Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Feature Review
  • Published:

Translational research in bipolar disorder: emerging insights from genetically based models

Abstract

Bipolar disorder (BPD) is characterized by vulnerability to episodic depression and mania and spontaneous cycling. Because of marked advances in candidate-gene and genome-wide association studies, the list of risk genes for BPD is growing rapidly, creating an unprecedented opportunity to understand the pathophysiology of BPD and to develop novel therapeutics for its treatment. However, genetic findings are associated with major unresolved issues, including whether and how risk variance leads to behavioral abnormalities. Although animal studies are key to resolving these issues, consensus is needed regarding how to define and monitor phenotypes related to mania, depression and mood swing vulnerability in genetically manipulated rodents. In this study we discuss multiple facets of this challenging area, including theoretical considerations, available tests, limitations associated with rodent behavioral modeling and promising molecular–behavioral findings. These include CLOCK, glycogen synthase kinase 3β (GSK-3β), glutamate receptor 6 (GluR6), extracellular signal-regulated kinase-1 (ERK1), p11 (or S100A10), vesicular monoamine transporter 2 (VMAT2 or SLC18A2), glucocorticoid receptors (GRs), Bcl-2-associated athanogene-1 (BAG1) and mitochondrial DNA polymerase-γ (POLG). Some mutant rodent strains show behavioral clusters or activity patterns that cross-species phenocopy objective/observable facets of mood syndromes, and changes in these clustered behaviors can be used as outcome measures in genetic–behavioral research in BPD.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Belmaker RH . Bipolar disorder. N Engl J Med 2004; 351: 476–486.

    CAS  PubMed  Google Scholar 

  2. Goodwin FK, Jamison KR . Manic-Depressive Illness: Bipolar and Recurrent Unipolar Disorders, 2nd edn. Oxford University Press: New York, 2007.

    Google Scholar 

  3. Baum AE, Akula N, Cabanero M, Cardona I, Corona W, Klemens B et al. A genome-wide association study implicates diacylglycerol kinase eta (DGKH) and several other genes in the etiology of bipolar disorder. Mol Psychiatry 2008; 13: 197–207.

    Article  CAS  PubMed  Google Scholar 

  4. Kato T . Molecular genetics of bipolar disorder and depression. Psychiatry Clin Neurosci 2007; 61: 3–19.

    Article  CAS  PubMed  Google Scholar 

  5. Wellcome Trust Case Control Consortium. Genome-wide association study of 14 000 cases of seven common diseases and 3000 shared controls. Nature 2007; 447: 661–678.

    Google Scholar 

  6. Post RM, Leverich GS . The role of psychosocial stress in the onset and progression of bipolar disorder and its comorbidities: the need for earlier and alternative modes of therapeutic intervention. Dev Psychopathol 2006; 18: 1181–1211.

    Article  CAS  PubMed  Google Scholar 

  7. Ferreira MA, O'Donovan MC, Meng YA, Jones IR, Ruderfer DM, Jones L et al. Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. Nat Genet 2008; 40: 1056–1058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Insel TR . From animal models to model animals. Biol Psychiatry 2007; 62: 1337–1339.

    Article  PubMed  Google Scholar 

  9. Maeng S, Zarate Jr CA, Du J, Schloesser RJ, McCammon J, Chen G et al. Cellular mechanisms underlying the antidepressant effects of ketamine: role of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors. Biol Psychiatry 2008; 63: 349–352.

    Article  CAS  PubMed  Google Scholar 

  10. Nestler EJ, Gould E, Manji H, Buncan M, Duman RS, Greshenfeld HK et al. Preclinical models: status of basic research in depression. Biol Psychiatry 2002; 52: 503–528.

    Article  PubMed  Google Scholar 

  11. Shaltiel G, Maeng S, Malkesman O, Pearson B, Schloesser RJ, Tragon T et al. Evidence for the involvement of the kainate receptor subunit GluR6 (GRIK2) in mediating behavioral displays related to behavioral symptoms of mania. Mol Psychiatry 2008; 13: 858–872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Engel SR, Creson TK, Hao Y, Shen Y, Maeng S, Nekrasova T et al. The extracellular signal-regulated kinase pathway contributes to the control of behavioral excitement. Mol Psychiatry 2009; 14: 448–461.

    Article  CAS  PubMed  Google Scholar 

  13. Cryan JF, Holmes A . The ascent of mouse: advances in modelling human depression and anxiety. Nat Rev Drug Discov 2005; 4: 775–790.

    Article  CAS  PubMed  Google Scholar 

  14. Dranovsky A, Hen R . Hippocampal neurogenesis: regulation by stress and antidepressants. Biol Psychiatry 2006; 59: 1136–1143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. O'Donnell KC, Gould TD . The behavioral actions of lithium in rodent models: leads to develop novel therapeutics. Neurosci Biobehav Rev 2007; 31: 932–962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Einat H . Different behaviors and different strains: potential new ways to model bipolar disorder. Neurosci Biobehav Rev 2007; 31: 850–857.

    Article  PubMed  Google Scholar 

  17. Bourin M, Masse F, Hascoet M . Evidence for the activity of lamotrigine at 5-HT(1A) receptors in the mouse forced swimming test. J Psychiatry Neurosci 2005; 30: 275–282.

    PubMed  PubMed Central  Google Scholar 

  18. Consoni FT, Vital MA, Andreatini R . Dual monoamine modulation for the antidepressant-like effect of lamotrigine in the modified forced swimming test. Eur Neuropsychopharmacol 2006; 16: 451–458.

    Article  CAS  PubMed  Google Scholar 

  19. Gould TD, O'Donnell KC, Dow ER, Du J, Chen G, Manji HK . Involvement of AMPA receptors in the antidepressant-like effects of lithium in the mouse tail suspension test and forced swim test. Neuropharmacology 2008; 54: 577–587.

    Article  CAS  PubMed  Google Scholar 

  20. Crawley JN . Behavioral phenotyping strategies for mutant mice. Neuron 2008; 57: 809–818.

    Article  CAS  PubMed  Google Scholar 

  21. Craddock N, Sklar P . Genetics of bipolar disorder: successful start to a long journey. Trends Genet 2009; 25: 99–105.

    Article  CAS  PubMed  Google Scholar 

  22. Kato T . Role of mitochondrial DNA in calcium signaling abnormality in bipolar disorder. Cell Calcium 2008; 44: 92–102.

    Article  CAS  PubMed  Google Scholar 

  23. Benedetti F, Bernasconi A, Lorenzi C, Pontiggia A, Serretti A, Colombo C et al. A single nucleotide polymorphism in glycogen synthase kinase 3-beta promoter gene influences onset of illness in patients affected by bipolar disorder. Neurosci Lett 2004; 355: 37–40.

    Article  CAS  PubMed  Google Scholar 

  24. Benedetti F, Serretti A, Colombo C, Lorenzi C, Tubazio V, Smeraldi E . A glycogen synthase kinase 3-beta promoter gene single nucleotide polymorphism is associated with age at onset and response to total sleep deprivation in bipolar depression. Neurosci Lett 2004; 368: 123–126.

    Article  CAS  PubMed  Google Scholar 

  25. Benedetti F, Serretti A, Pontiggia A, Bernasconi A, Lorenzi C, Colombo C et al. Long-term response to lithium salts in bipolar illness is influenced by the glycogen synthase kinase 3-beta -50 T/C SNP. Neurosci Lett 2005; 376: 51–55.

    Article  CAS  PubMed  Google Scholar 

  26. Nievergelt CM, Kripke DF, Barrett TB, Burg E, Remick RA, Sadovnick AD et al. Suggestive evidence for association of the circadian genes PERIOD3 and ARNTL with bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 2006; 141B: 234–241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shi J, Wittke-Thompson JK, Badner JA, Hattori E, Potash JB, Willour VL et al. Clock genes may influence bipolar disorder susceptibility and dysfunctional circadian rhythm. Am J Med Genet B Neuropsychiatr Genet 2008; 147B: 1047–1055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Benedetti F, Serretti A, Colombo C, Barbini B, Lorenzi C, Campori E et al. Influence of CLOCK gene polymorphism on circadian mood fluctuation and illness recurrence in bipolar depression. Am J Med Genet B Neuropsychiatr Genet 2003; 123B: 23–26.

    PubMed  Google Scholar 

  29. Benedetti F, Dallaspezia S, Colombo C, Pirovano A, Marino E, Smeraldi E . A length polymorphism in the circadian clock gene Per3 influences age at onset of bipolar disorder. Neurosci Lett 2008; 445: 184–187.

    Article  CAS  PubMed  Google Scholar 

  30. Cichon S, Schumacher J, Muller DJ, Hurter M, Windemuth C, Strauch K et al. A genome screen for genes predisposing to bipolar affective disorder detects a new susceptibility locus on 8q. Hum Mol Genet 2001; 10: 2933–2944.

    Article  CAS  PubMed  Google Scholar 

  31. Dick DM, Foroud T, Flury L, Bowman ES, Miller MJ, Rau NL et al. Genomewide linkage analyses of bipolar disorder: a new sample of 250 pedigrees from the National Institute of Mental Health Genetics Initiative. Am J Hum Genet 2003; 73: 107–114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. McQueen MB, Devlin B, Faraone SV, Nimgaonkar VL, Sklar P, Smoller JW et al. Combined analysis from eleven linkage studies of bipolar disorder provides strong evidence of susceptibility loci on chromosomes 6q and 8q. Am J Hum Genet 2005; 77: 582–595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Park N, Juo SH, Cheng R, Liu J, Loth JE, Lilliston B et al. Linkage analysis of psychosis in bipolar pedigrees suggests novel putative loci for bipolar disorder and shared susceptibility with schizophrenia. Mol Psychiatry 2004; 9: 1091–1099.

    Article  CAS  PubMed  Google Scholar 

  34. Schumacher J, Kaneva R, Jamra RA, Diaz GO, Ohlraun S, Milanova V et al. Genomewide scan and fine-mapping linkage studies in four European samples with bipolar affective disorder suggest a new susceptibility locus on chromosome 1p35-p36 and provides further evidence of loci on chromosome 4q31 and 6q24. Am J Hum Genet 2005; 77: 1102–1111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Benes FM, Lim B, Matzilevich D, Walsh JP, Subburaju S, Minns M . Regulation of the GABA cell phenotype in hippocampus of schizophrenics and bipolars. Proc Natl Acad Sci USA 2007; 104: 10164–10169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Beneyto M, Kristiansen LV, Oni-Orisan A, McCullumsmith RE, Meador-Woodruff JH . Abnormal glutamate receptor expression in the medial temporal lobe in schizophrenia and mood disorders. Neuropsychopharmacology 2007; 32: 1888–1902.

    Article  CAS  PubMed  Google Scholar 

  37. Yuan PX, Huang LD, Jiang YM, Gutkind JS, Manji HK, Chen G . The mood stabilizer valproic acid activates mitogen-activated protein kinases and promotes neurite growth. J Biol Chem 2001; 276: 31674–31683.

    Article  CAS  PubMed  Google Scholar 

  38. Einat H, Yuan P, Gould TD, Li J, Du J, Zhang L et al. The role of the extracellular signal-regulated kinase signaling pathway in mood modulation. J Neurosci 2003; 23: 7311–7316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hao Y, Creson T, Zhang L, Li P, Du F, Yuan P et al. Mood stabilizer valproate promotes ERK pathway-dependent cortical neuronal growth and neurogenesis. J Neurosci 2004; 24: 6590–6599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Creson TK, Yuan P, Manji HK, Chen G . Evidence for involvement of ERK, PI3K, and RSK in induction of Bcl-2 by valproate. J Mol Neurosci 2009; 37: 123–134.

    Article  CAS  PubMed  Google Scholar 

  41. Fan J, Sklar P . Genetics of bipolar disorder: focus on BDNF Val66Met polymorphism. Novartis Found Symp 2008; 289: 60–72; discussion 72–73, 87–93.

    Article  CAS  PubMed  Google Scholar 

  42. Hashimoto R, Numakawa T, Ohnishi T, Kumamaru E, Yagasaki Y, Ishimoto T et al. Impact of the DISC1 Ser704Cys polymorphism on risk for major depression, brain morphology and ERK signaling. Hum Mol Genet 2006; 15: 3024–3033.

    Article  CAS  PubMed  Google Scholar 

  43. Chubb JE, Bradshaw NJ, Soares DC, Porteous DJ, Millar JK . The DISC locus in psychiatric illness. Mol Psychiatry 2008; 13: 36–64.

    Article  CAS  PubMed  Google Scholar 

  44. Sklar P, Smoller JW, Fan J, Ferreira MA, Perlis RH, Chambert K et al. Whole-genome association study of bipolar disorder. Mol Psychiatry 2008; 13: 558–569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Prickaerts J, Moechars D, Cryns K, Lenaerts I, van Craenendonck H, Goris I et al. Transgenic mice overexpressing glycogen synthase kinase 3beta: a putative model of hyperactivity and mania. J Neurosci 2006; 26: 9022–9029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Roybal K, Theobold D, Graham A, DiNieri JA, Russo SJ, Krishnan V et al. Mania-like behavior induced by disruption of CLOCK. Proc Natl Acad Sci USA 2007; 104: 6406–6411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Anand A, Verhoeff P, Seneca N, Zoghbi SS, Seibyl JP, Charney DS et al. Brain SPECT imaging of amphetamine-induced dopamine release in euthymic bipolar disorder patients. Am J Psychiatry 2000; 157: 1108–1114.

    Article  CAS  PubMed  Google Scholar 

  48. Trinh JV, Nehrenberg DL, Jacobsen JP, Caron MG, Wetsel WC . Differential psychostimulant-induced activation of neural circuits in dopamine transporter knockout and wild type mice. Neuroscience 2003; 118: 297–310.

    Article  CAS  PubMed  Google Scholar 

  49. Miyamoto Y, Yamada K, Noda Y, Mori H, Mishina M, Nabeshima T . Lower sensitivity to stress and altered monoaminergic neuronal function in mice lacking the NMDA receptor epsilon 4 subunit. J Neurosci 2002; 22: 2335–2342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yoo JH, Lee SY, Loh HH, Ho IK, Jang CG . Altered emotional behaviors and the expression of 5-HT1A and M1 muscarinic receptors in micro-opioid receptor knockout mice. Synapse 2004; 54: 72–82.

    Article  CAS  PubMed  Google Scholar 

  51. Filliol D, Ghozland S, Chluba J, Martin M, Matthes HW, Simonin F et al. Mice deficient for delta- and mu-opioid receptors exhibit opposing alterations of emotional responses. Nat Genet 2000; 25: 195–200.

    Article  CAS  PubMed  Google Scholar 

  52. Mombereau C, Kaupmann K, Froestl W, Sansig G, van der Putten H, Cryan JF . Genetic and pharmacological evidence of a role for GABA(B) receptors in the modulation of anxiety- and antidepressant-like behavior. Neuropsychopharmacology 2004; 29: 1050–1062.

    Article  CAS  PubMed  Google Scholar 

  53. Mombereau C, Kaupmann K, Gassmann M, Bettler B, van der Putten H, Cryan JF . Altered anxiety and depression-related behaviour in mice lacking GABAB(2) receptor subunits. NeuroReport 2005; 16: 307–310.

    Article  CAS  PubMed  Google Scholar 

  54. Geddes JR, Calabrese JR, Goodwin GM . Lamotrigine for treatment of bipolar depression: independent meta-analysis and meta-regression of individual patient data from five randomised trials. Br J Psychiatry 2009; 194: 4–9.

    Article  PubMed  Google Scholar 

  55. El-Mallakh RS, Ghaemi SN, Sagduyu K, Thase ME, Wisniewski SR, Nierenberg AA et al. Antidepressant-associated chronic irritable dysphoria (ACID) in STEP-BD patients. J Affect Disord 2008; 111: 372–377.

    Article  CAS  PubMed  Google Scholar 

  56. Zarate CA . Ketamine in mood disorders: translational research from the clinic to the bench and back again. ACNP; 6–10 December 2009; Hollywood, FL.

  57. Bodnoff SR, Suranyi-Cadotte B, Aitken DH, Quirion R, Meaney MJ . The effects of chronic antidepressant treatment in an animal model of anxiety. Psychopharmacology 1988; 95: 298–302.

    Article  CAS  PubMed  Google Scholar 

  58. Carlezon Jr WA, Duman RS, Nestler EJ . The many faces of CREB. Trends Neurosci 2005; 28: 436–445.

    Article  CAS  PubMed  Google Scholar 

  59. Wang JW, Dranovsky A, Hen R . The when and where of BDNF and the antidepressant response. Biol Psychiatry 2008; 63: 640–641.

    Article  PubMed  Google Scholar 

  60. Svenningsson P, Chergui K, Rachleff I, Flajolet M, Zhang X, El Yacoubi M et al. Alterations in 5-HT1B receptor function by p11 in depression-like states. Science 2006; 311: 77–80.

    Article  CAS  PubMed  Google Scholar 

  61. Fukui M, Rodriguiz RM, Zhou J, Jiang SX, Phillips LE, Caron MG et al. Vmat2 heterozygous mutant mice display a depressive-like phenotype. J Neurosci 2007; 27: 10520–10529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Christiansen L, Tan Q, Iachina M, Bathum L, Kruse TA, McGue M et al. Candidate gene polymorphisms in the serotonergic pathway: influence on depression symptomatology in an elderly population. Biol Psychiatry 2007; 61: 223–230.

    Article  CAS  PubMed  Google Scholar 

  63. Ruhe HG, Mason NS, Schene AH . Mood is indirectly related to serotonin, norepinephrine and dopamine levels in humans: a meta-analysis of monoamine depletion studies. Mol Psychiatry 2007; 12: 331–359.

    Article  CAS  PubMed  Google Scholar 

  64. Cryan JF, Slattery DA . Animal models of mood disorders: recent developments. Curr Opin Psychiatry 2007; 20: 1–7.

    Article  PubMed  Google Scholar 

  65. van Rossum EF, Binder EB, Majer M, Koper JW, Ising M, Modell S et al. Polymorphisms of the glucocorticoid receptor gene and major depression. Biol Psychiatry 2006; 59: 681–688.

    Article  CAS  PubMed  Google Scholar 

  66. van West D, Van Den Eede F, Del-Favero J, Souery D, Norrback KF, Van Duijn C et al. Glucocorticoid receptor gene-based SNP analysis in patients with recurrent major depression. Neuropsychopharmacology 2006; 31: 620–627.

    Article  CAS  PubMed  Google Scholar 

  67. Grad I, Picard D . The glucocorticoid responses are shaped by molecular chaperones. Mol Cell Endocrinol 2007; 275: 2–12.

    Article  CAS  PubMed  Google Scholar 

  68. Binder EB, Salyakina D, Lichtner P, Wochnik GM, Ising M, Putz B et al. Polymorphisms in FKBP5 are associated with increased recurrence of depressive episodes and rapid response to antidepressant treatment. Nat Genet 2004; 36: 1319–1325.

    Article  CAS  PubMed  Google Scholar 

  69. Lekman M, Laje G, Charney D, Rush AJ, Wilson AF, Sorant AJ et al. The FKBP5-gene in depression and treatment response--an association study in the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) Cohort. Biol Psychiatry 2008; 63: 1103–1110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Tsai SJ, Hong CJ, Chen TJ, Yu YW . Lack of supporting evidence for a genetic association of the FKBP5 polymorphism and response to antidepressant treatment. Am J Med Genet B Neuropsychiatr Genet 2007; 144B: 1097–1098.

    Article  CAS  PubMed  Google Scholar 

  71. Willour VL, Chen H, Toolan J, Belmonte P, Cutler DJ, Goes FS et al. Family-based association of FKBP5 in bipolar disorder. Mol Psychiatry 2009; 14: 261–268.

    Article  CAS  PubMed  Google Scholar 

  72. Binder EB, Bradley RG, Liu W, Epstein MP, Deveau TC, Mercer KB et al. Association of FKBP5 polymorphisms and childhood abuse with risk of posttraumatic stress disorder symptoms in adults. JAMA 2008; 299: 1291–1305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wei Q, Lu XY, Liu L, Schafer G, Shieh KR, Burke S et al. Glucocorticoid receptor overexpression in forebrain: a mouse model of increased emotional lability. Proc Natl Acad Sci USA 2004; 101: 11851–11856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Cato AC, Mink S . BAG-1 family of cochaperones in the modulation of nuclear receptor action. J Steroid Biochem Mol Biol 2001; 78: 379–388.

    Article  CAS  PubMed  Google Scholar 

  75. Zhou R, Gray NA, Yuan P, Li X, Chen J, Chen G et al. The anti-apoptotic, glucocorticoid receptor cochaperone protein BAG-1 is a long-term target for the actions of mood stabilizers. J Neurosci 2005; 25: 4493–4502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Maeng S, Hunsberger JG, Pearson B, Yuan P, Wang Y, Wei Y et al. BAG1 plays a critical role in regulating recovery from both manic-like and depression-like behavioral impairments. Proc Natl Acad Sci USA 2008; 105: 8766–8771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. American Psychiatric Association's Committee on Psychiatric Diagnosis and Assessment. Diagnostic and Statistical Manual of Mental Disorders, 4th edn. American Psychiatric Publishing, Inc.: Washington DC, 1997.

  78. Kasahara T, Kubota M, Miyauchi T, Noda Y, Mouri A, Nabeshima T et al. Mice with neuron-specific accumulation of mitochondrial DNA mutations show mood disorder-like phenotypes. Mol Psychiatry 2006; 11: 577–593, 523.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support of the Intramural Research Program of the National Institute of Mental Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Chen.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, G., Henter, I. & Manji, H. Translational research in bipolar disorder: emerging insights from genetically based models. Mol Psychiatry 15, 883–895 (2010). https://doi.org/10.1038/mp.2010.3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2010.3

Keywords

This article is cited by

Search

Quick links