Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Neuropeptide S receptor gene — converging evidence for a role in panic disorder

Abstract

Animal studies have suggested neuropeptide S (NPS) and its receptor (NPSR) to be involved in the pathogenesis of anxiety-related behavior. In this study, a multilevel approach was applied to further elucidate the role of NPS in the etiology of human anxiety. The functional NPSR A/T (Asn107Ile) variant (rs324981) was investigated for association with (1) panic disorder with and without agoraphobia in two large, independent case–control studies, (2) dimensional anxiety traits, (3) autonomic arousal level during a behavioral avoidance test and (4) brain activation correlates of anxiety-related emotional processing in panic disorder. The more active NPSR rs324981 T allele was found to be associated with panic disorder in the female subgroup of patients in both samples as well as in a meta-analytic approach. The T risk allele was further related to elevated anxiety sensitivity, increased heart rate and higher symptom reports during a behavioral avoidance test as well as decreased activity in the dorsolateral prefrontal, lateral orbitofrontal and anterior cingulate cortex during processing of fearful faces in patients with panic disorder. The present results provide converging evidence for a female-dominant role of NPSR gene variation in panic disorder potentially through heightened autonomic arousal and distorted processing of anxiety-relevant emotional stimuli.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Reinscheid RK, Xu YL . Neuropeptide S as a novel arousal promoting peptide transmitter. FEBS J 2005; 272: 5689–5693.

    Article  CAS  PubMed  Google Scholar 

  2. Sato S, Shintani Y, Miyajima N, Yoshimura K . Novel G-protein-coupled receptor protein and DNA thereof. World Patent Application 2002; WO02/31145 A1.

  3. Xu YL, Reinscheid RK, Huitron-Resendiz S, Clark SD, Wang Z, Lin SH et al. Neuropeptide S: a neuropeptide promoting arousal and anxiolytic-like effects. Neuron 2004; 43: 487–497.

    Article  CAS  PubMed  Google Scholar 

  4. Leonard SK, Dwyer JM, Sukoff Rizzo SJ, Platt B, Logue SF, Neal SJ et al. Pharmacology of neuropeptide S in mice: therapeutic relevance to anxiety disorders. Psychopharmacology (Berl) 2008; 197: 601–611.

    Article  CAS  Google Scholar 

  5. Rizzi A, Vergura R, Marzola G, Ruzza C, Guerrini R, Salvadori S et al. Neuropeptide S is a stimulatory anxiolytic agent: a behavioural study in mice. Br J Pharmacol 2008; 154: 471–479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Vitale G, Filaferro M, Ruggieri V, Pennella S, Frigeri C, Rizzi A et al. Anxiolytic-like effect of neuropeptide S in the rat defensive burying. Peptides 2008; 29: 2286–2291.

    Article  CAS  PubMed  Google Scholar 

  7. Duangdao DM, Clark SD, Okamura N, Reinscheid RK . Behavioral phenotyping of neuropeptide S receptor knockout mice. Behav Brain Res 2009; 205: 1–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Xu YL, Gall CM, Jackson VR, Civelli O, Reinscheid RK . Distribution of neuropeptide S receptor mRNA and neurochemical characteristics of neuropeptide S-expression neurons in the rat brain. J Comp Neurol 2007; 500: 84–102.

    Article  CAS  PubMed  Google Scholar 

  9. Jüngling K, Seidenbecher T, Sosulina L, Lesting J, Sangha S, Clark SD et al. Neuropeptide S-mediated control of fear expression and extinction: role of intercalated GABAergic neurons in the amygdala. Neuron 2008; 59: 298–310.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Meis S, Bergado-Acosta JR, Yanagawa Y, Obata K, Stork O, Munsch T . Identification of a neuropeptide S responsive circuitry shaping amygdala activity via the endopiriform nucleus. PLoS One 2008; 3: e2695.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Pape HC, Jüngling K, Seidenbecher T, Lesting J, Reinscheid RK . Neuropeptide S: a transmitter system in the brain regulating fear and anxiety. Neuropharmacology 2010; 58: 29–34.

    Article  CAS  PubMed  Google Scholar 

  12. LeDoux JE . Emotion circuits in the brain. Annu Rev Neurosci 2000; 23: 155–184.

    Article  CAS  PubMed  Google Scholar 

  13. Phillips ML, Drevets WC, Rauch SL, Lane R . Neurobiology of emotion perception I: the neural basis of normal emotion perception. Biol Psychiatry 2003; 54: 504–514.

    Article  PubMed  Google Scholar 

  14. Phillips ML, Drevets WC, Rauch SL, Lane R . Neurobiology of emotion perception II: implications for major psychiatric disorders. Biol Psychiatry 2003; 54: 515–528.

    Article  PubMed  Google Scholar 

  15. Etkin A, Klemenhagen KC, Dudman JT, Rogan MT, Hen R, Kandel ER et al. Individual differences in trait anxiety predict the response of the basolateral amygdala to unconsciously processed fearful faces. Neuron 2004; 44: 1043–1055.

    Article  CAS  PubMed  Google Scholar 

  16. Javanmard M, Shlik J, Kennedy SH, Vaccarino FJ, Houle S, Bradwejn J . Neuroanatomic correlates of CCK-4-induced panic attacks in healthy humans: a comparison of two time points. Biol Psychiatry 1999; 45: 872–882.

    Article  CAS  PubMed  Google Scholar 

  17. Pfleiderer B, Zinkirciran S, Arolt V, Heindel W, Deckert J, Domschke K . fMRI amygdala activation during a spontaneous panic attack in a patient with panic disorder. World J Biol Psychiatry 2007; 8: 269–272.

    Article  PubMed  Google Scholar 

  18. Sakai Y, Kumano H, Nishikawa M, Sakano Y, Kaiya H, Imabayashi E et al. Cerebral glucose metabolism associated with a fear network in panic disorder. Neuroreport 2005; 16: 927–931.

    Article  PubMed  Google Scholar 

  19. Charney DS, Heninger GR, Jatlow PI . Increased anxiogenic effects of caffeine in panic disorders. Arch Gen Psychiatry 1985; 42: 233–243.

    Article  CAS  PubMed  Google Scholar 

  20. Lage R, Diéguez C, López M . Caffeine treatment regulates neuropeptide S system expression in the rat brain. Neurosci Lett 2006; 410: 47–51.

    Article  CAS  PubMed  Google Scholar 

  21. Raiteri L, Luccini E, Romei C, Salvadori S, Calò G . Neuropeptide S selectively inhibits the release of 5-HT and noradrenaline from mouse frontal cortex nerve endings. Br J Pharmacol 2009; 157: 474–481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Crowe RR, Goedken R, Samuelson S, Wilson R, Nelson J, Noyes Jr R . Genomewide survey of panic disorder. Am J Med Genet 2001; 105: 105–109.

    Article  CAS  PubMed  Google Scholar 

  23. Knowles JA, Fyer AJ, Vieland VJ, Weissman MM, Hodge SE, Heiman GA et al. Results of a genome-wide genetic screen for panic disorder. Am J Med Genet 1998; 81: 139–147.

    Article  CAS  PubMed  Google Scholar 

  24. Logue MW, Vieland VJ, Goedken RJ, Crowe RR . Bayesian analysis of a previously published genome screen for panic disorder reveals new and compelling evidence for linkage to chromosome 7. Am J Med Genet B Neuropsychiatr Genet 2003; 121B: 95–99.

    Article  PubMed  Google Scholar 

  25. Bernier V, Stocco R, Bogusky MJ, Joyce JG, Parachoniak C, Grenier K et al. Structure-function relationships in the neuropeptide S receptor: molecular consequences of the asthma-associated mutation N107I. J Biol Chem 2006; 281: 24704–24712.

    Article  CAS  PubMed  Google Scholar 

  26. Reinscheid RK, Xu YL, Okamura N, Zeng J, Chung S, Pai R et al. Pharmacological characterization of human and murine neuropeptide s receptor variants. J Pharmacol Exp Ther 2005; 315: 1338–1345.

    Article  CAS  PubMed  Google Scholar 

  27. Okamura N, Hashimoto K, Iyo M, Shimizu E, Dempfle A, Friedel S et al. Gender-specific association of a functional coding polymorphism in the Neuropeptide S receptor gene with panic disorder but not with schizophrenia or attention-deficit/hyperactivity disorder. Prog Neuropsychopharmacol Biol Psychiatry 2007; 31: 1444–1448.

    Article  CAS  PubMed  Google Scholar 

  28. Mannuzza S, Fyer AJ, Klein DF, Endicott J . Schedule for affective disorders and schizophrenia–Lifetime version modified for the study of anxiety disorders (SADS-LA): rationale and conceptual development. J Psychiatr Res 1986; 20: 317–325.

    Article  CAS  PubMed  Google Scholar 

  29. Robins LN, Wing J, Wittchen HU, Helzer JE, Babor TF, Burke J et al. The Composite International Diagnostic Interview. An epidemiologic instrument suitable for use in conjunction with different diagnostic systems and in different cultures. Arch Gen Psychiatry 1988; 45: 1069–1077.

    Article  CAS  PubMed  Google Scholar 

  30. Wittchen HU . SKID-I: Strukturiertes Klinisches Interview Für DSM-IV, Achse I: Psychische Störungen. Hogrefe: Goettingen, 1997.

    Google Scholar 

  31. Gloster AT, Wittchen HU, Einsle F, Hofler M, Lang T, Helbig-Lang S et al. Mechanism of action in CBT (MAC): methods of a multi-center randomized controlled trial in 369 patients with panic disorder and agoraphobia. Eur Arch Psychiatry Clin Neurosci 2009; 259: 155–166.

    Article  Google Scholar 

  32. Chambless DL, Caputo GC, Bright P, Gallagher R . Assessment of fear in agoraphobics: the body sensations questionnaire and the Agoraphobic Cognitions Questionnaire. J Consult Clin Psychol 1984; 52: 1090–1097.

    Article  CAS  PubMed  Google Scholar 

  33. Ehlers A, Margraf J . Fragebogen zu körperbezogenen Ängsten, Kognitionen und Vermeidung (AKV). Beltz Test: Weinheim, 1993.

    Google Scholar 

  34. Alpers GW, Pauli P . Angstsensitivitäts-Index. Julius-Maximilians-Universität: Würzburg, 2001.

    Google Scholar 

  35. Reiss S, Peterson RA, Gursky DM, McNally RJ . Anxiety sensitivity, anxiety frequency and the prediction of fearfulness. Behav Res Ther 1986; 24: 1–8.

    Article  CAS  PubMed  Google Scholar 

  36. Fleiss J . Statistical Methods for Rates and Proportions. Wiley: New York, 1981.

    Google Scholar 

  37. Lau J, Ioannidis JP, Schmid CH . Quantitative synthesis in systematic reviews. Ann Intern Med 1997; 127: 820–826.

    Article  CAS  PubMed  Google Scholar 

  38. Zintzaras E, Hadjigeorgiou GM . Association of paraoxonase 1 gene polymorphisms with risk of Parkinson's disease: a meta-analysis. J Hum Genet 2004; 49: 474–481.

    Article  PubMed  Google Scholar 

  39. Mantel N, Haenszel W . Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 1959; 22: 719–748.

    CAS  PubMed  Google Scholar 

  40. DerSimonian R, Laird N . Meta-analysis in clinical trials. Control Clin Trials 1986; 7: 177–188.

    Article  CAS  PubMed  Google Scholar 

  41. R-Development-Core-Team. R: A Language and Environment for Statistical Computing. 2.10.0 ed. R Foundation for Statistical Computing: Vienna, Austria, 2009.

  42. Viechtbauer W . metafor: Meta-Analysis Package for R. Version 0.5-7 2009 (http://cran.r-project.org/web/packages/metafor/index.html).

  43. Wilhelm FH, Peyk P . ANSLAB 4.0: Autonomic Nervous System Laboratory http://www.sprweb.org, 2005.

  44. Domschke K, Braun M, Ohrmann P, Suslow T, Kugel H, Bauer J . et al. Association of the functional -1019C/G 5-HT1A polymorphism with prefrontal and amygdala activation measured with 3T fMRI in panic disorder. Int J Neuropsychopharmacol 2006; 9: 349–355.

    Article  CAS  PubMed  Google Scholar 

  45. Domschke K, Ohrmann P, Braun M, Suslow T, Bauer J, Hohoff C et al. Influence of the catechol-O-methyltransferase val158met genotype on amygdala and orbitofrontal cortex emotional processing in panic disorder. Psychiatry Res 2008; 163: 13–20.

    Article  CAS  PubMed  Google Scholar 

  46. Ekman P, Friesen WV . Pictures of Facial Affect. Consulting Psychologists Press: Palo Alto, CA, 1976.

    Google Scholar 

  47. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 2002; 15: 273–289.

    Article  CAS  PubMed  Google Scholar 

  48. Brett M, Anton JL, Valabregue R, Poline JB . Region of interest analysis using an SPM toolbox. Neuroimage 2002; 16: 497.

    Google Scholar 

  49. Okamura N, Reinscheid RK . Neuropeptide S: a novel modulator of stress and arousal. Stress 2007; 10: 221–226.

    Article  CAS  PubMed  Google Scholar 

  50. Deckert J, Catalano M, Syagailo YV, Bosi M, Okladnova O, Di Bella D et al. Excess of high activity monoamine oxidase A gene promoter alleles in female patients with panic disorder. Hum Mol Genet 1999; 8: 621–624.

    Article  CAS  PubMed  Google Scholar 

  51. Domschke K, Freitag CM, Kuhlenbaumer G, Schirmacher A, Sand P, Nyhuis P et al. Association of the functional V158M catechol-O-methyl-transferase polymorphism with panic disorder in women. Int J Neuropsychopharmacol 2004; 7: 183–188.

    Article  CAS  PubMed  Google Scholar 

  52. Domschke K, Hohoff C, Jacob C, Maier W, Fritze J, Bandelow B et al. Chromosome 4q31-34 panic disorder risk locus: association of neuropeptide Y Y5 receptor variants. Am J Med Genet B Neuropsychiatr Genet 2008; 147B: 510–516.

    Article  PubMed  Google Scholar 

  53. Domschke K, Deckert J, O’Donovan M, Glatt SJ . Meta-analysis of COMT val158met in panic disorder—ethnic heterogeneity and gender specificity. Am J Med Genet Neuropsychiatr Genet 2007; 144: 667–673.

    Article  Google Scholar 

  54. Blechert J, Michael T, Grossman P, Lajtman M, Wilhelm FH . Autonomic and respiratory characteristics of posttraumatic stress disorder and panic disorder. Psychosom Med 2007; 69: 935–943.

    Article  PubMed  Google Scholar 

  55. Bouton ME, Mineka S, Barlow DH . A modern learning theory perspective on the etiology of panic disorder. Psychol Rev 2001; 108: 4–32.

    Article  CAS  PubMed  Google Scholar 

  56. Clark DM . A cognitive approach to panic. Behav Res Ther 1986; 24: 461–470.

    Article  CAS  PubMed  Google Scholar 

  57. Smith KL, Patterson M, Dhillo WS, Patel SR, Semjonous NM, Gardiner JV et al. Neuropeptide S stimulates the hypothalamo-pituitary-adrenal axis and inhibits food intake. Endocrinology 2006; 147: 3510–3518.

    Article  CAS  PubMed  Google Scholar 

  58. Joiner Jr TE, Steer RA, Beck AT, Schmidt NB, Rudd MD, Catanzaro SJ . Physiological hyperarousal: construct validity of a central aspect of the tripartite model of depression and anxiety. J Abnorm Psychol 1999; 108: 290–298.

    Article  PubMed  Google Scholar 

  59. Rabian B, Embry L, MacIntyre D . Behavioral validation of the childhood Anxiety Sensitivity Index in children. J Clin Child Psychol 1999; 28: 105–112.

    Article  CAS  PubMed  Google Scholar 

  60. Sturges LV, Goetsch VL, Ridley J, Whittal M . Anxiety sensitivity and response to hyperventilation challenge: physiologic arousal, interoceptive acuity, and subjective distress. J Anxiety Disord 1998; 12: 103–115.

    Article  CAS  PubMed  Google Scholar 

  61. Richards JC, Bertram S . Anxiety sensitivity, state and trait anxiety, and perception of change in sympathetic nervous system arousal. J Anxiety Disord 2000; 14: 413–427.

    Article  CAS  PubMed  Google Scholar 

  62. Telch MJ, Silverman A, Schmidt NB . The relationship between anxiety sensitivity and perceived control in a caffeine challenge. J Anx Disord 1996; 10: 21–35.

    Article  Google Scholar 

  63. Schmidt NB, Lerew DR, Jackson RJ . Prospective evaluation of anxiety sensitivity in the pathogenesis of panic: replication and extension. J Abnorm Psychol 1999; 108: 532–537.

    Article  CAS  PubMed  Google Scholar 

  64. Onur E, Alkin T, Tural U . Panic disorder subtypes: further clinical differences. Depress Anxiety 2007; 24: 479–486.

    Article  PubMed  Google Scholar 

  65. Perna G, Romano P, Caldirola D, Cucchi M, Bellodi L . Anxiety sensitivity and 35% CO2 reactivity in patients with panic disorder. J Psychosom Res 2003; 54: 573–577.

    Article  PubMed  Google Scholar 

  66. Brown M, Smits JA, Powers MB, Telch MJ . Differential sensitivity of the three ASI factors in predicting panic disorder patients’ subjective and behavioral response to hyperventilation challenge. J Anxiety Disord 2003; 17: 583–591.

    Article  PubMed  Google Scholar 

  67. Nardi AE, Lopes FL, Valença AM, Nascimento I, Mezzasalma MA, Zin WA . Psychopathological description of hyperventilation-induced panic attacks: a comparison with spontaneous panic attacks. Psychopathology 2004; 37: 29–35.

    Article  PubMed  Google Scholar 

  68. Foot M, Koszycki D . Gender differences in anxiety-related traits in patients with panic disorder. Depress Anxiety 2004; 20: 123–130.

    Article  PubMed  Google Scholar 

  69. Jang KL, Stein MB, Taylor S, Livesley WJ . Gender differences in the etiology of anxiety sensitivity: a twin study. J Gend Specif Med 1999; 2: 39–44.

    CAS  PubMed  Google Scholar 

  70. Pauli P, Marquardt C, Hartl L, Nutzinger DO, Hölzl R, Strian F . Anxiety induced by cardiac perceptions in patients with panic attacks: a field study. Behav Res Ther 1991; 29: 137–145.

    Article  CAS  PubMed  Google Scholar 

  71. Asami T, Hayano F, Nakamura M, Yamasue H, Uehara K, Otsuka T et al. Anterior cingulate cortex volume reduction in patients with panic disorder. Psychiatry Clin Neurosci 2008; 62: 322–330.

    Article  PubMed  Google Scholar 

  72. Uchida RR, Del-Ben CM, Busatto GF, Duran FL, Guimarães FS, Crippa JA et al. Regional gray matter abnormalities in panic disorder: a voxel-based morphometry study. Psychiatry Res 2008; 163: 21–29.

    Article  PubMed  Google Scholar 

  73. Pillay SS, Gruber SA, Rogowska J, Simpson N, Yurgelun-Todd DA . fMRI of fearful facial affect recognition in panic disorder: the cingulate gyrus-amygdala connection. J Affect Disord 2006; 94: 173–181.

    Article  PubMed  Google Scholar 

  74. Bremner JD, Staib LH, Kaloupek D, Southwick SM, Soufer R, Charney DS . Neural correlates of exposure to traumatic pictures and sound in vietnam combat veterans with and without posttraumatic stress disorder: a positron emission tomography study. Biol Psychiatry 1999; 45: 806–816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Felmingham KL, Williams LM, Kemp AH, Rennie C, Gordon E, Bryant RA . Anterior cingulate activity to salient stimuli is modulated by autonomic arousal in posttraumatic stress disorder. Psychiatry Res 2009; 173: 59–62.

    Article  PubMed  Google Scholar 

  76. Fredrikson M, Wik G, Annas P, Ericson K, Stone-Elander S . Functional neuroanatomy of visually elicited simple phobic fear: additional data and theoretical analysis. Psychophysiology 1995; 32: 43–48.

    Article  CAS  PubMed  Google Scholar 

  77. Shin LM, Whalen PJ, Pitman RK, Bush G, Macklin ML, Lasko NB et al. An fMRI study of anterior cingulate function in posttraumatic stress disorder. Biol Psychiatry 2001; 50: 932–942.

    Article  CAS  PubMed  Google Scholar 

  78. Davidson RJ . Anxiety and affective style: role of the prefrontal cortex and amygdala. Biol Psychiatry 2002; 51: 68–80.

    Article  PubMed  Google Scholar 

  79. Steffens M, Lamina C, Illig T, Bettecken T, Vogler R, Entz P et al. SNP-based analysis of genetic substructure in the German population. Hum Hered 2006; 62: 20–29.

    Article  CAS  PubMed  Google Scholar 

  80. Murphy SE, Norbury R, O’Sullivan U, Cowen PJ, Harmer CJ . Effect of a single dose of citalopram on amygdala response to emotional faces. Br J Psychiatry 2000; 194: 535–540.

    Article  Google Scholar 

  81. Harmer CJ, Mackay CE, Reid CB, Cowen PJ, Goodwin GM . Antidepressant drug treatment modifies the neural processing of nonconscious threat cues. Biol Psychiatry 2006; 59: 816–820.

    Article  CAS  PubMed  Google Scholar 

  82. Arce E, Simmons AN, Lovero KL, Stein MB, Paulus MP . Escitalopram effects on insula and amygdala BOLD activation during emotional processing. Psychopharmacology (Berl) 2008; 196: 661–672.

    Article  CAS  Google Scholar 

  83. Yoon KL, Zinbarg RE . Threat is in the eye of the beholder: social anxiety and the interpretation of ambiguous facial expressions. Behav Res Ther 2007; 45: 839–847.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Deutsche Forschungsgemeinschaft (DFG; SFB-TRR-58 projects C2 and Z2 to KD, AR, PP and JD; Grant KFO 125 to AR; DE357/4-1 to AR, AH and JD; RE1632/5 to AR) and the BMBF (Panic-Net, to ALG, TK, AS, HUW, VA, AH and JD; details see web page http://www.paniknetz.de/netzwerk.html). The recruitment of the Max Planck panic sample in Munich was supported by the Max Planck Excellence Foundation. We gratefully acknowledge the skilful technical support by Anna Baffa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Domschke.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Domschke, K., Reif, A., Weber, H. et al. Neuropeptide S receptor gene — converging evidence for a role in panic disorder. Mol Psychiatry 16, 938–948 (2011). https://doi.org/10.1038/mp.2010.81

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2010.81

Keywords

This article is cited by

Search

Quick links