Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

TMEM132D, a new candidate for anxiety phenotypes: evidence from human and mouse studies

Abstract

The lifetime prevalence of panic disorder (PD) is up to 4% worldwide and there is substantial evidence that genetic factors contribute to the development of PD. Single-nucleotide polymorphisms (SNPs) in TMEM132D, identified in a whole-genome association study (GWAS), were found to be associated with PD in three independent samples, with a two-SNP haplotype associated in each of three samples in the same direction, and with a P-value of 1.2e−7 in the combined sample (909 cases and 915 controls). Independent SNPs in this gene were also associated with the severity of anxiety symptoms in patients affected by PD or panic attacks as well as in patients suffering from unipolar depression. Risk genotypes for PD were associated with higher TMEM132D mRNA expression levels in the frontal cortex. In parallel, using a mouse model of extremes in trait anxiety, we could further show that anxiety-related behavior was positively correlated with Tmem132d mRNA expression in the anterior cingulate cortex, central to the processing of anxiety/fear-related stimuli, and that in this animal model a Tmem132d SNP is associated with anxiety-related behavior in an F2 panel. TMEM132D may thus be an important new candidate gene for PD as well as more generally for anxiety-related behavior.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Hettema JM, Neale MC, Kendler KS . A review and meta-analysis of the genetic epidemiology of anxiety disorders. Am J Psychiatry 2001; 158: 1568–1578.

    Article  CAS  Google Scholar 

  2. Kessler RC, Berglund P, Demler O, Jin R, Walters EE . Lifetime prevalence and age-of-onset distributions’ of DSM-IV disorders in the national comorbidity survey replication. Arch Gen Psychiatry 2005; 62: 593–602.

    Article  Google Scholar 

  3. Kendler KS, Gardner CO, Prescott CA . Panic syndromes in a population-based sample of male and female twins. Psychol Med 2001; 31: 989–1000.

    Article  CAS  Google Scholar 

  4. Gelernter J, Bonvicini K, Page G, Woods SW, Goddard AW, Kruger S et al. Linkage genome scan for loci predisposing to panic disorder or agoraphobia. Am J Med Genet 2001; 105: 548–557.

    Article  CAS  Google Scholar 

  5. Smoller JW, Acierno JS, Rosenbaum JF, Biederman J, Pollack MH, Meminger S et al. Targeted genome screen of panic disorder and anxiety disorder proneness using homology to murine QTL regions. Am J Med Genet 2001; 105: 195–206.

    Article  CAS  Google Scholar 

  6. Middeldorp CM, Hottenga JJ, Slagboom PE, Sullivan PF, de Geus EJ, Posthuma D et al. Linkage on chromosome 14 in a genome-wide linkage study of a broad anxiety phenotype. Mol Psychiatry 2007; 13: 84–89.

    Article  Google Scholar 

  7. Fullerton J, Cubin M, Tiwari H, Wang C, Bomhra A, Davidson S et al. Linkage analysis of extremely discordant and concordant sibling pairs identifies quantitative-trait loci that influence variation in the human personality trait neuroticism. Am J Hum Genet 2003; 72: 879–890.

    Article  CAS  Google Scholar 

  8. Gratacos M, Sahun I, Gallego X, Amador-Arjona A, Estivill X, Dierssen M . Candidate genes for panic disorder: insight from human and mouse genetic studies. Genes Brain Behav 2007; 6: 2–23.

    Article  CAS  Google Scholar 

  9. Skol AD, Scott JS, Abecasis GR, Boehnke M . Optimal design for two-stage genome-wide association studies. Genet Epidemiol 2007; 31: 776–788.

    Article  Google Scholar 

  10. Kromer SA, Kessler MS, Milfay D, Birg IN, Bunck M, Czibere L et al. Identification of glyoxalase-I as a protein marker in a mouse model of extremes in trait anxiety. J Neurosci 2005; 25: 4375–4384.

    Article  Google Scholar 

  11. Kessler MS, Murgatroyd C, Bunck M, Czibere L, Frank E, Jacob W et al. Diabetes insipidus and, partially, low anxiety-related behaviour are linked to a SNP-associated vasopressin deficit in LAB mice. Eur J Neurosci 2007; 26: 2857–2864.

    Article  Google Scholar 

  12. Bunck M, Czibere L, Horvath C, Graf C, Frank E, Kessler MS et al. A hypomorphic vasopressin allele prevents anxiety-related behavior. PLoS ONE 2009; 4: e5129.

    Article  Google Scholar 

  13. Bandelow B . Panic and Agoraphobia Scale (PAS). Hogrefe & Huber Publishers: Göttingen, Bern, Toronto, Seattle, 1999.

    Google Scholar 

  14. Hamilton M . The assessment of anxiety-states by rating. Br J Med Psychol 1959; 32: 50–55.

    Article  CAS  Google Scholar 

  15. Hamilton M . A rating scale for depression. J Neurol Neurosurg Psychiatry 1960; 23: 56–62.

    Article  CAS  Google Scholar 

  16. Wittchen HU, Pfister H . DIA-X-Interviews: Manual für Screening-Verfahren und Interview. Swets & Zeitlinger: Frankfurt, 1997.

    Google Scholar 

  17. Steinlein OK, Deckert J, Nothen MM, Franke P, Maier W, Beckmann H et al. Neuronal nicotinic acetylcholine receptor alpha 4 subunit (CHRNA4) and panic disorder: an association study. Am J Med Genet 1997; 74: 199–201.

    Article  CAS  Google Scholar 

  18. Sand PG, Mori T, Godau C, Stober G, Flachenecker P, Franke P et al. Norepinephrine transporter gene (NET) variants in patients with panic disorder. Neurosci Let 2002; 333: 41–44.

    Article  CAS  Google Scholar 

  19. Fangerau H, Ohlraun S, Granath RO, Nothen MM, Rietschel M, Schulze TG . Computer-assisted phenotype characterization for genetic research in psychiatry. Hum Hered 2004; 58: 122–130.

    Article  Google Scholar 

  20. Steffens M, Lamina C, Illig T, Bettecken T, Vogler R, Entz P et al. SNP-based analysis of genetic substructure in the German population. Hum Hered 2006; 62: 20–29.

    Article  CAS  Google Scholar 

  21. Lieb R, Isensee B, von Sydow K, Wittchen HU . The Early Developmental Stages of Psychopathology Study (EDSP): a methodological update. Eur Addict Res 2000; 6: 170–182.

    Article  CAS  Google Scholar 

  22. Bandelow B . Assessing the efficacy of treatments for panic disorder and agoraphobia .2. The panic and agoraphobia scale. Int Clin Psychopharmacol 1995; 10: 73–81.

    Article  CAS  Google Scholar 

  23. Binder EB, Salyakina D, Lichtner P, Wochnik GM, Ising M, Putz B et al. Polymorphisms in FKBP5 are associated with increased recurrence of depressive episodes and rapid response to antidepressant treatment. Nat Genet 2004; 36: 1319–1325.

    Article  CAS  Google Scholar 

  24. Stranger BE, Forrest MS, Clark AG, Minichiello MJ, Deutsch S, Lyle R et al. Genome-wide associations of gene expression variation in humans. PloS Genet 2005; 1: 695–704.

    Article  CAS  Google Scholar 

  25. Myers AJ, Gibbs JR, Awebster J, Rohrer K, Zhao A, Marlowe L et al. A survey of genetic human cortical gene expression. Nat Genet 2007; 39: 1494–1499.

    Article  CAS  Google Scholar 

  26. Palkovits M . Isolated removal of hypothalamic or other brain nuclei of rat. Brain Res 1973; 59: 449–450.

    Article  CAS  Google Scholar 

  27. Paxinos G, Franklin K . The Mouse Brain in Stereotaxic Coordinates. Academic Press: San Diego, San Francisco, New York, Boston, London, Sydney, Tokyo, 2001.

    Google Scholar 

  28. Livak KJ, Schmittgen TD . Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(−Delta Delta C) method. Methods 2001; 25: 402–408.

    Article  CAS  Google Scholar 

  29. Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B et al. The structure of haplotype blocks in the human genome. Science 2002; 296: 2225–2229.

    Article  CAS  Google Scholar 

  30. Dunning M, Smith M, Thorne N, Tavaré S . An R package to analyse Illumina BeadArrays. R News 2006; 6: 17–23.

    Google Scholar 

  31. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D . Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 2006; 38: 904–909.

    Article  CAS  Google Scholar 

  32. Landgraf R, Kessler MS, Bunck M, Murgatroyd C, Spengler D, Zimbelmann M et al. Candidate genes of anxiety-related behavior in HAB/LAB rats and mice: focus on vasopressin and glyoxalase-I. Neurosci Biobehav Rev 2007; 31: 89–102.

    Article  CAS  Google Scholar 

  33. Cheeta S, Kenny PJ, File SE . Hippocampal and septal injections of nicotine and 8-OH-DPAT distinguish among different animal tests of anxiety. Prog Neuro-Psychopharmacol Biol Psychiatry 2000; 24: 1053–1067.

    Article  CAS  Google Scholar 

  34. Carobrez AP, Teixeira KV, Graeff FG . Modulation of defensive behavior by periaqueductal gray NMDA/glycine-B receptor. Neurosci Biobehav Rev 2001; 25: 697–709.

    Article  CAS  Google Scholar 

  35. Salchner P, Sartori SB, Sinner C, Wigger A, Frank E, Landgraf R et al. Airjet and FG-7142-induced Fos expression differs in rats selectively bred for high and low anxiety-related behavior. Neuropharmacol 2006; 50: 1048–1058.

    Article  CAS  Google Scholar 

  36. Lohmueller KE, Pearce CL, Pike M, Lander ES, Hirschhorn JN . Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nat Genet 2003; 33: 177–182.

    Article  CAS  Google Scholar 

  37. Dudbridge F, Gusnanto A . Estimation of significance thresholds for genomewide association scans. Genet Epidemiol 2008; 32: 227–234.

    Article  Google Scholar 

  38. Sullivan PF, de Geus EJ, Willemsen G, James MR, Smit JH, Zandbelt T et al. Genome-wide association for major depressive disorder: a possible role for the presynaptic protein piccolo. Mol Psychiatry 2009; 14: 359–375.

    Article  CAS  Google Scholar 

  39. Muglia P, Tozzi F, Galwey NW, Francks C, Upmanyu R, Kong XQ et al. Genome-wide association study of recurrent major depressive disorder in two European case-control cohorts. Mol Psychiatry 2008 e-pub ahead of print.

  40. Otowa T, Yoshida E, Sugaya N, Yasuda S, Nishimura Y, Inoue K et al. Genome-wide association study of panic disorder in the Japanese population. J Hum Genet 2009; 54: 122–126.

    Article  CAS  Google Scholar 

  41. Consortium TWTCC . Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007; 447: 661–678.

    Article  Google Scholar 

  42. Baum AE, Akula N, Cabanero M, Cardona I, Corona W, Klemens B et al. A genome-wide association study implicates diacylglycerol kinase eta (DGKH) and several other genes in the etiology of bipolar disorder. Mol Psychiatry 2007; 13: 197–207.

    Article  Google Scholar 

  43. Gupta AR, State MW . Recent advances in the genetics of autism. Biol Psychiatry 2007; 61: 429–437.

    Article  Google Scholar 

  44. Riley B, Kendler KS . Molecular genetic studies of schizophrenia. Eur J Hum Genet 2006; 14: 669–680.

    Article  CAS  Google Scholar 

  45. Smith DJ, Lusis AJ . The allelic structure of common disease. Hum Mol Genet 2002; 11: 2455–2461.

    Article  CAS  Google Scholar 

  46. Winkelmann J, Schormair B, Lichtner P, Ripke S, Xiong L, Jalilzadeh S et al. Genome-wide association study of restless legs syndrome identifies common variants in three genomic regions. Nat Genet 2007; 39: 1000–1006.

    Article  CAS  Google Scholar 

  47. Skol AD, Scott LJ, Abecasis GR, Boehnke M . Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies. Nat Genet 2006; 38: 209–213.

    Article  CAS  Google Scholar 

  48. Roberts RG, Gardner RJ, Bobrow M . Searching for the 1 in 2 400 000: a review of dystorphin gene point mutations. Hum Mutat 1994; 4: 1–11.

    Article  CAS  Google Scholar 

  49. U M, Shen L, Oshida T, Miyauchi J, Yamada M, Miyashita T . Identification of novel direct transcriptional targets of glucocorticoid receptor. Leukemia 2004; 18: 1850–1856.

    Article  CAS  Google Scholar 

  50. Hubler TR, Scammell JG . Intronic hormone response elements mediate regulation of FKBP5 by progestins and glucocorticoids. Cell Stress Chaperones 2004; 9: 243–252.

    Article  CAS  Google Scholar 

  51. Coplan JD, Lydiard RB . Brain circuits in panic disorder. Biol Psychiatry 1998; 44: 1264–1276.

    Article  CAS  Google Scholar 

  52. Ohman A . The role of the amygdala in human fear: automatic detection of threat. Psychoneuroendocrinol 2005; 30: 953–958.

    Article  Google Scholar 

  53. Milad MR, Quirk GJ, Pitman RK, Orr SP, Fischl B, Rauch SL . A role for the human dorsal anterior cingulate cortex in fear expression. Biol Psychiatry 2007; 62: 1191–1194.

    Article  Google Scholar 

  54. Straube T, Mentzel HJ, Miltner WHR . Waiting for spiders: brain activation during anticipatory anxiety in spider phobics. Neuroimage 2007; 37: 1427–1436.

    Article  Google Scholar 

  55. Hasler G, Fromm S, Alvarez RP, Luckenbaugh DA, Drevets WC, Grillon C . Cerebral blood flow in immediate and sustained anxiety. J Neurosci 2007; 27: 6313–6319.

    Article  CAS  Google Scholar 

  56. Etkin A, Wager TD . Functional neuroimaging of anxiety: a meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. Am J Psychiatry 2007; 164: 1476–1488.

    Article  Google Scholar 

  57. Mobbs D, Petrovic P, Marchant JL, Hassabis D, Weiskopf N, Seymour B et al. When fear is near: threat imminence elicits prefrontal-periaqueductal gray shifts in humans. Science 2007; 317: 1079–1083.

    Article  CAS  Google Scholar 

  58. Nagase T, Kikuno R, Ohara O . Prediction of the coding sequences of unidentified human genes. XXII. The complete sequences of 50 new cDNA clones which code for large proteins. DNA Res 2001; 8: 319–327.

    Article  CAS  Google Scholar 

  59. Nomoto H, Yonezawa T, Itoh K, Ono K, Yamamoto K, Oohashi T et al. Molecular cloning of a novel transmembrane protein MOLT expressed by mature oligodendrocytes. J Biochem 2003; 134: 231–238.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G Ernst-Jansen, G Gajewsky, J Huber, E Kappelmann, S Sauer, S Damast, M Koedel, M Asmus and A Sangl for their excellent technical support. We also thank Rene Breuer from the Central Institute of Mental Health from Mannheim for excellent management of the blood and phenotypic database. Katharina Domschke and Jürgen Deckert were supported by the Deutsche Forschungsgemeinschaft (SFB-TRR-58 C2 and Z2). We thank the NGFN for a grant enabling the genotyping of PopGen subjects within the second round of funding. We thank further the NGFN MooDs and the Max Planck Excellence Foundation for grant support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Erhardt.

Ethics declarations

Competing interests

The authors declare no conflicts of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erhardt, A., Czibere, L., Roeske, D. et al. TMEM132D, a new candidate for anxiety phenotypes: evidence from human and mouse studies. Mol Psychiatry 16, 647–663 (2011). https://doi.org/10.1038/mp.2010.41

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2010.41

Keywords

This article is cited by

Search

Quick links