Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The IMAGEN study: reinforcement-related behaviour in normal brain function and psychopathology


A fundamental function of the brain is to evaluate the emotional and motivational significance of stimuli and to adapt behaviour accordingly. The IMAGEN study is the first multicentre genetic-neuroimaging study aimed at identifying the genetic and neurobiological basis of individual variability in impulsivity, reinforcer sensitivity and emotional reactivity, and determining their predictive value for the development of frequent psychiatric disorders. Comprehensive behavioural and neuropsychological characterization, functional and structural neuroimaging and genome-wide association analyses of 2000 14-year-old adolescents are combined with functional genetics in animal and human models. Results will be validated in 1000 adolescents from the Canadian Saguenay Youth Study. The sample will be followed up longitudinally at the age of 16 years to investigate the predictive value of genetics and intermediate phenotypes for the development of frequent psychiatric disorders. This review describes the strategies the IMAGEN consortium used to meet the challenges posed by large-scale multicentre imaging–genomics investigations. We provide detailed methods and Standard Operating Procedures that we hope will be helpful for the design of future studies. These include standardization of the clinical, psychometric and neuroimaging-acquisition protocols, development of a central database for efficient analyses of large multimodal data sets and new analytic approaches to large-scale genetic neuroimaging analyses.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3


  1. Plomin R, McGuffin P . Psychopathology in the postgenomic era. Annu Rev Psychol 2003; 54: 205–228.

    Article  Google Scholar 

  2. Caspi A, Moffitt TE . Gene-environment interactions in psychiatry: joining forces with neuroscience. Nat Rev Neurosci 2006; 7: 583–590.

    Article  CAS  Google Scholar 

  3. Goldman D, Oroszi G, Ducci F . The genetics of addictions: uncovering the genes. Nat Rev Genet 2005; 6: 521–532.

    Article  CAS  Google Scholar 

  4. Wong CCY, Schumann G . Genetics of addictions: strategies for addressing heterogeneity and polygenicity of substance use disorders. Philosophical Transl R Soc B series 2008; 363: 3213–3222.

    Article  Google Scholar 

  5. Kalivas PW, Volkow ND . The neural basis of addiction: a pathology of motivation and choice. Am J Psychiatry 2005; 162: 1403–1413.

    Article  Google Scholar 

  6. O'Brien BS, Frick PJ . Reward dominance: associations with anxiety, conduct problems, and psychopathy in children. J Abnorm Child Psychol 1996; 24: 223–240.

    Article  CAS  Google Scholar 

  7. Bergh C, Soedersten P . Anorexia nervosa, self-starvation and the reward of stress. Nat Med 1996; 2: 21–22.

    Article  CAS  Google Scholar 

  8. Cardinal RN, Winstanley CA, Robbins TW, Everitt BJ . Limbic corticostriatal systems and delayed reinforcement. Ann NY Acad Sci 2004; 1021: 33–50.

    Article  Google Scholar 

  9. Juckel G, Schlagenhauf F, Koslowski M, Wuestenberg T, Villringer A, Knutson B et al. Dysfunction of ventral striatal reward prediction in schizophrenia. Neuroimage 2009; 29: 409–416.

    Article  Google Scholar 

  10. Murray GK, Corlett PR, Clark L, Pessiglione M, Blackwell AD, Honey G et al. Substantia nigra/ ventral tegmental reward prediction error disruption in psychosis. Mol Psychiatry 2008; 13: 267–276.

    Article  CAS  Google Scholar 

  11. Schultz RT . Developmental deficits in social perception in autism: the role of the amygdala and fusiform face area. Int J Dev Neurosci 2005; 23: 125–141.

    Article  Google Scholar 

  12. Birbaumer N, Veit R, Lotze M, Erb M, Hermann C, Grodd W et al. Deficient fear conditioning in psychopathy: a functional magnetic resonance imaging study. Arch Gen Psychiatry 2005; 62: 799–805.

    Article  Google Scholar 

  13. Paus T, Keshavan M, Giedd JN . Why do many psychiatric disorders emerge during adolescence? Nat Rev Neurosci 2008; 9: 947–957.

    Article  CAS  Google Scholar 

  14. Blakemore SJ . The social brain in adolescence. Nat Rev Neurosci 2008; 9: 267–277.

    Article  CAS  Google Scholar 

  15. Whalen PJ, Shin LM, Somerville LH, McLean AA, Kim H . Functional neuroimaging studies of the amygdala in depression. Semin Clin Neuropsychiatry 2002; 7: 234–242.

    Article  Google Scholar 

  16. Phillips ML, Drevets WC, Rauch SL, Lane R . Neurobiology of emotion perception II: implications for major psychiatric disorders. Biol Psychiatry 2003; 54: 515–528.

    Article  Google Scholar 

  17. Mier D, Kirsch P, Meyer-Lindenberg A . Neural substrates of pleiotropic action of genetic variation in COMT: a meta-analysis. Mol Psychiatry, published online 5 May 2009; doi:10.1038/mp.2009.36.

  18. Flint J, Munafo MR . The endophenotype concept in psychiatric genetics. Psychol Med 2007; 37: 163–180.

    Article  Google Scholar 

  19. Etkin A, Klemenhagen KC, Dudmna JT, Rogan MT, Hen R, Kandel ER et al. Individual differences in trait anxiety predict the response of the basolateral amygdala to unconsciously processed fearful faces. Neuron 2004; 44: 1043–1055.

    Article  CAS  Google Scholar 

  20. Haas BW, Omura K, Constable RT, Canli T . Emotional conflict and neuroticism: personality-dependent activation in the amygdala and subgenual anterior cingulate. Behav Neurosci 2007; 121: 249–256.

    Article  Google Scholar 

  21. Hariri AR, Weinberger DR . Imaging genomics. Br Med Bull 2003; 65: 259–270.

    Article  CAS  Google Scholar 

  22. Hariri AR . The neurobiology of individual differences in complex behavioural traits. Annu Rev Neurosci 2009; 32: 225–247.

    Article  CAS  Google Scholar 

  23. Munafo MR, Brown SM, Hariri AR . Serotonin transporter (5-HTTLPR) genotype and amygdala activation: a meta-analysis. Biol Psychiatry 2008; 63: 852–857.

    Article  CAS  Google Scholar 

  24. Lesch KP, Bengel D, Heils A, Sabol SZ, Greenberg BD, Petri S et al. Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science 1996; 274: 1527–1531.

    Article  CAS  Google Scholar 

  25. Collier DA, Stoeber G, Li T, Heils A, Catalano M, Di Bella D et al. A novel functional polymorphism within the promoter of the serotonin transporter gene: possible role in susceptibility to affective disorders. Mol Psychiatry 1996; 6: 453–460.

    Google Scholar 

  26. Smolka MN . Gene-gene effects on central processing of aversive stimuli. Mol Psychiatry 2007; 12: 307–317.

    Article  CAS  Google Scholar 

  27. Yacubian J, Sommer T, Schroeder K, Glaescher J, Kalisch R, Leuenberger B et al. Gene-gene interaction associated with neural reward sensitivity. Proc Natl Acad Sci USA 2007; 104: 8125–8130.

    Article  CAS  Google Scholar 

  28. Heinz A, Braus DF, Smolka MN, Wrase J, Puls I, Hermann D et al. Amygdala-prefrontal coupling depends on a genetic variation of the serotonin transporter. Nat Neurosci 2005; 8: 20–21.

    Article  CAS  Google Scholar 

  29. Bookheimer SY, Strojwas MH, Cohen MS, Saunders AM, Pericak-Vance MA, Mazziotta JC et al. Patterns of brain activation in people at risk for Alzheimer′s disease. N Engl J Med 2000; 343: 450–456.

    Article  CAS  Google Scholar 

  30. Puls I, Gallinat J . The concept of endophenotypes in psychiatric diseases. Meeting the expectations? Pharmacopysychiatry 2008; 41 (Suppl 1): S37–S43.

    Google Scholar 

  31. Green EK, Grozeva D, Jones I, Kirov G, Caesar S, Gordon-Smith K et al. The bipolar disorder risk allele at CACNA1C also confers risk of recurrent major depression and of schizophrenia. Mol Psychiatry 2009, published online 21 July 2009; doi:10.1038/mp.2009.49.

  32. Stefansson H, Ophoff RA, Steinberg S, Andreassen OA, Cichon S, Rujescu D et al. Common variants conferring risk of schizophrenia. Nature 2009; 460: 744–747.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Enoch MA, Schuckit MA, Johnson BA, Goldman D . Genetics of alcoholism using intermediate phenotypes. Alcohol Clin Exp Res 2003; 27: 169–176.

    Article  Google Scholar 

  34. Robinson ES, Eagle DM, Economidou D, Theobald DE, Mar AC, Murphy ER et al. Behavioural characterisation of high impulsivity on the 5-choice serial reaction time task: specific deficits in ‘waiting’ and ‘stopping’. Behav Brain Res 2009; 196: 310–316.

    Article  CAS  Google Scholar 

  35. Dalley JW, Fryer TD, Brichard L, Robinson ESJ, Theobald DEH, Laane K et al. Nucleus accumbens D2/3 receptors predict trait impulsivity and cocaine reinforcement. Science 2007; 315: 1267–1270.

    Article  CAS  Google Scholar 

  36. Goodman R . The strengths and difficulties questionnaire: a research note. J Child Psychol Psychiatry 1997; 38: 581–586.

    Article  CAS  Google Scholar 

  37. Goodman R, Ford T, Richards H, Gatward R, Meltzer H . The development and well-being assessment: description and initial validation of an integrated assessment of child and adolescent psychopathology. J Child Psychol Psychiatry 2000; 41: 645–655.

    Article  CAS  Google Scholar 

  38. Costa PT, McCrae RR . NEO PI-R. Professional manual. Psychological Assessment Resources: Odessa, FL, 1992.

    Google Scholar 

  39. Cloninger CR, Przybeck TR, Swrakic DM, Wetzel RD (eds). The Temperament and Character Inventory (TCI): A guide to its development and use. Center for Psychobiology of Personality, Washington University: St Louis, Missouri, 1994.

    Google Scholar 

  40. Conrod PJ, Woicik P . Validation of a four-factor model of personality risk for substance abuse and examination of a brief instrument of assessing personality risk. Addict Biol 2002; 7: 329–346.

    Article  Google Scholar 

  41. Woicik P, Stewart SH, Pihl RO, Conrod PJ . The Substance Use Risk Profile Scale: a scale measuring traits linked to reinforcement-specific substance use profiles. Addictive Behav 2009; 34: 1042–1055.

    Article  Google Scholar 

  42. Kirby KN, Petry NM, Bickel WK . Heroin addicts have higher discount rates for delayed rewards than non-drug using controls. J Exp Psychol Gen 1999; 128: 78–87.

    Article  CAS  Google Scholar 

  43. Maxwell ME . Manual for the Figures Clinical Neurogenetics Branch, Intramural Research Program. National Institute of Mental Health 1992.

  44. Robbins TW, James M, Owen AM, Sahakian BJ, McInnes L, Rabbit P . Cambridge Neuropsychological Test Automated Battery (CANTAB): a factor analytic study of a large sample of normal elderly volunteers. Dementia 1994; 5: 266–281.

    CAS  PubMed  Google Scholar 

  45. Pollak SD, Kistler DJ . Early experience is associated with the development of categorical representations for facial expressions of emotion. Proc Natl Acad Sci 2002; 99: 9072–9076.

    Article  CAS  Google Scholar 

  46. MacLeod C, Mathews A, Tata P . Attentional bias in emotional disorders. J Abnorm Psychol 1986; 95: 15–20.

    Article  CAS  Google Scholar 

  47. Arnett PA, Newman JP . Gray′ three-arousal model: an empirical investigation. Personality and Individual Differences 2000; 28: 1171–1189.

    Article  Google Scholar 

  48. Hibell B, Andersson B, Bkarnason T, Kokkevi A, Morgan M, Narusk A . The 1995 ESPAD resport: alcohol and ohter drug use among students in 26 European countries. Swedish Council for Information on Alcohol and Other Drugs: Stockholm, 1997.

    Google Scholar 

  49. Gavin DR, Ross HE, Skinner HA . Diagnostic validity of the Drug Abuse Screening Test in the assessment of DSM-III drug disorders. Br J Addict 1989; 84: 301–307.

    Article  CAS  Google Scholar 

  50. Selzer ML . The Mitchigan alcoholism screening test: the quest for a new diagnostic instrument. Am J Psychiatry 1971; 127: 1653–1658.

    Article  CAS  Google Scholar 

  51. Heatherton TF, Kozlowski LT, Frecker RC, Fagerstrom KO . The Fagerstrom Test for Nicotine Dependence: a revision of the Fagerstrom Tolerance Questionnaire. Br J Addict 1991; 86q: 1119–1127.

    Article  Google Scholar 

  52. Sobell LC, Sobell MB (eds) Timeline followback user's guide: A calendar method for assessing alcohol and drug use. Addiction Research Foundation: Toronto, Ontario, Canada, 1996.

    Google Scholar 

  53. Newcomb MD, Huba GJ, Bentler PM . A multidimensional assessment of stressful life events among adolescents: derivation and correlates. J Health Soc Behav 1981; 22: 400–415.

    Article  Google Scholar 

  54. Straus MA . Measuring intra family conflict and violence: The Conflict Tactics Scale. JMarriage Family 1979; 41: 75–88.

    Article  Google Scholar 

  55. Pausova Z, Paus T, Abrahamowicz M, Almerigi J, Arbour N, Bernard M et al. Genes, maternal smoking, and the offspring brain and body during adolescence: Design of the Saguenay Youth Study. Hum Brain Mapp 2007; 28: 502–518.

    Article  Google Scholar 

  56. Petersen A, Crockett L, Richards M, Boxer A . A self-report measure of pubertal status: reliability, validity, and initial norms. J Youth Adoles 1988; 17: 117–133.

    Article  CAS  Google Scholar 

  57. Tiffin J (ed) Purdue Pegboard examiner manual. Science Research Associate: Chicago, IL, 1968.

    Google Scholar 

  58. Tofts PS, Lloyd D, Clark CA, Barker GJ, Parker GJ, McConville P et al. Test liquids for quantitative MRI measurements of self-diffusion coefficient in vivo. Mag Res Med 2000; 47: 24–31.

    Google Scholar 

  59. Jones DK, Williams SCR, Gasston D, Horsfield MA, Simmons A, Howard R . Isotropic resolution diffusion tensor imaging with whole brain acquisition in a clinically acceptable time. Hum Brain Mapp 2002; 15: 216–230.

    Article  Google Scholar 

  60. Rubia K, Smith AB, Taylor E, Brammer MJ . Linear age-correlated functional development of right inferior fronto-stiato-cerebellar networks during response inhibition and anterior cingulate during error-related processes. Hum Brain Mapp 2007; 28: 1163–1177.

    Article  Google Scholar 

  61. Grosbras MH, Paus T . Brain networks involved in viewing angry hands or faces. Cereb Cortex 2007; 16: 1087–1096.

    Article  Google Scholar 

  62. Knutson B, Westdorp A, Kaiser E, Hommer D . FMRI visualization of brain activity during a monetary incentive delay task. Neuroimage 2000; 12: 20–27.

    Article  CAS  Google Scholar 

  63. Pinel P, Thirion B, Meriaux S, Jobert A, Serres J, Le Bihan D et al. Fast reproducible identification and large-scale databasing of individual functional cognitive networks. BMC Neurosci 2007; 8: 91.

    Article  Google Scholar 

  64. Robbins TW . The 5-choice serial reaction time task: behavioural pharmacology and functional neurochemistry. Psychopharmacology (Berlin) 2002; 163: 362–380.

    Article  CAS  Google Scholar 

  65. Dalley JW, Mar AC, Economidou D, Robbins TW . Neurobehavioural mechanisms of impulsivity: fronto-striatal systems and functional neurochemistry. Pharmacol Biochem Behav 2008; 90: 250–260.

    Article  CAS  Google Scholar 

  66. Hirschhorn JN, Daly MJ . Genome-wide association studies for common diseases and complex traits. Nat Rev Genet 2005; 6: 95–108.

    Article  CAS  Google Scholar 

  67. McCarthy MI, Hirschhorn JN . Genome-wide association studies: potential next steps on a genetic journey. Hum Mol Genet 2008; 17 (R2): R156–R166.

    Article  CAS  Google Scholar 

  68. Adolphs R . Social cognition and the human brain. Trends Cognitive Sci 1999; 12: 469–479.

    Article  Google Scholar 

  69. Schultz W . Multiple reward signals in the brain. Nat Rev Neurosci 2000; 1: 199–207.

    Article  CAS  Google Scholar 

  70. Garavan H, Hester R, Murphy K, Fassbender C, Kelly C . Individual differences in the functional neuroanatomy of inhibitory control. Brain Res 2006; 11015: 130–142.

    Article  Google Scholar 

Download references


IMAGEN study receives research funding from the European Community's Sixth Framework Programme (LSHM-CT-2007-037286). This paper reflects only the author's views, and the Community is not liable for any use that may be made of the information contained therein. The Saguenay Youth Study project was funded by the Canadian Institutes of Health Research, Heart and Stroke Foundation of Quebec, and the Canadian Foundation for Innovation. We thank all families for their help with this study.

Author contributionsDevelopment of the neuropsychological test battery in humans and behavioural test batteries in animals: TW Robbins, D Stephens, H Flor, JW Dalley; recruitment and psychometric standardization: P Conrod, M Struve, H Flor, H Garavan, A Heinz, K Mann, J-L Martinot, T Paus and Partner Delosis; Neuroimaging Standardization: G Barker, L Reed, C Mallik, B Ittermann; Neuroimaging assessment and analyses: C Büchel, T Paus, E Loth, H Flor, H Garavan, J Gallinat, M Smolka, K Mann, T Banaschewski; Data base development, preprocessing and statistical analyses (biostatistics): J-B Poline, A Barbot and Partners Nordic NeuroLab, Pertimm, Scito; Genetic analyses: G Schumann, M Lathrop, R Spanagel; Ethics: M Rietschel; Genetic neuroimaging training: A Ströhle, A Heinz; E Loth and G Schumann wrote this paper.

Author information

Authors and Affiliations



Corresponding author

Correspondence to G Schumann.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information



IMAGEN consortium

King's College, Institute of Psychiatry, London, UK

G Schumann

P Conrod

L Reed

G Barker

S Williams

E Loth

M Struve

A Lourdusamy

S Costafreda

A Cattrell

C Nymberg

L Topper

L Smith

S Havatzias

K Stueber

C Mallik

T-K Clarke

D Stacey

C Peng Wong

H Werts

S Williams

C Andrew

S Desrivieres

S Zewdie (Coordination office)

Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité – Universitätsmedizin Berlin, Berlin, Germany

A Heinz

J Gallinat

I Häke

N Ivanov

A Klär

J Reuter

C Palafox

C Hohmann

C Schilling

K Lüdemann

A Romanowski

A Ströhle

E Wolff

M Rapp

Physikalisch-Technische Bundesanstalt, Berlin, Germany

B Ittermann

R Brühl

A Ihlenfeld

B Walaszek

F Schubert

Institute of Neuroscience, Trinity College, Dublin, Ireland

H Garavan

C Connolly

J Jones

E Lalor

E McCabe

A Ní Shiothcháin

R Whelan

Department of Psychopharmacology, Central Institute of Mental Health, Mannheim, Germany

R Spanagel,

F Leonardi-Essmann,

W Sommer

Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Mannheim, Germany

H Flor

S Vollstaedt-Klein

F Nees

Department of Child and Adolescent Psychiatry, Central Institute of Mental Health, Mannheim, Germany

T Banaschewski

L Poustka

S Steiner

Department of Addictive Behaviour and Addiction Medicine, Mannheim, Germany

K Mann

M Buehler

S Vollstedt-Klein

Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Mannheim, Germany

M Rietschel

E Stolzenburg

C Schmal

F Schirmbeck

Brain and Body Centre, University of Nottingham, Nottingham, UK

T Paus

P Gowland

N Heym

C Lawrence

C Newman

Z Pausova

Technische Universitaet Dresden, Dresden, Germany

M Smolka

T Huebner

S Ripke

E Mennigen

K Muller

V Ziesch

Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany

C Büchel

U Bromberg

T Fadai

L Lueken

J Yacubian

J Finsterbusch

Institut National de la Santé et de la Recherche Médicale, Service Hospitalier Frédéric Joliot, Orsay, France

J-L Martinot

E Artiges

N Bordas

S de Bournonville

Z Bricaud

F Gollier Briand

H Lemaitre

J Massicotte

R Miranda

M-L Paillère Martinot

J Penttilä

Neurospin, Commissariat à l′Energie Atomique, Paris, France

J-B Poline

A Barbot

Y Schwartz

C Lalanne

V Frouin

B Thyreau

Department of Experimental Psychology, Behavioural and Clinical Neurosciences Institute, University of Cambridge, Cambridge, UK

J Dalley

A Mar

T Robbins

N Subramaniam

D Theobald

N Richmond

M de Rover

A Molander

E Jordan

E Robinson

L Hipolata

M Moreno

Mercedes Arroyo

University of Sussex, Brighton, UK

D Stephens

T Ripley

H Crombag

Y Pena

Centre National de Genotypage, Evry, France (CNG)

M Lathrop

D Zelenika

S Heath

German Centre for Ethics in Medicine, Bonn (DZEM), Germany

D Lanzerath

B Heinrichs

T Spranger

Gesellschaft fuer Ablauforganisation m.b.H. (Munich) (GABO), Germany

B Fuchs

C Speiser

Klinik für Kinder- und Jugendpsychiatrie, Zentrum für Psychosoziale Medizin, Universitätsklinikum Heidelberg, Germany

F Resch

J Haffner

P Parzer

R Brunner

Scito, Paris, France

A Klaassen

I Klaassen

PERTIMM, Asnières-Sur-Seine, France

P Constant

X Mignon

NordicNeuroLabs, Bergen, Norway

T Thomsen

S Zysset

A Vestboe

Delosis Ltd, London, UK

J Ireland

J Rogers

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schumann, G., Loth, E., Banaschewski, T. et al. The IMAGEN study: reinforcement-related behaviour in normal brain function and psychopathology. Mol Psychiatry 15, 1128–1139 (2010).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • impulsivity
  • reward
  • emotional reactivity
  • fMRI
  • genome-wide association scan
  • functional genetics

This article is cited by


Quick links