Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Dynamic molecular and anatomical changes in the glucocorticoid receptor in human cortical development

Abstract

The glucocorticoid receptor (GR) has a critical role in determining the brain's capacity to respond to stress, and has been implicated in the pathogenesis of psychiatric illness. We hypothesized that key changes in cortical GR occur during adolescence and young adulthood, at a time when individuals are at increased risk of developing schizophrenia, bipolar disorder and major depression. We investigated the mRNA and protein expression of GR in the dorsolateral prefrontal cortex across seven developmental time points from infancy to adulthood. GR mRNA expression, determined by microarray and quantitative real-time PCR, was lowest in neonates and peaked around young adulthood. Western blotting revealed two dynamic patterns of GRα protein expression across the lifespan, with N-terminal variants displaying differing unique patterns of abundance. GRα-A and a 67-kDa GRα isoform mirrored mRNA trends and peaked in toddlers and late in adolescence, whereas a 40-kDa isoform, very likely a GRα-D variant, peaked in neonates and decreased across the lifespan. GRα protein was localized to pyramidal neurons throughout life and most strikingly in young adulthood, but to white matter astrocytes only in neonates and infants (<130 days). These results suggest that the neonatal and late adolescent periods represent critical windows of stress pathway development, and highlight the importance of white matter astrocytes and pyramidal neurons, respectively, at these stages of cortical development. Evidence of dynamic patterns of GR isoform expression and cellular localization across development strengthens the hypothesis that windows of vulnerability to stress exist across human cortical development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Gross KL, Cidlowski JA . Tissue-specific glucocorticoid action: a family affair. Trends Endocrinol Metab 2008; 19: 331–339.

    Article  CAS  Google Scholar 

  2. Meaney MJ, Sapolsky RM, McEwen BS . The development of the glucocorticoid receptor system in the rat limbic brain. I. Ontogeny and autoregulation. Dev Brain Res 1985; 18: 159–164.

    Article  CAS  Google Scholar 

  3. De Kloet ER, Joëls M, Holsboer F . Stress and the brain: from adaptation to disease. Nat Rev Neurosci 2005; 6: 463–475.

    Article  CAS  Google Scholar 

  4. Turner JD, Schote AB, Macedo JA, Pelascini LPL, Muller CP . Tissue specific glucocorticoid receptor expression, a role for alternative first exon usage? Biochem Pharmacol 2006; 72: 1529–1537.

    Article  CAS  Google Scholar 

  5. Lupien SJ, Fiocco A, Wan N, Maheu F, Lord C, Schramek T et al. Stress hormones and human memory function across the lifespan. Psychoneuroendocrinology 2005; 30: 225–242.

    Article  CAS  Google Scholar 

  6. Sousa AR, Lane SJ, Cidlowski JA, Staynov DZ, Lee TH . Glucocorticoid resistance in asthma is associated with elevated in vivo expression of the glucocorticoid receptor beta-isoform. J Allergy Clin Immunol 2000; 105: 943–950.

    Article  CAS  Google Scholar 

  7. Turner JD, Muller CP . Structure of the glucocorticoid receptor (NR3C1) gene 5′ untranslated region: Identification, and tissue distribution of multiple new human exon 1. J Mol Endocrinol 2005; 35: 283–292.

    Article  CAS  Google Scholar 

  8. Presul E, Schmidt S, Kofler R, Helmberg A . Identification, tissue expression, and glucocorticoid responsiveness of alternative first exons of the human glucocorticoid receptor. J Mol Endocrinol 2007; 38: 79–90.

    Article  CAS  Google Scholar 

  9. Lu NZ, Cidlowski JA . Translational regulatory mechanisms generate N-terminal glucocorticoid receptor isoforms with unique transcriptional target genes. Mol Cell 2005; 18: 331–342.

    Article  CAS  Google Scholar 

  10. Moalli PA, Pillay S, Krett NL, Rosen ST . Alternatively spliced glucocorticoid receptor messenger rnas in glucocorticoid-resistant human multiple myeloma cells. Cancer Res 1993; 53: 3877–3879.

    CAS  PubMed  Google Scholar 

  11. Bamberger CM, Bamberger AM, de Castro M, Chrousos GP . Glucocorticoid receptor beta, a potential endogenous inhibitor of glucocorticoid action in humans. J Clin Invest 1995; 95: 2435–2441.

    Article  CAS  Google Scholar 

  12. Rivers C, Levy A, Hancock J, Lightman S, Norman M . Insertion of an amino acid in the DNA-binding domain of the glucocorticoid receptor as a result of alternative splicing. J Clin Endocrinol Metab 1999; 84: 4283–4286.

    Article  CAS  Google Scholar 

  13. Turner JD, Schote AB, Keipes M, Muller CP . A new transcript splice variant of the human glucocorticoid receptor: Identification and tissue distribution of hGRΔ313–338, an alternative exon 2 transactivation domain isoform. Ann NY Acad Sci 2007 pp 334–341.

    Article  CAS  Google Scholar 

  14. Oakley RH, Webster JC, Jewell CM, Sar M, Cidlowski JA . Immunocytochemical analysis of the glucocorticoid receptor alpha isoform (GRalpha) using GRalpha-specific antibody. Steroids 1999; 64: 742–751.

    Article  CAS  Google Scholar 

  15. Oakley RH, Webster JC, Sar M, Parker Jr CR, Cidlowski JA . Expression and subcellular distribution of the beta-isoform of the human glucocorticoid receptor. Endocrinology 1997; 138: 5028–5038.

    Article  CAS  Google Scholar 

  16. Oakley RH, Sar M, Cidlowski JA . The human glucocorticoid receptor beta isoform. Expression, biochemical properties, and putative function. J Biol Chem 1996; 271: 9550–9559.

    Article  CAS  Google Scholar 

  17. Pryce CR . Postnatal ontogeny of expression of the corticosteroid receptor genes in mammalian brains: inter-species and intra-species differences. Brain Res Rev 2008; 57: 596–605.

    Article  CAS  Google Scholar 

  18. Hansson AC, Cintra A, Belluardo N, Sommer W, Bhatnagar M, Bader M et al. Gluco- and mineralocorticoid receptor-mediated regulation of neurotrophic factor gene expression in the dorsal hippocampus and the neocortex of the rat. Eur J Neurosci 2000; 12: 2918–2934.

    Article  CAS  Google Scholar 

  19. Kumamaru E, Numakawa T, Adachi N, Yagasaki Y, Izumi A, Niyaz M et al. Glucocorticoid prevents brain-derived neurotrophic factor-mediated maturation of synaptic function in developing hippocampal neurons through reduction in the activity of mitogen-activated protein kinase. Mol Endocrinol 2008; 22: 546–558.

    Article  CAS  Google Scholar 

  20. Schaaf MJ, de Jong J, de Kloet ER, Vreugdenhil E . Downregulation of BDNF mRNA and protein in the rat hippocampus by corticosterone. Brain Res 1998; 813: 112–120.

    Article  CAS  Google Scholar 

  21. Weickert CS, Hyde TM, Lipska BK, Herman MM, Weinberger DR, Kleinman JE . Reduced brain-derived neurotrophic factor in prefrontal cortex of patients with schizophrenia. Mol Psychiatry 2003; 8: 592–610.

    Article  CAS  Google Scholar 

  22. Morsink MC, Steenbergen PJ, Vos JB, Karst H, Joels M, De Kloet ER et al. Acute activation of hippocampal glucocorticoid receptors results in different waves of gene expression throughout time. J Neuroendocrinol 2006; 18: 239–252.

    Article  CAS  Google Scholar 

  23. Lewis DA, Gonzalez-Burgos G . Neuroplasticity of neocortical circuits in schizophrenia. Neuropsychopharmacology 2008; 33: 141–165.

    Article  Google Scholar 

  24. Hashimoto T, Volk DW, Eggan SM, Mirnics K, Pierri JN, Sun Z et al. Gene expression deficits in a subclass of GABA neurons in the prefrontal cortex of subjects with schizophrenia. J Neurosci 2003; 23: 6315–6326.

    Article  CAS  Google Scholar 

  25. Qiu HT, Meng HQ, Song C, Xiu MH, Chen DC, Zhu FY et al. Association between monoamine oxidase (MAO)-A gene variants and schizophrenia in a Chinese population. Brain Res 2009; 1287: 67–73.

    Article  CAS  Google Scholar 

  26. Deckert J, Catalano M, Syagailo YV, Bosi M, Okladnova O, Di Bella D et al. Excess of high activity monoamine oxidase A gene promoter alleles in female patients with panic disorder. Hum Mol Genet 1999; 8: 621–624.

    Article  CAS  Google Scholar 

  27. Datson NA, van der Perk J, de Kloet ER, Vreugdenhil E . Identification of corticosteroid-responsive genes in rat hippocampus using serial analysis of gene expression. Eur J Neurosci 2001; 14: 675–689.

    Article  CAS  Google Scholar 

  28. Weickert CS, Webster MJ, Hyde TM, Herman MM, Bachus SE, Bali G et al. Reduced GAP-43 mRNA in dorsolateral prefrontal cortex of patients with schizophrenia. Cereb Cortex 2001; 11: 136–147.

    Article  CAS  Google Scholar 

  29. Tian SY, Wang J-F, Bezchlibnyk YB, Young LT . Immunoreactivity of 43 kDa growth-associated protein is decreased in post mortem hippocampus of bipolar disorder and schizophrenia. Neurosci Lett 2007; 411: 123–127.

    Article  CAS  Google Scholar 

  30. Law AJ, Pei Q, Walker M, Gordon-Andrews H, Weickert CS, Feldon J et al. Early parental deprivation in the marmoset monkey produces long-term changes in hippocampal expression of genes involved in synaptic plasticity and implicated in mood disorder. Neuropsychopharmacology 2008; 34: 1381–1394.

    Article  Google Scholar 

  31. Chen B, Wang J-F, Sun X, Young LT . Regulation of GAP-43 expression by chronic desipramine treatment in rat cultured hippocampal cells. Biol Psychiatry 2003; 53: 530–537.

    Article  CAS  Google Scholar 

  32. Oberlander TF, Weinberg J, Papsdorf M, Grunau R, Misri S, Devlin AM . Prenatal exposure to maternal depression, neonatal methylation of human glucocorticoid receptor gene (NR3C1) and infant cortisol stress responses. Epigenetics 2008; 3: 97–106.

    Article  Google Scholar 

  33. McGowan PO, Sasaki A, D’Alessio AC, Dymov S, Labonte B, Szyf M et al. Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat Neurosci 2009.

  34. Cannon M, Clarke MC . Risk for schizophrenia—broadening the concepts, pushing back the boundaries. Schizophrenia Res 2005; 79: 5–13.

    Article  Google Scholar 

  35. Mück-Seler D, Pivac N, Jakovljevic M, Brzovic Z . Platelet serotonin, plasma cortisol, and dexamethasone suppression test in schizophrenic patients. Biol Psychiatry 1999; 45: 1433–1439.

    Article  Google Scholar 

  36. Carroll BJ, Feinberg M, Greden JF, Tarika J, Albala AA, Haskett RF et al. A specific laboratory test for the diagnosis of melancholia. Standardization, validation, and clinical utility. Arch Gen Psychiatry 1981; 38: 15–22.

    Article  CAS  Google Scholar 

  37. Poland RE, Rubin RT, Lesser IM, Lane LA, Hart PJ . Neuroendocrine aspects of primary endogenous depression. II. Serum dexamethasone concentrations and hypothalamic-pituitary-adrenal cortical activity as determinants of the dexamethasone suppression test response. Arch Gen Psychiatry 1987; 44: 790–795.

    Article  CAS  Google Scholar 

  38. Van Cauter E, Linkowski P, Kerkhofs M, Hubain P, L’Hermite-Baleriaux M, Leclercq R et al. Circadian and sleep-related endocrine rhythms in schizophrenia. Arch Gen Psychiatry 1991; 48: 348–356.

    Article  CAS  Google Scholar 

  39. Linkowski P, Kerkhofs M, Van Onderbergen A, Hubain P, Copinschi G, L’Hermite-Baleriaux M et al. The 24-hour profiles of cortisol, prolactin, and growth hormone secretion in mania. Arch Gen Psychiatry 1994; 51: 616–624.

    Article  CAS  Google Scholar 

  40. Thakore JH, Mann JN, Vlahos I, Martin A, Reznek R . Increased visceral fat distribution in drug-naive and drug-free patients with schizophrenia. Inter J Obesity 2002; 26: 137–141.

    Article  CAS  Google Scholar 

  41. Carroll, Curtis GC, Mendels J . Neuroendocrine regulation in depression. I. Limbic system-adrenocortical dysfunction. Arch Gen Psychiatry 1976; 33: 1039–1044.

    Article  CAS  Google Scholar 

  42. Knable MB, Torrey EF, Webster MJ, Bartko JJ . Multivariate analysis of prefrontal cortical data from the Stanley Foundation Neuropathology Consortium. Brain Res Bull 2001; 55: 651–659.

    Article  CAS  Google Scholar 

  43. Webster MJ, Knable MB, O’Grady J, Orthmann J, Weickert CS . Regional specificity of brain glucocorticoid receptor mRNA alterations in subjects with schizophrenia and mood disorders. Mol Psychiatry 2002; 7: 985–994.

    Article  CAS  Google Scholar 

  44. Perlman WR, Webster MJ, Kleinman JE, Weickert CS . Reduced glucocorticoid and estrogen receptor alpha messenger ribonucleic acid levels in the amygdala of patients with major mental illness. Biol Psychiatry 2004; 56: 844–852.

    Article  CAS  Google Scholar 

  45. DeRijk RH, van Leeuwen N, Klok MD, Zitman FG . Corticosteroid receptor-gene variants: modulators of the stress-response and implications for mental health. Eur J Pharmacol 2008; 585: 492–501.

    Article  CAS  Google Scholar 

  46. Wust S, Van Rossum EFC, Federenko IS, Koper JW, Kumsta R, Hellhammer DH . Common polymorphisms in the glucocorticoid receptor gene are associated with adrenocortical responses to psychosocial stress. J Clin Endocrinol Metabol 2004; 89: 565–573.

    Article  Google Scholar 

  47. Van West D, Van Den Eede F, Del-Favero J, Souery D, Norrback KF, Van Duijn C et al. Glucocorticoid receptor gene-based SNP analysis in patients with recurrent major depression. Neuropsychopharmacology 2006; 31: 620–627.

    Article  CAS  Google Scholar 

  48. Diorio D, Viau V, Meaney MJ . The role of the medial prefrontal cortex (cingulate gyrus) in the regulation of hypothalamic-pituitary-adrenal responses to stress. J Neurosci 1993; 13: 3839–3847.

    Article  CAS  Google Scholar 

  49. Cotter D, Pariante CM . Stress and the progression of the developmental hypothesis of schizophrenia. Br J Psychiatry 2002; 181: 363–365.

    Article  Google Scholar 

  50. Sippell WG, Doerr HG, Bidlingmaier F, Knorr D . Plasma levels of aldosterone, corticosterone, 11-deoxycorticosterone, progesterone, 17-hydroxyprogesterone, cortisol, and cortisone during infancy and childhood. Pediatric Res 1980; 14: 39–46.

    Article  CAS  Google Scholar 

  51. Larsson CA, Gullberg B, Rastam L, Lindblad U . Salivary cortisol differs with age and sex and shows inverse associations with WHR in Swedish women: a cross-sectional study. BMC Endocr Disord 2009; 9: 16.

    Article  Google Scholar 

  52. Van Cauter E, Leproult R, Kupfer DJ . Effects of gender and age on the levels and circadian rhythmicity of plasma cortisol. J Clin Endocrinol Metab 1996; 81: 2468–2473.

    CAS  PubMed  Google Scholar 

  53. Gunnar MR, Wewerka S, Frenn K, Long JD, Griggs C . Developmental changes in hypothalamus-pituitary-adrenal activity over the transition to adolescence: normative changes and associations with puberty. Dev Psychopathol 2009; 21: 69–85.

    Article  Google Scholar 

  54. Jansen J, Beijers R, Riksen-Walraven M, de Weerth C . Cortisol reactivity in young infants. Psychoneuroendocrinology (in press).

  55. Otte C, Hart S, Neylan TC, Marmar CR, Yaffe K, Mohr DC . A meta-analysis of cortisol response to challenge in human aging: importance of gender. Psychoneuroendocrinology 2005; 30: 80–91.

    Article  CAS  Google Scholar 

  56. Kudielka BM, Buske-Kirschbaum A, Hellhammer DH, Kirschbaum C . HPA axis responses to laboratory psychosocial stress in healthy elderly adults, younger adults, and children: impact of age and gender. Psychoneuroendocrinology 2004; 29: 83–98.

    Article  CAS  Google Scholar 

  57. Tohgi H, Utsugisawa K, Yamagata M, Yoshimura M . Effects of age on messenger RNA expression of glucocorticoid, thyroid hormone, androgen, and estrogen receptors in postmortem human hippocampus. Brain Res 1995; 700: 245–253.

    Article  CAS  Google Scholar 

  58. Bohn MC, Dean D, Hussain S, Giuliano R . Development of mRNAs for glucocorticoid and mineralocorticoid receptors in rat hippocampus. Brain Res Dev Brain Res 1994; 77: 157–162.

    Article  CAS  Google Scholar 

  59. Peiffer A, Barden N, Meaney MJ . Age-related changes in glucocorticoid receptor binding and mRNA levels in the rat brain and pituitary. Neurobiol Aging 1991; 12: 475–479.

    Article  CAS  Google Scholar 

  60. Galeeva A, Ordyan N, Pivina S, Pelto-Huikko M . Expression of glucocorticoid receptors in the hippocampal region of the rat brain during postnatal development. J Chem Neuroanat 2006; 31: 216–225.

    Article  CAS  Google Scholar 

  61. Perlman WR, Webster MJ, Herman MM, Kleinman JE, Weickert CS . Age-related differences in glucocorticoid receptor mRNA levels in the human brain. Neurobiol Aging 2007; 28: 447–458.

    Article  CAS  Google Scholar 

  62. Weickert CS, Elashoff M, Richards AB, Sinclair D, Bahn S, Paabo S et al. Transcriptome analysis of male-female differences in prefrontal cortical development. Mol Psychiatry 2009; 14: 558–561.

    Article  CAS  Google Scholar 

  63. Wong J, Webster MJ, Cassano H, Weickert CS . Changes in alternative brain-derived neurotrophic factor transcript expression in the developing human prefrontal cortex. Eur J Neurosci 2009; 29: 1311–1322.

    Article  Google Scholar 

  64. Montague D, Weickert CS, Tomaskovic-Crook E, Rothmond DA, Kleinman JE, Rubinow DR . Oestrogen receptor alpha localisation in the prefrontal cortex of three mammalian species. J Neuroendocrinol 2008; 20: 893–903.

    Article  CAS  Google Scholar 

  65. Schnell SA, Staines WA, Wessendorf MW . Reduction of lipofuscin-like autofluorescence in fluorescently labeled tissue. J Histochem Cytochem 1999; 47: 719–730.

    Article  CAS  Google Scholar 

  66. Psarra A-MG, Solakidi S, Trougakos IP, Margaritis LH, Spyrou G, Sekeris CE . Glucocorticoid receptor isoforms in human hepatocarcinoma HepG2 and SaOS-2 osteosarcoma cells: presence of glucocorticoid receptor alpha in mitochondria and of glucocorticoid receptor beta in nucleoli. Inter J Biochem Cell Biol 2005; 37: 2544–2558.

    Article  CAS  Google Scholar 

  67. Moutsatsou P, Psarra AM, Tsiapara A, Paraskevakou H, Davaris P, Sekeris CE . Localization of the glucocorticoid receptor in rat brain mitochondria. Arch Biochem Biophys 2001; 386: 69–78.

    Article  CAS  Google Scholar 

  68. Vanderbilt JN, Miesfeld R, Maler BA, Yamamoto KR . Intracellular receptor concentration limits glucocorticoid-dependent enhancer activity. Mol Endocrinol (Baltimore, MD) 1987; 1: 68–74.

    Article  CAS  Google Scholar 

  69. Levine S . Primary social relationships influence the development of the hypothalamic—pituitary—adrenal axis in the rat. Physiol Behav 2001; 73: 255–260.

    Article  CAS  Google Scholar 

  70. Champagne DL, de Kloet ER, Joels M . Fundamental aspects of the impact of glucocorticoids on the (immature) brain. Semin Fetal Neonatal Med 2009; 14: 136–142.

    Article  Google Scholar 

  71. Cotter DR, Pariante CM, Everall IP . Glial cell abnormalities in major psychiatric disorders: the evidence and implications. Brain Res Bull 2001; 55: 585–595.

    Article  CAS  Google Scholar 

  72. Webster MJ, O’Grady J, Kleinman JE, Weickert CS . Glial fibrillary acidic protein mRNA levels in the cingulate cortex of individuals with depression, bipolar disorder and schizophrenia. Neuroscience 2005; 133: 453–461.

    Article  CAS  Google Scholar 

  73. Andersen SL . Trajectories of brain development: Point of vulnerability or window of opportunity? Neurosci Biobehav Rev 2003; 27: 3–18.

    Article  Google Scholar 

  74. Andersen SL, Teicher MH . Stress, sensitive periods and maturational events in adolescent depression. Trends Neurosci 2008; 31: 183–191.

    Article  CAS  Google Scholar 

  75. Andersen SL, Tomada A, Vincow ES, Valente E, Polcari A, Teicher MH . Preliminary evidence for sensitive periods in the effect of childhood sexual abuse on regional brain development. J Neuropsychiatry Clin Neurosci 2008; 20: 292–301.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Schizophrenia Research Institute, New South Wales Health, Macquarie Group Foundation, Prince of Wales Medical Research Institute and the University of New South Wales. Grant support was also received from the Stanley Medical Research Institute. We thank Heng Giap Woon, Alice Rothwell and Shan Yuan Tsai for technical assistance. DS was supported by an Australian Postgraduate Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C S Weickert.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website (http://www.nature.com/mp)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sinclair, D., Webster, M., Wong, J. et al. Dynamic molecular and anatomical changes in the glucocorticoid receptor in human cortical development. Mol Psychiatry 16, 504–515 (2011). https://doi.org/10.1038/mp.2010.28

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2010.28

Keywords

This article is cited by

Search

Quick links