, Lipska BK, Herman MM, Weinberger DR, Kleinman JE . Reduced brain-derived neurotrophic factor in prefrontal cortex of patients with schizophrenia. Mol Psychiatry 2003; 8: 592–610.

    Article  CAS  PubMed  Google Scholar 

  104. Ikeda Y, Yahata N, Ito I, Nagano M, Toyota T, Yoshikawa T et al. Low serum levels of brain-derived neurotrophic factor and epidermal growth factor in patients with chronic schizophrenia. Schizophr Res 2008; 101: 58–66.

    Article  PubMed  Google Scholar 

  105. Green MJ, Matheson SL, Shepherd A, Weickert CS, Carr VJ . Brain-derived neurotrophic factor levels in schizophrenia: a systematic review with meta-analysis. Mol Psychiatry 2010.

  106. Hashimoto T, Bergen SE, Nguyen QL, Xu B, Monteggia LM, Pierri JN et al. Relationship of brain-derived neurotrophic factor and its receptor TrkB to altered inhibitory prefrontal circuitry in schizophrenia. J Neurosci 2005; 25: 372–383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silberberg G, Wu C . Interneurons of the neocortical inhibitory system. Nat Rev Neurosci 2004; 5: 793–807.

    Article  CAS  PubMed  Google Scholar 

  108. Sakata K, Woo NH, Martinowich K, Greene JS, Schloesser RJ, Shen L et al. Critical role of promoter IV-driven BDNF transcription in GABAergic transmission and synaptic plasticity in the prefrontal cortex. Proc Natl Acad Sci USA 2009; 106: 5942–5947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. van Os J, Kenis G, Rutten BP . The environment and schizophrenia. Nature 2010; 468: 203–212.

    Article  CAS  PubMed  Google Scholar 

  110. Roth TL, Lubin FD, Funk AJ, Sweatt JD . Lasting epigenetic influence of early-life adversity on the BDNF gene. Biol Psychiatry 2009; 65: 760–769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Devlin AM, Brain U, Austin J, Oberlander TF . Prenatal exposure to maternal depressed mood and the MTHFR C677T variant affect SLC6A4 methylation in infants at birth. PLoS One 2010; 5: e12201.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Krishnan V, Han MH, Graham DL, Berton O, Renthal W, Russo SJ et al. Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions. Cell 2007; 131: 391–404.

    Article  CAS  PubMed  Google Scholar 

  113. Fuchikami M, Morinobu S, Kurata A, Yamamoto S, Yamawaki S . Single immobilization stress differentially alters the expression profile of transcripts of the brain-derived neurotrophic factor (BDNF) gene and histone acetylation at its promoters in the rat hippocampus. Int J Neuropsychopharmacol 2009; 12: 73–82.

    Article  CAS  PubMed  Google Scholar 

  114. Fuchikami M, Yamamoto S, Morinobu S, Takei S, Yamawaki S . Epigenetic regulation of BDNF gene in response to stress. Psychiatry Investig 2011; 7: 251–256.

    Article  CAS  Google Scholar 

  115. Gomez-Pinilla F, Zhuang Y, Feng J, Ying Z, Fan G . Exercise impacts brain-derived neurotrophic factor plasticity by engaging mechanisms of epigenetic regulation. Eur J Neurosci 2011; 33: 383–390.

    Article  CAS  PubMed  Google Scholar 

  116. Karpova NN, Rantamaki T, Di Lieto A, Lindemann L, Hoener MC, Castren E . Darkness reduces BDNF expression in the visual cortex and induces repressive chromatin remodeling at the BDNF gene in both hippocampus and visual cortex. Cell Mol Neurobiol 2010.

  117. Kuzumaki N, Ikegami D, Tamura R, Hareyama N, Imai S, Narita M et al. Hippocampal epigenetic modification at the brain-derived neurotrophic factor gene induced by an enriched environment. Hippocampus 2010; 21: 127–132.

    Article  CAS  Google Scholar 

  118. Molteni R, Cattaneo A, Calabrese F, Macchi F, Olivier JD, Racagni G et al. Reduced function of the serotonin transporter is associated with decreased expression of BDNF in rodents as well as in humans. Neurobiol Dis 2010; 37: 747–755.

    Article  CAS  PubMed  Google Scholar 

  119. Roth TL, Zoladz PR, Sweatt JD, Diamond DM . Epigenetic modification of hippocampal Bdnf DNA in adult rats in an animal model of post-traumatic stress disorder. J Psychiatr Res 2011; 45: 919–926.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Lisanby SH . Electroconvulsive therapy for depression. N Engl J Med 2007; 357: 1939–1945.

    Article  CAS  PubMed  Google Scholar 

  121. Tsankova NM, Kumar A, Nestler EJ . Histone modifications at gene promoter regions in rat hippocampus after acute and chronic electroconvulsive seizures. J Neurosci 2004; 24: 5603–5610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kazantsev AG, Thompson LM . Therapeutic application of histone deacetylase inhibitors for central nervous system disorders. Nat Rev Drug Discov 2008; 7: 854–868.

    Article  CAS  PubMed  Google Scholar 

  123. Urdinguio RG, Sanchez-Mut JV, Esteller M . Epigenetic mechanisms in neurological diseases: genes, syndromes, and therapies. Lancet Neurol 2009; 8: 1056–1072.

    Article  CAS  PubMed  Google Scholar 

  124. Wang L, de Zoeten EF, Greene MI, Hancock WW . Immunomodulatory effects of deacetylase inhibitors: therapeutic targeting of FOXP3+ regulatory T cells. Nat Rev Drug Discov 2009; 8: 969–981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Szyf M . Epigenetics, DNA methylation, and chromatin modifying drugs. Annu Rev Pharmacol Toxicol 2009; 49: 243–263.

    Article  CAS  PubMed  Google Scholar 

  126. Gottlicher M, Minucci S, Zhu P, Kramer OH, Schimpf A, Giavara S et al. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. Embo J 2001; 20: 6969–6978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Yasuda S, Liang MH, Marinova Z, Yahyavi A, Chuang DM . The mood stabilizers lithium and valproate selectively activate the promoter IV of brain-derived neurotrophic factor in neurons. Mol Psychiatry 2009; 14: 51–59.

    Article  CAS  PubMed  Google Scholar 

  128. Wu X, Chen PS, Dallas S, Wilson B, Block ML, Wang CC et al. Histone deacetylase inhibitors up-regulate astrocyte GDNF and BDNF gene transcription and protect dopaminergic neurons. Int J Neuropsychopharmacol 2008; 11: 1123–1134.

    Article  CAS  PubMed  Google Scholar 

  129. Oki Y, Aoki E, Issa JP . Decitabine—bedside to bench. Crit Rev Oncol Hematol 2007; 61: 140–152.

    Article  PubMed  Google Scholar 

  130. Ishimaru N, Fukuchi M, Hirai A, Chiba Y, Tamura T, Takahashi N et al. Differential epigenetic regulation of BDNF and NT-3 genes by trichostatin A and 5-aza-2′-deoxycytidine in Neuro-2a cells. Biochem Biophys Res Commun Mar 26; 394: 173–177.

    Article  CAS  Google Scholar 

  131. Ishimaru N, Fukuchi M, Hirai A, Chiba Y, Tamura T, Takahashi N et al. Differential epigenetic regulation of BDNF and NT-3 genes by trichostatin A and 5-aza-2′-deoxycytidine in Neuro-2a cells. Biochem Biophys Res Commun 2010; 394: 173–177.

    Article  CAS  PubMed  Google Scholar 

  132. Fukuchi M, Nii T, Ishimaru N, Minamino A, Hara D, Takasaki I et al. Valproic acid induces up- or down-regulation of gene expression responsible for the neuronal excitation and inhibition in rat cortical neurons through its epigenetic actions. Neurosci Res 2009; 65: 35–43.

    Article  CAS  PubMed  Google Scholar 

  133. Chang J, Zhang B, Heath H, Galjart N, Wang X, Milbrandt J . Nicotinamide adenine dinucleotide (NAD)-regulated DNA methylation alters CCCTC-binding factor (CTCF)/cohesin binding and transcription at the BDNF locus. Proc Natl Acad Sci USA 2010.

  134. Chiaruttini C, Sonego M, Baj G, Simonato M, Tongiorgi E . BDNF mRNA splice variants display activity-dependent targeting to distinct hippocampal laminae. Mol Cell Neurosci 2008; 37: 11–19.

    Article  CAS  PubMed  Google Scholar 

  135. Pattabiraman PP, Tropea D, Chiaruttini C, Tongiorgi E, Cattaneo A, Domenici L . Neuronal activity regulates the developmental expression and subcellular localization of cortical BDNF mRNA isoforms in vivo. Mol Cell Neurosci 2005; 28: 556–570.

    Article  CAS  PubMed  Google Scholar 

  136. Tongiorgi E, Baj G . Functions and mechanisms of BDNF mRNA trafficking. Novartis Found Symp 2008; 289: 136–147; discussion 147–151, 193-135.

    Article  CAS  PubMed  Google Scholar 

  137. Kang H, Jia LZ, Suh KY, Tang L, Schuman EM . Determinants of BDNF-induced hippocampal synaptic plasticity: role of the Trk B receptor and the kinetics of neurotrophin delivery. Learn Mem 1996; 3: 188–196.

    Article  CAS  PubMed  Google Scholar 

  138. Loudes C, Petit F, Kordon C, Faivre-Bauman A . Distinct populations of hypothalamic dopaminergic neurons exhibit differential responses to brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT3). Eur J Neurosci 1999; 11: 617–624.

    Article  CAS  PubMed  Google Scholar 

  139. Lubin FD . Epigenetic gene regulation in the adult mammalian brain: Multiple roles in memory formation. Neurobiol Learn Mem 2011; 96: 68–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Jang SW, Liu X, Yepes M, Shepherd KR, Miller GW, Liu Y et al. A selective TrkB agonist with potent neurotrophic activities by 7,8-dihydroxyflavone. Proc Natl Acad Sci USA 2010; 107: 2687–2692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Jang SW, Liu X, Pradoldej S, Tosini G, Chang Q, Iuvone PM et al. N-acetylserotonin activates TrkB receptor in a circadian rhythm. Proc Natl Acad Sci USA 2010; 107: 3876–3881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Massa SM, Yang T, Xie Y, Shi J, Bilgen M, Joyce JN et al. Small molecule BDNF mimetics activate TrkB signaling and prevent neuronal degeneration in rodents. J Clin Invest 2010; 120: 1774–1785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Cazorla M, Jouvenceau A, Rose C, Guilloux JP, Pilon C, Dranovsky A et al. Cyclotraxin-B, the first highly potent and selective TrkB inhibitor, has anxiolytic properties in mice. PLoS One 2010; 5: e9777.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Cazorla M, Premont J, Mann A, Girard N, Kellendonk C, Rognan D . Identification of a low-molecular weight TrkB antagonist with anxiolytic and antidepressant activity in mice. J Clin Invest 2011; 121: 1846–1857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Barrachina M, Ferrer I . DNA methylation of Alzheimer disease and tauopathy-related genes in postmortem brain. J Neuropathol Exp Neurol 2009; 68: 880–891.

    Article  CAS  PubMed  Google Scholar 

  146. Yuferov V, Nielsen DA, Levran O, Randesi M, Hamon S, Ho A et al. Tissue-specific DNA methylation of the human prodynorphin gene in post-mortem brain tissues and PBMCs. Pharmacogenet Genomics 2011; 21: 185–196.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Ressler KJ, Mercer KB, Bradley B, Jovanovic T, Mahan A, Kerley K et al. Post-traumatic stress disorder is associated with PACAP and the PAC1 receptor. Nature 2011; 470: 492–497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Bale TL, Baram TZ, Brown AS, Goldstein JM, Insel TR, McCarthy MM et al. Early life programming and neurodevelopmental disorders. Biol Psychiatry 2010; 68: 314–319.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D L A van den Hove.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boulle, F., van den Hove, D., Jakob, S. et al. Epigenetic regulation of the BDNF gene: implications for psychiatric disorders. Mol Psychiatry 17, 584–596 (2012). https://doi.org/10.1038/mp.2011.107

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2011.107

Keywords

This article is cited by

Search

Quick links