Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Poor replication of candidate genes for major depressive disorder using genome-wide association data

Abstract

Data from the Genetic Association Information Network (GAIN) genome-wide association study (GWAS) in major depressive disorder (MDD) were used to explore previously reported candidate gene and single-nucleotide polymorphism (SNP) associations in MDD. A systematic literature search of candidate genes associated with MDD in case–control studies was performed before the results of the GAIN MDD study became available. Measured and imputed candidate SNPs and genes were tested in the GAIN MDD study encompassing 1738 cases and 1802 controls. Imputation was used to increase the number of SNPs from the GWAS and to improve coverage of SNPs in the candidate genes selected. Tests were carried out for individual SNPs and the entire gene using different statistical approaches, with permutation analysis as the final arbiter. In all, 78 papers reporting on 57 genes were identified, from which 92 SNPs could be mapped. In the GAIN MDD study, two SNPs were associated with MDD: C5orf20 (rs12520799; P=0.038; odds ratio (OR) AT=1.10, 95% CI 0.95–1.29; OR TT=1.21, 95% confidence interval (CI) 1.01–1.47) and NPY (rs16139; P=0.034; OR C allele=0.73, 95% CI 0.55–0.97), constituting a direct replication of previously identified SNPs. At the gene level, TNF (rs76917; OR T=1.35, 95% CI 1.13–1.63; P=0.0034) was identified as the only gene for which the association with MDD remained significant after correction for multiple testing. For SLC6A2 (norepinephrine transporter (NET)) significantly more SNPs (19 out of 100; P=0.039) than expected were associated while accounting for the linkage disequilibrium (LD) structure. Thus, we found support for involvement in MDD for only four genes. However, given the number of candidate SNPs and genes that were tested, even these significant may well be false positives. The poor replication may point to publication bias and false-positive findings in previous candidate gene studies, and may also be related to heterogeneity of the MDD phenotype as well as contextual genetic or environmental factors.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1
Figure 2
Figure 3
Figure 4

References

  1. Manolio TA, Rodriguez LL, Brooks L, Abecasis G, Ballinger D, Daly M et al. New models of collaboration in genome-wide association studies: the Genetic Association Information Network. Nat Genet 2007; 39: 1045–1051.

    CAS  Article  PubMed  Google Scholar 

  2. Boomsma DI, Willemsen G, Sullivan PF, Heutink P, Meijer P, Sondervan D et al. Genome-wide association of major depression: description of samples for the GAIN Major Depressive Disorder Study: NTR and NESDA biobank projects. Eur J Hum Genet 2008; 16: 335–342.

    CAS  Article  PubMed  Google Scholar 

  3. The Wellcome Trust Case-Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007; 447: 661–678.

    PubMed Central  Article  CAS  Google Scholar 

  4. Sullivan PF, de Geus EJ, Willemsen G, James MR, Smit JH, Zandbelt T et al. Genome-wide association for major depressive disorder: a possible role for the presynaptic protein piccolo. Mol Psychiatry 2009; 14: 359–375.

    CAS  Article  PubMed  Google Scholar 

  5. Arking DE, Pfeufer A, Post W, Kao WH, Newton-Cheh C, Ikeda M et al. A common genetic variant in the NOS1 regulator NOS1AP modulates cardiac repolarization. Nat Genet 2006; 38: 644–651.

    CAS  PubMed  Article  Google Scholar 

  6. Roeder K, Bacanu SA, Wasserman L, Devlin B . Using linkage genome scans to improve power of association in genome scans. Am J Hum Genet 2006; 78: 243–252.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. Hirschhorn JN, Lohmueller K, Byrne E, Hirschhorn K . A comprehensive review of genetic association studies. Genet Med 2002; 4: 45–61.

    CAS  Article  PubMed  Google Scholar 

  8. Munafo MR . Candidate gene studies in the 21st century: meta-analysis, mediation, moderation. Genes Brain Behav 2006; 5(Suppl 1): 3–8.

    CAS  PubMed  Article  Google Scholar 

  9. Lopez-Leon S, Janssens AC, Gonzalez-Zuloeta Ladd AM, Del-Favero J, Claes SJ, Oostra BA et al. Meta-analyses of genetic studies on major depressive disorder. Mol Psychiatry 2008; 13: 772–785.

    CAS  Article  PubMed  Google Scholar 

  10. Penninx BW, Beekman AT, Smit JH, Zitman FG, Nolen W, Spinhoven P et al. The Netherlands Study of Depression and Anxiety (NESDA): rationale, objectives and methods. Int J Methods Psychiatr Res 2008; 17: 121–140.

    PubMed  PubMed Central  Article  Google Scholar 

  11. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. American Psychiatric Association: Washington, DC, 1994.

  12. World Health Organization. Composite International Diagnostic Interview (CIDI), Version 2.1.. World Health Organization: Geneva, Switzerland, 1997.

  13. Marchini J, Howie B, Myers S, McVean G, Donnelly P . A new multipoint method for genome-wide association studies by imputation of genotypes. Nat Genet 2007; 39: 906–913.

    CAS  PubMed  Article  Google Scholar 

  14. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007; 81: 559–575.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Maes M, Delanghe J, Scharpe S, Meltzer HY, Cosyns P, Suy E et al. Haptoglobin phenotypes and gene frequencies in unipolar major depression. Am J Psychiatry 1994; 151: 112–116.

    CAS  Article  PubMed  Google Scholar 

  16. Koks S, Nikopensius T, Koido K, Maron E, Altmae S, Heinaste E et al. Analysis of SNP profiles in patients with major depressive disorder. Int J Neuropsychopharmacol 2006; 9: 167–174.

    CAS  PubMed  Article  Google Scholar 

  17. Zhang X, Gainetdinov RR, Beaulieu JM, Sotnikova TD, Burch LH, Williams RB et al. Loss-of-function mutation in tryptophan hydroxylase-2 identified in unipolar major depression. Neuron 2005; 45: 11–16.

    CAS  PubMed  Article  Google Scholar 

  18. Blakely RD . Overview: a rare opportunity or just one less reason to be depressed. Neuron 2005; 48: 701–702; author reply 705–706.

    CAS  PubMed  Article  Google Scholar 

  19. Baghai TC, Binder EB, Schule C, Salyakina D, Eser D, Lucae S et al. Polymorphisms in the angiotensin-converting enzyme gene are associated with unipolar depression, ACE activity and hypercortisolism. Mol Psychiatry 2006; 11: 1003–1015.

    CAS  PubMed  Article  Google Scholar 

  20. Arking DE, Khera A, Xing C, Kao WH, Post W, Boerwinkle E et al. Multiple independent genetic factors at NOS1AP modulate the QT interval in a multi-ethnic population. PLoS ONE 2009; 4: e4333.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  21. Muglia P, Tozzi F, Galwey NW, Francks C, Upmanyu R, Kong XQ et al. Genome-wide association study of recurrent major depressive disorder in two European case-control cohorts. Mol Psychiatry; advance online publication, 23 December 2008; doi:10.1038/mp.2008.131.

    Article  CAS  PubMed  Google Scholar 

  22. Lucae S, Salyakina D, Barden N, Harvey M, Gagne B, Labbe M et al. P2RX7, a gene coding for a purinergic ligand-gated ion channel, is associated with major depressive disorder. Hum Mol Genet 2006; 15: 2438–2445.

    CAS  PubMed  Article  Google Scholar 

  23. Willis-Owen SA, Shifman S, Copley RR, Flint J . DCNP1: a novel candidate gene for major depression. Mol Psychiatry 2006; 11: 121–122.

    CAS  Article  PubMed  Google Scholar 

  24. Heilig M, Zachrisson O, Thorsell A, Ehnvall A, Mottagui-Tabar S, Sjogren M et al. Decreased cerebrospinal fluid neuropeptide Y (NPY) in patients with treatment refractory unipolar major depression: preliminary evidence for association with preproNPY gene polymorphism. J Psychiatr Res 2004; 38: 113–121.

    Article  PubMed  Google Scholar 

  25. Inoue K, Itoh K, Yoshida K, Shimizu T, Suzuki T . Positive association between T-182C polymorphism in the norepinephrine transporter gene and susceptibility to major depressive disorder in a Japanese population. Neuropsychobiology 2004; 50: 301–304.

    CAS  Article  PubMed  Google Scholar 

  26. Jun TY, Pae CU, Hoon H, Chae JH, Bahk WM, Kim KS et al. Possible association between -G308A tumour necrosis factor-alpha gene polymorphism and major depressive disorder in the Korean population. Psychiatr Genet 2003; 13: 179–181.

    PubMed  Article  Google Scholar 

  27. Hek K, Mulder CL, Luijendijk HJ, van Duijn CM, Hofman A, Uitterlinden AG et al. The PCLO gene and depressive disorders: replication in a population-based study. Hum Mol Genet 2009; 19: 731–734.

    PubMed  Article  CAS  Google Scholar 

  28. Martinez FD . Gene-environment interactions in asthma: with apologies to William of Ockham. Proc Am Thorac Soc 2007; 4: 26–31.

    PubMed  PubMed Central  Article  Google Scholar 

  29. Psychiatric GWAS Consortium Steering Committee. A framework for interpreting genome-wide association studies of psychiatric disorders. Mol Psychiatry 2009; 14: 10–17.

    Article  CAS  Google Scholar 

  30. Frisch A, Postilnick D, Rockah R, Michaelovsky E, Postilnick S, Birman E et al. Association of unipolar major depressive disorder with genes of the serotonergic and dopaminergic pathways. Mol Psychiatry 1999; 4: 389–392.

    CAS  Article  PubMed  Google Scholar 

  31. Manki H, Kanba S, Muramatsu T, Higuchi S, Suzuki E, Matsushita S et al. Dopamine D2, D3 and D4 receptor and transporter gene polymorphisms and mood disorders. J Affect Disord 1996; 40: 7–13.

    CAS  Article  PubMed  Google Scholar 

  32. Su S, Zhao J, Bremner JD, Miller AH, Tang W, Bouzyk M et al. Serotonin transporter gene, depressive symptoms and interleukin-6. Circ Cardiovasc Genet 2009; 2: 614–620.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. Wray NR, James MR, Gordon SD, Dumenil T, Ryan L, Coventry WL et al. Accurate, large-scale genotyping of 5HTTLPR and flanking single nucleotide polymorphisms in an association study of depression, anxiety, and personality measures. Biol Psychiatry 2009; 66: 468–476.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. Arinami T, Yamada N, Yamakawa-Kobayashi K, Hamaguchi H, Toru M . Methylenetetrahydrofolate reductase variant and schizophrenia/depression. Am J Med Genet 1997; 74: 526–528.

    CAS  Article  PubMed  Google Scholar 

  35. Kelly CB, McDonnell AP, Johnston TG, Mulholland C, Cooper SJ, McMaster D et al. The MTHFR C677 T polymorphism is associated with depressive episodes in patients from Northern Ireland. J Psychopharmacol 2004; 18: 567–571.

    CAS  Article  PubMed  Google Scholar 

  36. Lemonde S, Turecki G, Bakish D, Du L, Hrdina PD, Bown CD et al. Impaired repression at a 5-hydroxytryptamine 1A receptor gene polymorphism associated with major depression and suicide. J Neurosci 2003; 23: 8788–8799.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. Choi MJ, Kang RH, Ham BJ, Jeong HY, Lee MS . Serotonin receptor 2A gene polymorphism (-1438A/G) and short-term treatment response to citalopram. Neuropsychobiology 2005; 52: 155–162.

    CAS  PubMed  Article  Google Scholar 

  38. Choi MJ, Lee HJ, Lee HJ, Ham BJ, Cha JH, Ryu SH et al. Association between major depressive disorder and the -1438A/G polymorphism of the serotonin 2A receptor gene. Neuropsychobiology 2004; 49: 38–41.

    CAS  Article  PubMed  Google Scholar 

  39. Du L, Bakish D, Lapierre YD, Ravindran AV, Hrdina PD . Association of polymorphism of serotonin 2A receptor gene with suicidal ideation in major depressive disorder. Am J Med Genet 2000; 96: 56–60.

    CAS  PubMed  Article  Google Scholar 

  40. Lerer B, Macciardi F, Segman RH, Adolfsson R, Blackwood D, Blairy S et al. Variability of 5-HT2C receptor cys23ser polymorphism among European populations and vulnerability to affective disorder. Mol Psychiatry 2001; 6: 579–585.

    CAS  PubMed  Article  Google Scholar 

  41. Yamada K, Hattori E, Iwayama Y, Ohnishi T, Ohba H, Toyota T et al. Distinguishable haplotype blocks in the HTR3A and HTR3B region in the Japanese reveal evidence of association of HTR3B with female major depression. Biol Psychiatry 2006; 60: 192–201.

    CAS  Article  PubMed  Google Scholar 

  42. Mendlewicz J, Oswald P, Claes S, Massat I, Souery D, Van Broeckhoven C et al. Patient-control association study of substance P-related genes in unipolar and bipolar affective disorders. Int J Neuropsychopharmacol 2005; 8: 505–513.

    CAS  Article  PubMed  Google Scholar 

  43. Covault J, Pettinati H, Moak D, Mueller T, Kranzler HR . Association of a long-chain fatty acid-CoA ligase 4 gene polymorphism with depression and with enhanced niacin-induced dermal erythema. Am J Med Genet B Neuropsychiatr Genet 2004; 127B: 42–47.

    PubMed  Article  Google Scholar 

  44. Su QR, Su LY, Su HR, Chen Q, Ren GY, Yin Y et al. Polymorphisms of androgen receptor gene in childhood and adolescent males with first-onset major depressive disorder and association with related symptomatology. Int J Neurosci 2007; 117: 903–917.

    CAS  PubMed  Article  Google Scholar 

  45. Saab YB, Gard PR, Yeoman MS, Mfarrej B, El-Moalem H, Ingram MJ . Renin-angiotensin-system gene polymorphisms and depression. Prog Neuropsychopharmacol Biol Psychiatry 2007; 31: 1113–1118.

    CAS  PubMed  Article  Google Scholar 

  46. Holmes C, Russ C, Kirov G, Aitchison KJ, Powell JF, Collier DA et al. Apolipoprotein E: depressive illness, depressive symptoms, and Alzheimer's disease. Biol Psychiatry 1998; 43: 159–164.

    CAS  Article  PubMed  Google Scholar 

  47. Fan PL, Chen CD, Kao WT, Shu BC, Lung FW . Protective effect of the apo epsilon2 allele in major depressive disorder in Taiwanese. Acta Psychiatr Scand 2006; 113: 48–53.

    CAS  Article  PubMed  Google Scholar 

  48. van West D, Del-Favero J, Aulchenko Y, Oswald P, Souery D, Forsgren T et al. A major SNP haplotype of the arginine vasopressin 1B receptor protects against recurrent major depression. Mol Psychiatry 2004; 9: 287–292.

    CAS  PubMed  Article  Google Scholar 

  49. Hwang JP, Tsai SJ, Hong CJ, Yang CH, Lirng JF, Yang YM . The Val66Met polymorphism of the brain-derived neurotrophic-factor gene is associated with geriatric depression. Neurobiol Aging 2006; 27: 1834–1837.

    CAS  PubMed  Article  Google Scholar 

  50. Ribeiro L, Busnello JV, Cantor RM, Whelan F, Whittaker P, Deloukas P et al. The brain-derived neurotrophic factor rs6265 (Val66Met) polymorphism and depression in Mexican-Americans. NeuroReport 2007; 18: 1291–1293.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. Schumacher J, Jamra RA, Becker T, Ohlraun S, Klopp N, Binder EB et al. Evidence for a relationship between genetic variants at the brain-derived neurotrophic factor (BDNF) locus and major depression. Biol Psychiatry 2005; 58: 307–314.

    CAS  PubMed  Article  Google Scholar 

  52. Hashimoto R, Okada T, Kato T, Kosuga A, Tatsumi M, Kamijima K et al. The breakpoint cluster region gene on chromosome 22q11 is associated with bipolar disorder. Biol Psychiatry 2005; 57: 1097–1102.

    CAS  PubMed  Article  Google Scholar 

  53. Massat I, Souery D, Del-Favero J, Nothen M, Blackwood D, Muir W et al. Association between COMT (Val158Met) functional polymorphism and early onset in patients with major depressive disorder in a European multicenter genetic association study. Mol Psychiatry 2005; 10: 598–605.

    CAS  Article  PubMed  Google Scholar 

  54. Funke B, Malhotra AK, Finn CT, Plocik AM, Lake SL, Lencz T et al. COMT genetic variation confers risk for psychotic and affective disorders: a case control study. Behav Brain Funct 2005; 1: 19.

    PubMed  PubMed Central  Article  Google Scholar 

  55. Pae CU, Yu HS, Kim TS, Lee CU, Lee SJ, Jun TY et al. Monocyte chemoattractant protein-1 (MCP1) promoter -2518 polymorphism may confer a susceptibility to major depressive disorder in the Korean population. Psychiatry Res 2004; 127: 279–281.

    CAS  Article  PubMed  Google Scholar 

  56. Comings DE, Wu S, Rostamkhani M, McGue M, Iacono WG, MacMurray JP . Association of the muscarinic cholinergic 2 receptor (CHRM2) gene with major depression in women. Am J Med Genet 2002; 114: 527–529.

    PubMed  Article  Google Scholar 

  57. Lai IC, Hong CJ, Tsai SJ . Association study of nicotinic-receptor variants and major depressive disorder. J Affect Disord 2001; 66: 79–82.

    CAS  Article  PubMed  Google Scholar 

  58. Claes S, Villafuerte S, Forsgren T, Sluijs S, Del-Favero J, Adolfsson R et al. The corticotropin-releasing hormone binding protein is associated with major depression in a population from Northern Sweden. Biol Psychiatry 2003; 54: 867–872.

    CAS  Article  PubMed  Google Scholar 

  59. Liu Z, Zhu F, Wang G, Xiao Z, Wang H, Tang J et al. Association of corticotropin-releasing hormone receptor1 gene SNP and haplotype with major depression. Neurosci Lett 2006; 404: 358–362.

    CAS  PubMed  Article  Google Scholar 

  60. Villafuerte SM, Del-Favero J, Adolfsson R, Souery D, Massat I, Mendlewicz J et al. Gene-based SNP genetic association study of the corticotropin-releasing hormone receptor-2 (CRHR2) in major depression. Am J Med Genet 2002; 114: 222–226.

    Article  PubMed  Google Scholar 

  61. Dorado P, Penas-Lledo EM, Gonzalez AP, Caceres MC, Cobaleda J, Llerena A . Increased risk for major depression associated with the short allele of the serotonin transporter promoter region (5-HTTLPR-S) and the CYP2C9*3 allele. Fundam Clin Pharmacol 2007; 21: 451–453.

    CAS  PubMed  Article  Google Scholar 

  62. LLerena A, Berecz R, Dorado P, Gonzalez AP, Penas LEM, De La Rubia A . CYP2C9 gene and susceptibility to major depressive disorder. Pharmacogenomics J 2003; 3: 300–302.

    CAS  PubMed  Article  Google Scholar 

  63. Hashimoto R, Numakawa T, Ohnishi T, Kumamaru E, Yagasaki Y, Ishimoto T et al. Impact of the DISC1 Ser704Cys polymorphism on risk for major depression, brain morphology and ERK signaling. Hum Mol Genet 2006; 15: 3024–3033.

    CAS  PubMed  Article  Google Scholar 

  64. Dikeos DG, Papadimitriou GN, Avramopoulos D, Karadima G, Daskalopoulou EG, Souery D et al. Association between the dopamine D3 receptor gene locus (DRD3) and unipolar affective disorder. Psychiatr Genet 1999; 9: 189–195.

    CAS  Article  PubMed  Google Scholar 

  65. Serretti A, Lilli R, Di Bella D, Bertelli S, Nobile M, Novelli E et al. Dopamine receptor D4 gene is not associated with major psychoses. Am J Med Genet 1999; 88: 486–491.

    CAS  PubMed  Article  Google Scholar 

  66. Tsai SJ, Wang YC, Hong CJ, Chiu HJ . Association study of oestrogen receptor alpha gene polymorphism and suicidal behaviours in major depressive disorder. Psychiatr Genet 2003; 13: 19–22.

    Article  PubMed  Google Scholar 

  67. Geng YG, Su QR, Su LY, Chen Q, Ren GY, Shen SQ et al. Comparison of the polymorphisms of androgen receptor gene and estrogen alpha and beta gene between adolescent females with first-onset major depressive disorder and controls. Int J Neurosci 2007; 117: 539–547.

    CAS  Article  PubMed  Google Scholar 

  68. Thomson PA, Wray NR, Thomson AM, Dunbar DR, Grassie MA, Condie A et al. Sex-specific association between bipolar affective disorder in women and GPR50, an X-linked orphan G protein-coupled receptor. Mol Psychiatry 2005; 10: 470–478.

    CAS  PubMed  Article  Google Scholar 

  69. Henkel V, Baghai TC, Eser D, Zill P, Mergl R, Zwanzger P et al. The gamma amino butyric acid (GABA) receptor alpha-3 subunit gene polymorphism in unipolar depressive disorder: a genetic association study. Am J Med Genet B Neuropsychiatr Genet 2004; 126B: 82–87.

    PubMed  Article  Google Scholar 

  70. Tadokoro K, Hashimoto R, Tatsumi M, Kosuga A, Kamijima K, Kunugi H . The Gem interacting protein (GMIP) gene is associated with major depressive disorder. Neurogenetics 2005; 6: 127–133.

    CAS  Article  PubMed  Google Scholar 

  71. Cao MQ, Hu SY, Zhang CH, Xia DS . Study on the interrelationship between 5-HTTLPR/G-protein beta3 subunit (C825 T) polymorphisms and depressive disorder. Psychiatr Genet 2007; 17: 233–238.

    PubMed  Article  Google Scholar 

  72. Lee HJ, Cha JH, Ham BJ, Han CS, Kim YK, Lee SH et al. Association between a G-protein beta 3 subunit gene polymorphism and the symptomatology and treatment responses of major depressive disorders. Pharmacogenomics J 2004; 4: 29–33.

    CAS  Article  PubMed  Google Scholar 

  73. Zill P, Baghai TC, Zwanzger P, Schule C, Minov C, Riedel M et al. Evidence for an association between a G-protein beta3-gene variant with depression and response to antidepressant treatment. NeuroReport 2000; 11: 1893–1897.

    CAS  Article  PubMed  Google Scholar 

  74. Pae CU, Yu HS, Kim JJ, Lee CU, Lee SJ, Lee KU et al. BanI polymorphism of the cytosolic phospholipase A2 gene and mood disorders in the Korean population. Neuropsychobiology 2004; 49: 185–188.

    CAS  Article  PubMed  Google Scholar 

  75. Kolsch H, Ptok U, Majores M, Schmitz S, Rao ML, Maier W et al. Putative association of polymorphism in the mannose 6-phosphate receptor gene with major depression and Alzheimer's disease. Psychiatr Genet 2004; 14: 97–100.

    Article  PubMed  Google Scholar 

  76. Schulze TG, Muller DJ, Krauss H, Scherk H, Ohlraun S, Syagailo YV et al. Association between a functional polymorphism in the monoamine oxidase A gene promoter and major depressive disorder. Am J Med Genet 2000; 96: 801–803.

    CAS  Article  PubMed  Google Scholar 

  77. Yu YW, Tsai SJ, Hong CJ, Chen TJ, Chen MC, Yang CW . Association study of a monoamine oxidase a gene promoter polymorphism with major depressive disorder and antidepressant response. Neuropsychopharmacology 2005; 30: 1719–1723.

    CAS  Article  PubMed  Google Scholar 

  78. Du L, Bakish D, Ravindran A, Hrdina PD . MAO-A gene polymorphisms are associated with major depression and sleep disturbance in males. NeuroReport 2004; 15: 2097–2101.

    CAS  Article  PubMed  Google Scholar 

  79. Kunugi H, Hashimoto R, Yoshida M, Tatsumi M, Kamijima K . A missense polymorphism (S205 L) of the low-affinity neurotrophin receptor p75NTR gene is associated with depressive disorder and attempted suicide. Am J Med Genet B Neuropsychiatr Genet 2004; 129B: 44–46.

    PubMed  Article  Google Scholar 

  80. van Rossum EF, Binder EB, Majer M, Koper JW, Ising M, Modell S et al. Polymorphisms of the glucocorticoid receptor gene and major depression. Biol Psychiatry 2006; 59: 681–688.

    CAS  PubMed  Article  Google Scholar 

  81. van West D, Van Den Eede F, Del-Favero J, Souery D, Norrback KF, Van Duijn C et al. Glucocorticoid receptor gene-based SNP analysis in patients with recurrent major depression. Neuropsychopharmacology 2006; 31: 620–627.

    CAS  Article  PubMed  Google Scholar 

  82. Wong ML, Whelan F, Deloukas P, Whittaker P, Delgado M, Cantor RM et al. Phosphodiesterase genes are associated with susceptibility to major depression and antidepressant treatment response. Proc Natl Acad Sci USA 2006; 103: 15124–15129.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  83. Ryu SH, Lee SH, Lee HJ, Cha JH, Ham BJ, Han CS et al. Association between norepinephrine transporter gene polymorphism and major depression. Neuropsychobiology 2004; 49: 174–177.

    CAS  Article  PubMed  Google Scholar 

  84. Nobile M, Cataldo MG, Giorda R, Battaglia M, Baschirotto C, Bellina M et al. A case-control and family-based association study of the 5-HTTLPR in pediatric-onset depressive disorders. Biol Psychiatry 2004; 56: 292–295.

    CAS  PubMed  Article  Google Scholar 

  85. Hoefgen B, Schulze TG, Ohlraun S, von Widdern O, Hofels S, Gross M et al. The power of sample size and homogenous sampling: association between the 5-HTTLPR serotonin transporter polymorphism and major depressive disorder. Biol Psychiatry 2005; 57: 247–251.

    CAS  Article  PubMed  Google Scholar 

  86. Cervilla JA, Rivera M, Molina E, Torres-Gonzalez F, Bellon JA, Moreno B et al. The 5-HTTLPR s/s genotype at the serotonin transporter gene (SLC6A4) increases the risk for depression in a large cohort of primary care attendees: the PREDICT-gene study. Am J Med Genet B Neuropsychiatr Genet 2006; 141B: 912–917.

    CAS  Article  PubMed  Google Scholar 

  87. Grunblatt E, Loffler C, Zehetmayer S, Jungwirth S, Tragl KH, Riederer P et al. Association study of the 5-HTTLPR polymorphism and depression in 75-year-old nondemented subjects from the Vienna Transdanube Aging (VITA) study. J Clin Psychiatry 2006; 67: 1373–1378.

    Article  PubMed  Google Scholar 

  88. Munafo MR, Clark TG, Roberts KH, Johnstone EC . Neuroticism mediates the association of the serotonin transporter gene with lifetime major depression. Neuropsychobiology 2006; 53: 1–8.

    CAS  PubMed  Article  Google Scholar 

  89. Mann JJ, Huang YY, Underwood MD, Kassir SA, Oppenheim S, Kelly TM et al. A serotonin transporter gene promoter polymorphism (5-HTTLPR) and prefrontal cortical binding in major depression and suicide. Arch Gen Psychiatry 2000; 57: 729–738.

    CAS  PubMed  Article  Google Scholar 

  90. Ogilvie AD, Battersby S, Bubb VJ, Fink G, Harmar AJ, Goodwim GM et al. Polymorphism in serotonin transporter gene associated with susceptibility to major depression. Lancet 1996; 347: 731–733.

    CAS  Article  PubMed  Google Scholar 

  91. Liu W, Gu N, Feng G, Li S, Bai S, Zhang J et al. Tentative association of the serotonin transporter with schizophrenia and unipolar depression but not with bipolar disorder in Han Chinese. Pharmacogenetics 1999; 9: 491–495.

    CAS  PubMed  Google Scholar 

  92. Domotor E, Sarosi A, Balogh G, Szekely A, Hejjas K, Sasvari-Szekely M et al. Association of neurocognitive endophenotype and STin2 polymorphism in major depressive disorder]. Neuropsychopharmacol Hung 2007; 9: 53–62.

    PubMed  Google Scholar 

  93. Bozina N, Mihaljevic-Peles A, Sagud M, Jakovljevic M, Sertic J . Serotonin transporter polymorphism in Croatian patients with major depressive disorder. Psychiatr Danub 2006; 18: 83–89.

    CAS  PubMed  Google Scholar 

  94. Battersby S, Ogilvie AD, Smith CA, Blackwood DH, Muir WJ, Quinn JP et al. Structure of a variable number tandem repeat of the serotonin transporter gene and association with affective disorder. Psychiatr Genet 1996; 6: 177–181.

    CAS  Article  PubMed  Google Scholar 

  95. Gutierrez B, Pintor L, Gasto C, Rosa A, Bertranpetit J, Vieta E et al. Variability in the serotonin transporter gene and increased risk for major depression with melancholia. Hum Genet 1998; 103: 319–322.

    CAS  Article  PubMed  Google Scholar 

  96. Schahab S, Heun R, Schmitz S, Maier W, Kolsch H . Association of polymorphism in the transcription factor LBP-1c/CP2/LSF gene with Alzheimer's disease and major depression. Dement Geriatr Cogn Disord 2006; 22: 95–98.

    CAS  Article  PubMed  Google Scholar 

  97. Tan EC, Chan AO, Tan CH, Mahendran R, Wang A, Chua HC . Case-control and linkage disequilibrium studies of the tryptophan hydroxylase gene polymorphisms and major depressive disorder. Psychiatr Genet 2003; 13: 151–154.

    Article  PubMed  Google Scholar 

  98. Gizatullin R, Zaboli G, Jonsson EG, Asberg M, Leopardi R . Haplotype analysis reveals tryptophan hydroxylase (TPH) 1 gene variants associated with major depression. Biol Psychiatry 2006; 59: 295–300.

    CAS  Article  PubMed  Google Scholar 

  99. Zill P, Baghai TC, Zwanzger P, Schule C, Eser D, Rupprecht R et al. SNP and haplotype analysis of a novel tryptophan hydroxylase isoform (TPH2) gene provide evidence for association with major depression. Mol Psychiatry 2004; 9: 1030–1036.

    CAS  PubMed  Article  Google Scholar 

  100. Zhou Z, Roy A, Lipsky R, Kuchipudi K, Zhu G, Taubman J et al. Haplotype-based linkage of tryptophan hydroxylase 2 to suicide attempt, major depression, and cerebrospinal fluid 5-hydroxyindoleacetic acid in 4 populations. Arch Gen Psychiatry 2005; 62: 1109–1118.

    CAS  PubMed  Article  Google Scholar 

  101. Koido K, Koks S, Nikopensius T, Maron E, Altmae S, Heinaste E et al. Polymorphisms in wolframin (WFS1) gene are possibly related to increased risk for mood disorders. Int J Neuropsychopharmacol 2005; 8: 235–244.

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ting Wu for making the flow diagram in Figure 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F J Bosker.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bosker, F., Hartman, C., Nolte, I. et al. Poor replication of candidate genes for major depressive disorder using genome-wide association data. Mol Psychiatry 16, 516–532 (2011). https://doi.org/10.1038/mp.2010.38

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2010.38

Keywords

  • candidate genes
  • genome-wide association study
  • major depressive disorder
  • replication
  • single-nucleotide polymorphisms

Further reading

Search

Quick links